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Abstract. Suppose we are given an oracle that claims to approximate
the permanent for most matrices X, where X is chosen from the Gaus-
sian ensemble (the matrix entries are i.i.d. univariate complex Gaus-
sians). Can we test that the oracle satisfies this claim? This paper gives
a polynomial-time algorithm for the task.
The oracle-testing problem is of interest because a recent paper of Aaron-
son and Arkhipov showed that if there is a polynomial-time algorithm
for simulating boson-boson interactions in quantum mechanics, then an
approximation oracle for the permanent (of the type described above)
exists in BPPNP. Since computing the permanent of even 0/1 matrices
is #P-complete, this seems to demonstrate more computational power
in quantum mechanics than Shor’s factoring algorithm does. However,
unlike factoring, which is in NP, it was unclear previously how to test
the correctness of an approximation oracle for the permanent, and this
is the contribution of the paper.
The technical difficulty overcome here is that univariate polynomial self-
correction, which underlies similar oracle-testing algorithms for perma-
nent over finite fields —and whose discovery led to a revolution in com-
plexity theory—does not seem to generalize to complex (or even, real)
numbers. We believe that this tester will motivate further progress on
understanding the permanent of Gaussian matrices.

1 Introduction

The permanent of an n-by-n matrix X = (xi,j) is defined as

Per(X) =
∑
π

n∏
i=1

xi,π(i),

where π ranges over all permutations from [n] to [n]. A recent paper of Aaron-
son and Arkhipov [1] (henceforth referred to as AA) introduced a surprising
connection between quantum computing and the complexity of computing the
permanent (which is well-known to be #P-complete to compute in the worst
case [2]). They define and study a formal model of quantum computation with
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non-interacting bosons in which n bosons pass through a “circuit” consisting of
optical elements. Each boson starts out in one of m different phases and, at the
end of the experiment, is in a superposition of the basis states—one for each
possible partition of the n bosons into m phases.

AA proceed to show that if there is an efficient classical randomized algorithm
A that simulates the experiment, in the sense of being able to output random
samples from the final distribution (up to a small error in total variation dis-
tance) of the Bosonic states at the end of the experiment, then there is a way
to design an approximation algorithm B in BPPNP for the permanent problem
for an interesting family of random matrices. The random matrices are drawn
from the Gaussian ensemble—each entry is an independent standard Gaussian
complex number—and the algorithm computes an additive approximation, in
the sense that,

|B(X)− Per(X)|2 6 δ2n! , (1)

for at least a fraction 1− η of the input matrices X. (Note that the variance of
Per(X) is n! for Gaussian ensembles, so this approximation is nontrivial.) The
running time of B is poly(n, 1/δ, 1/η) with access to an oracle in NPA. In other

words, B ∈ BPPNPA for η, δ = Ω (1/poly(n)) (refer to Problem 2 and Theorem 3 in
[1]). The authors go on to conjecture that obtaining an additive approximation
as in eq. (1) is #P-hard (this follows from Conjectures 5 and 6, and Theorem 7
in [1]). If true, this conjecture has surprising implications for the computational
power of quantum systems. By contrast, the crown jewel of quantum computing,
Shor’s algorithm [3], implies that the ability to simulate quantum systems would
allow us to factor integers in polynomial time, but factoring (as well as other
problems known to be in BQP) is not even known to be NP-Hard.

As evidence for their conjecture, Arkhipov and Aaronson point to related
facts about the permanent problem for matrices over integers and finite fields.
It is known that that if there is a constant factor approximation algorithm for
computing Per(X) where X is an arbitrary matrix of integers, then one can
solve #P problems in polynomial time. Thus, approximation on all inputs seems
difficult1. Likewise, starting with a paper of Lipton, researchers have studied
the complexity of computing the permanent (exactly) for many matrices. For
example, given an algorithm that computes the permanent exactly for 1/poly(n)
fraction of all matrices X over a finite field GF (p) (where p is a sufficiently large
prime), one can use self-correction procedures for univariate polynomials [7,8,9]
to again obtain efficient randomized algorithms for #P-hard problems.

Thus, either restriction —approximation on all matrices, or the ability to
compute exactly on a significant fraction of matrices— individually results in a
#P-hard problem. What makes the AA conjecture interesting is that it involves
the conjunction of the two restrictions: the oracle in question approximates the
value of the permanent for most matrices.

The focus of the current paper is the following question: given an additive
approximation oracle for permanents of Gaussian matrices (B in eq. (1) above),

1 Note that approximating the permanent is known to be feasible for the special case
of non-negative real matrices [4,5,6].



how can we test that the oracle is correct? We want a tester that accepts with
high probability when B satisfies the condition in eq. (1) and rejects with high
probability when B does not approximate well on a substantial fraction of inputs.
Note that the testing problem is a non-issue for previous quantum algorithms
such as Shor’s algorithm, since the correctness of a factoring algorithm is easy
to test.

The testing question has been studied for the permanent problem over finite
fields. Given an oracle that supposedly computes Per(·) for even, say, 3/4th of the
matrices over GF (p), one can verify this claim using self-correction for polyno-
mials over finite fields and the downward self-reducibility of Per(·), as described
below in more detail in Section 1.1. (In fact, if the oracle satisfies the claim, then
one can compute Per(·) on all matrices with high probability.) However, as noted
in AA, these techniques that work over finite fields fail badly over the complex
numbers. The authors in AA also seem to suggest that techniques analogous
to self-correction and downward self-reducibility can be generalized to complex
numbers in some way, but this remains open.

In this paper, we solve the testing problem using downward self-reducibility
alone. Perhaps this gives some weak evidence for the truth of the AA conjecture.
Note that since we lack self-correction techniques, we do not get an oracle at
the end that computes the permanent for all matrices as in the finite field case.
Incidentally, an argument similar to the one presented in this paper works in the
finite field case also, giving an alternate tester for the permanent that does not
use self-correction of polynomials over finite fields.

1.1 Related Work

As mentioned above, testing an oracle for the permanent over finite fields has
been extensively studied. The approach, basically arising from [10], uses self-
correction of polynomials over finite fields and downward self-reducibility of the
permanent. Let us revisit the argument.

Suppose we are given a sequence of oracles {Ok}k , where for each k, Ok
allegedly computes the permanent for a 9/10 fraction of all k-by-k matrices over
the field. The argument proceeds by first applying a self-correction procedure
for low-degree polynomials (see [8]), noting that the permanent is a k-degree
multilinear polynomial in the k2 entries of the matrix, treated as variables.

The correction procedure, on input X, queries Ok at poly(n) points, and
outputs the correct value of Per(X) with 1 − exp(−n) probability (over the
coin tosses of the procedure). Thus, the procedure acts as a proxy for the ora-
cle, providing {O?k}k which can now be tested for mutual consistency using the
downward self-reducibility of the permanent:

Per(X) =
∑
jx1,j · Per(Xj). (2)

Here, Xj is the submatrix formed by removing the first row and jth column.
Finally, since O1 can be verified by direct computation, this procedure tests
and accepts sequences where Ok computes the permanent of a fraction 9/10



of all k × k matrices; while rejecting sequences of oracles where for some k,
Ok(X) 6= Perk(X) on more than, say a fraction 3/10, of the inputs.

A natural attempt to port this argument to real/complex gaussian matrices
runs into fatal issues with the self-correction procedures: since the oracles are
only required to approximate the value of the permanent, a polynomial interpo-
lation procedure incurs an exponential (in the degree) blow-up in the error at the
point of interest (see [11]). In our work, we circumvent polynomial interpolation
and only deal with self-reducibility, noting that eq. (2) expresses the permanent
as a linear function of permanent of smaller matrices.

1.2 Overview of the Tester

We work with the following notion of quality of an oracle, naturally inspired by
the AA conjecture: the approximation guarantee is achieved by the oracle on all
but a small fraction of the inputs.

Definition 1. For an integer n, an oracle On : Cn
2

→ C, is said to be (δ, η)-

good if |On(X)− Per(X)|2 6 δ2n! , with probability at least 1− η over the choice
of n× n matrices, X, from the Gaussian ensemble.

Note that since the tester is required to be efficient, we (necessarily) allow
even good oracles to answer arbitrarily on a small fraction of inputs, because the
tester will not encounter these bad inputs with high probability. As an aside,
there is also the issue of additive vs multiplicative approximation, which AA
conjecture have similar complexity. In this paper, we stick with additive approx-
imation as defined above.

Our main result is stated informally below (see Theorem 2 for a precise
statement).

Theorem 1 (Main theorem – informal). There exists an algorithm A that,
given a positive integer n, an error parameter2 δ > 1/poly(n), and access to oracles

{Ok}16k6n such that Ok : Ck
2

→ C, has the following behavior:

– If for every k 6 n, the oracle Ok is (δ, 1/poly(n))-good, then A accepts with
probability at least 1− 1/poly(n).

– If there exists a k 6 n such that the oracle Ok is not even (poly(n) · δ, 1/poly(n))-
good, then A rejects with probability at least 1− 1/poly(n).

– The query complexity as well as the time complexity of A is poly(n/δ).

We conduct the test in n stages, one stage for each submatrix size. Let

k 6 n denote a fixed stage, and let X ∈ Ck
2

. Now, using downward self-
reducibility (eq. (2)), we have,

|Ok(X)− Perk(X)| 6∣∣∣Ok(X)−
∑
jxjOk−1(Xj)

∣∣∣︸ ︷︷ ︸
(A)

+
∣∣∣∑jxj [Ok−1(Xj)− Perk−1(Xj)]

∣∣∣︸ ︷︷ ︸
(B)

. (3)

2 All of the poly(·) are fixed polynomials, hidden for clarity



Recall that Xj is the submatrix formed by removing the first row and jth column
(often referred to as a minor).

We bound term (A) above, by checking if Ok is a linear function in the vari-
ables along the first row (xj in above), when the rest of the entries of the matrix
are fixed; the coefficients of the linear function are determined by querying Ok−1
on the k minors along the first row. The tolerance needed in the test is estimated
as follows: a good collection of oracles estimates Perk−1 up to δ

√
(k − 1)!, and

Perk up to δ
√
k! additive error. Further, since the expression is identically zero

for the permanent function, we have:

(A) 6 |Ok(X)− Perk(X)|+
∣∣∣∑jxj (Ok−1(Xj)− Perk−1(Xk))

∣∣∣
6 δ
√
k! +

∣∣∣∑jxjδ
√

(k − 1)!
∣∣∣ 6 δ

√
k! · (1 +O(

√
log n)),

where the last inequality follows from standard Gaussian tail bounds.
We test this by simply querying the oracles for random X and the minors

obtained thereof and checking if the downward self-reducibility condition is ap-
proximately met.

The second term, term (B), is linear in the error Ok−1 makes on the minors,
say εk−1

√
(k − 1)! on each minor. A naive argument as above says term (B) is

at most εk−1
√
k! · Θ(

√
log n). From this and eq. (3), the error in Ok is at most

a Θ(
√

log n) factor times the error in Ok−1. However, this bound is too weak to
conclude anything useful about On.

We overcome this issue by measuring the error in a root-mean-square (RMS
or `2) sense as follows:

err2(Ok) =

√
E
X

[Ok(X)− Perk(X)]
2

= ‖Ok − Perk‖2.

Now,

‖Ok − Perk‖2 6 ‖Ok −
∑
j(xjOj−1(Xj))‖2 +

√
E
[∑

jxj(Ok−1 − Perk−1)
]2
.

The first term is still δ
√
k! ·O(

√
log n) assuming the linearity test passes. Since

each xi is an independent standard Gaussian, the second term is at most
√
k ·

err2(Ok−1) = εk−1 ·
√
k!. Then, err2(Ok) 6 (δ

√
log n + εk−1) ·

√
k!, and thus

err2(On) is at most poly(n)δ
√
n! as we set out to prove! The caveat however is

that err2 as defined cannot be bounded precisely because we necessarily need to
discount a small fraction of the inputs: the oracles could be returning arbitrary
values on a small fraction, outside the purview of any efficient tester. We deal
with this by using a more sophisticated RMS error that discounts an η-fraction
of the input:

err2,η(Ok) = inf
S:µ(S)6η

√
E
X

[1s(Ok(X)− Perk(X))]
2
,



where 1S denotes the indicator function of the set S. We then use a tail inequality
on the permanent based on its fourth moment to carry through the inductive
argument set up above. This requires a Tail Test on the oracles to check that
the oracles have a tail similar to the permanent. Our analysis shows that the
Linearity and Tail test we design are sufficient and efficient, proving Theorem 1.

Organization. In the next section, we set up the notation. Section 3 describes the
test we design and follows it up with its analysis. All missing proofs are deferred
to the final version.

2 Preliminaries

Notation and Setup. We deal with complex valued functions on the space of
square matrices over the complex numbers, Ck×k for some integer k. We assume
Ck×k is endowed with the standard Gaussian measure N (0, 1)k×kC . We use the

notation PX [E] to denote the probability of an event E, when X ∼ N (0, 1)k×kC .
We denote by EX [Y ] to denote the expectation of the random variable Y, when
X ∼ N (0, 1)k×kC .

Functions from Cd to {0, 1} are called indicator functions (since they indicate
inclusion in the set of points where the function’s value is 1). We denote the
indicator function for a predicate q(X) by I[q(X)] and define it to be 1 when q(X)
is true and 0 otherwise. For example, I[|x| > 2] is 1 for all x whose magnitude
is at least 2, and 0 otherwise.

Error and `2 norm of Oracles. The (standard) `2 norm of a square-integrable

function f : Cd → C is denoted by ‖f‖2 and is equal to EX [|f |2]. An oracle
for the permanent is simply a function Ok : Ck×k → C that can be queried in
a single time unit. We will work with a sequence of oracles {Ok}{k6n}, one for
every dimension k less than n.

Moments of Permanents. The first and the second moments of the perma-
nent under the Gaussian distribution on k × k matrices are easy to compute:
EX [Perk(X)] = 0, EX [|Perk(X)|2] = k! . We also know the fourth moment of
the permanent function for Gaussian matrices, EX [|Perk(X)|4] = (k + 1)(k! )2

(Lemma 56, [1]). This fact and Markov’s inequality immediately imply:

Lemma 1 (Tail Bound for Permanent). For every positive integer k, the
permanent satisfies PX [|Perk(X)|> T

√
k!] 6 (k+1)/T 4.

3 Testing Approximate Permanent Oracles

Our testing procedure, PTest, has three parameters: a positive integer n, the
dimension of the matrices being tested; δ ∈ (0, 1], the amount of error allowed;
and c ∈ (0, 1], a completeness parameter. In addition, it has query access to the
sequence of oracles, {Ok}{k6n} being tested. In the following, for a matrix X,
we denote the entries in the first row of X by x11, . . . , x1k, and by Xi the minor
obtained by removing the first row and the ith column from X. (There will be
no confusion since we will only be working with expansion along the first row.)



The guarantees of the tester are twofold: it accepts with probability at least
1 − c if |Ok(X)− Perk(X)|2 6 δ2k! for every k, and every X ∈ Ck×k; on the
other hand, the tester almost always rejects if for some k 6 n, Ok(X) is not
poly(n)δ·

√
k! close to Perk(X) for at least 1− 1

poly(n) measure ofX’s (see below for

precise theorems). The query complexity of PTest is bounded by poly(n, 1/δ, 1/c).
Assuming that each oracle query takes constant time, the time complexity of
PTest is also bounded by poly(n, 1/δ, 1/c) (see below for precise bounds).

The test consists of two parts: The first is a Linearity test, that tests that
the oracles {Ok}{k6n} satisfy Ok(X) ≈

∑
i x1iOk−1(Xi) (observe that the per-

manent satisfies this exactly). The second part is a Tail test, that tests that
the function does not take large values too often (the permanent satisfies this
property too, as shown by Lemma 1).

LinearityTest(n, k, δ): Sample a k × k matrix X ∼ N (0, 1)k×kC . If k = 1,

output Reject unless |Ok(X)−X|2 6 n2 · δ2. Else, test if:
∣∣∣Ok(X) −∑k

i=1 x1iOk−1(Xi)
∣∣∣2 6 n2δ2 · k! . Output Reject if it does not hold.

TailTest(k, T ): Sample a k × k matrix X. Test that |Ok(X)|26 T 2k! .
Output Reject if it does not hold.

Parameters: A positive integer n ∈ IN, error parameter δ ∈ (0, 1], and com-
pleteness parameter c ∈ (0, 1].

Requires: Oracle access to {Ok}{k6n}, where Ok : Ck×k → C.

1. Set the following variables: T = 4n/δ
√
c, d = 192n2

/δ4c.
2. For each 1 6 k 6 n,

(a) Run LinearityTest(n, k, δ) d times.
(b) Run TailTest(k, T ) d times.

3. If none of the above tests output Reject, output Accept.

Fig. 1. The tester PTest

The procedure PTest is formally defined in Figure 1. In the rest of the paper, we
prove the following theorem about PTest.

Theorem 2 (Main Theorem). For all n ∈ IN, δ ∈ (0, 1], and c ∈ (0, 1], satisfy-

ing n = Ω
(√

log 1
cδ

)
, given oracle access to {Ok}{k6n}, where Ok : Ck×k → C,

the procedure PTest satisfies the following:

1. (Completeness) If, for every k 6 n, and every X ∈ Ck×k,

|Ok(X)− Perk(X)|2 6 δ2k!, then PTest accepts with probability at least 1−c.
2. (Soundness) For every 1 6 k 6 n, either



There exists an indicator function 1k : Ck×k → {0, 1} satisfying

EX [1k(X)] > 1− δ4c
64n , such that, EX [1k(X) · |Ok(X)−Perk(X)|2] 6

(2nkδ)2k! .
or else,

PTest outputs Reject with probability at least 1− e−n.
3. (Complexity) The total number of queries made by PTest is O(n4δ−4c−1).

Moreover, assuming that each oracle query takes constant time, the time
required by PTest is also O(n4δ−4c−1).

The completeness and soundness are proved below as Theorem 3, Theorem 4 in
Sections 3.1, 3.2 respectively. The complexity of the test is immediate from the
definitions.

Remark 1. Observe that, assuming both 1/c and 1/δ are polynomial in n, the query com-
plexity is poly(n), and hence, even if the oracles {Ok}k6n satisfy |Ok(X)−Perk(X)|26
δ2k! only with probability 1− 1

poly(n)
, PTest would still accept with probability 1− c−

1
poly(n)

.

Remark 2. Observe that the (informal) main theorem (Theorem 1) stated in the intro-
duction follows from Theorem 2 from a simple Markov argument. Given δ = Ω(1/poly(n)),
set c = 1

poly(n)
and note that the completeness follows directly from Theorem 2 and

the previous remark. Further, from the Soundness claim of Theorem 2, we have an in-

dicator function 1k : Ck×k → {0, 1} satisfying EX [1k(X)] > 1− δ4c
64n

> 1− 1
poly(n)

, such

that, EX [1k(X) · |Ok(X)−Perk(X)|2] 6 (2nkδ)2k!6 poly(n) ·δ2k! . Applying Markov’s
inequality, we have that P

[
1k(X) · |Ok(X)− Perk|2 > poly(n)δ2k!

]
6 1/poly(n). Now,

note that 1k is an indicator function, and P[1k(X) = 0] is at most 1/poly(n). This,
along with the previous expression gives that the tester outputs Reject if the sequence
of oracles is not even (poly(n) · δ, 1/poly(n))-good.

3.1 Completeness

We first prove the completeness of PTest: that a (δ, 0)-good sequence of oracles
is accepted with probability at least 1− c.

Theorem 3 (Completeness). If, for every k 6 n, and every X ∈ Ck×k,

|Ok(X)− Perk(X)|2 6 δ2k!, then PTest accepts with probability at least 1− c.

Proof. Suppose we are given a sequence of oracles {Ok}k6n such that for all
k 6 n, we have that |Ok(X) − Perk(X)|26 δ2 · k! . Let X denote a randomly
sampled k × k matrix.

We first bound the probability that the oracles {Ok}{k6n} fail a LinearityTest.
For k = 1, it is easy to see that LinearityTest(n, 1, δ) never outputs Reject

upon querying O1. For larger k, we have the following lemma that shows that
Ok(X) ≈

∑
i x1iOk−1(Xi), and hence LinearityTest outputs Reject only with

small probability. We defer its proof to the full version.

Lemma 2 (Completeness for LinearityTest). For every 2 6 k 6 n, the oracles

{Ok}{k6n} satisfy PX [|Ok(X)−
∑
ix1iOk−1(Xi)|2> n2δ2k! ] 6 2e−

(n−1)2

2 .



This lemma implies that every call to LinearityTest(n, k, δ) outputs Reject with

probability at most 2e−
(n−1)2

2 .
Next, we bound the probability that the oracles {Ok}{k6n} fail a TailTest. Us-

ing the tail bound for the permanent given by Lemma 1, we get, PX [|Perk(X)|>
(T − δ)

√
k!] 6 (k+1)/(T−δ)4. Since |Ok(X) − Perk(X)|6 δ ·

√
k!, we use it in the

above bound to get PX [|Ok(X)|> T
√
k!] 6 (k+1)/(T−δ)4. Thus, every call to

TailTest fails with probability at most (n+1)
(T−δ)4 .

Now applying a union bound, we get that for n that is Ω
(√

log 1
δc

)
, PTest

outputs Reject with probability at most

(2e−
(n−1)2

2 + (n+1)/(T−δ)4)dn 6 384n
3
/δ4c · e−(n−1)2/2 + 192(n+1)n3c/(4n−δ2

√
c)4 6 c.

ut

3.2 Soundness

The interesting part of the analysis is the soundness for PTest, which we prove in
this section. Given {Ok}{k6n}, we need to define the following indicator functions
to aid our analysis:

1LINk (X) =

{
I[(Ok(X)−X)2 6 n2δ2], if k = 1

I[(Ok(X)−
∑
i x1iOk−1(Xi))

2 6 n2δ2k! ], if 2 6 k 6 n

1TAILk (X) = I[Ok(X)2 6 T 2 · k! ],

1PERMk (X) = I[Perk(X)2 6 T 2 · k! ],

1k(X) = 1LINk (X) ∧ 1TAILk (X) ∧ 1PERMk (X). (4)

We now prove the following theorem.

Theorem 4 (Soundness). Let the indicator function 1k be as defined by Equa-
tion (4). For every k 6 n, either both of the following two conditions hold:

1. The indicator 1k satisfies EX [1k(X)] > 1− δ4c
64n .

2. The oracle Ok and the indicator 1k satisfy EX [1k(X)·|Ok(X)−Perk(X)|2] 6
(2nkδ)2k! ,

or else, PTest outputs Reject with probability at least 1− e−n.
Proof. We first prove the following lemma that shows that for all k 6 n, the
expectation of 1k is large.

Lemma 3 (Large Expectation of 1k). Either, for every k, the indicator func-

tion 1k satisfies EX [1k(X)] > 1− δ4c
64n , or else, PTest outputs Reject with prob-

ability at least 1− e−n.
The first part of the theorem follows immediately from this lemma. The proof
of this lemma is given later in this section.

For the second part of the theorem, we prove the following inductive claim
about the oracles {Ok}.



Lemma 4. (Main Induction Lemma) If for some 2 6 k 6 n, we have

E
X ∈C(k−1)×(k−1)

[1k−1(X) · |Ok−1(X)− Perk−1(X)|2] 6 ε2k−1(k − 1)! ,

then, either EX∈Ck×k [1k(X) · |Ok(X) − Perk(X)|2] 6 (εk−1 + 2nδ)2k! , or else,
PTest outputs Reject with probability at least 1− e−n.

The proof of this lemma is also presented later in the section. Assuming this
lemma, we can complete the proof of soundness for PTest.

For the second part of the theorem, we first show that the required bound
holds for k = 1. We know that for any X ∈ C, whenever 11(X) = 1, we have
|O1(X)−X|26 n2δ2. Thus,

E
X

[11(X) · |O1(X)−Per1(X)|2] 6 E
X

[1LIN1 (X) · |O1(X)−X|2] 6 n2δ2 < (2nδ)2 ·1! .

This gives us our base case. Assume that there is a 2 6 j 6 n such that,

E
X∈C(j−1)×(j−1)

[1j−1(X) · |Oj−1(X)− Perj−1(X)|2] 6 (2n(j − 1)δ)2 · (j − 1)! .

Now, we use Lemma 4 to deduce that either, EX∈Cj×j [1j(X)·|Oj(X)−Perj(X)|2] 6
(2njδ)2 · j! , or else, PTest outputs Reject with probability at least 1 − e−n.
Thus, by induction, either for every k 6 n, EX [1k(X) · |Ok(X) − Perk(X)|2] 6
(2nkδ)2 · k! , or else, PTest outputs Reject with probability at least 1 − e−n.
This completes the proof of the theorem. ut

Large expectation of 1k. We now prove Lemma 3.

Proof. (of Lemma 3). We begin by making several claims about the structure
the oracles {Ok}{k6n} must have with high probability, assuming that PTest
accepts. First, we claim that O1 must be close to the identity function.

Claim (Soundness of LinearityTest for O1). Either the oracle O1 satisfies that

PX

[
|O1(X)−X|2 > n2δ2

]
6 n/d, or else, PTest outputs Reject with probabil-

ity at least 1− e−n.

The straightforward proof of this claim is omitted. We also need the following
two claims stating that for every 2 6 k 6 n, Ok(X) ≈

∑
i x1iOk−1(Xi) often

and that Ok(X) does not take large values often.

Claim (Soundness of LinearityTest). Either the oracles {Ok} satisfy the inequal-

ity PX

[
|Ok(X)−

∑
i x1iOk−1(X)|2 > n2δ2k!

]
6 n/d for every 2 6 k 6 n, or

else, PTest outputs Reject with probability at least 1− e−n.

Claim (Soundness of TailTest). Either the oracles {Ok} satisfy the following for
every k 6 n, PX

[
|Ok(X)|2> T 2 · k!

]
6 n/d, or else, PTest outputs Reject with

probability at least 1− e−n.

The proofs of these claims are very similar to that of the first Claim for soundness
of LinearityTest for O1 and are omitted here. We can restate the above claims in
terms of 1LINk and 1TAILk defined in (4) as follows: Either, for every k 6 n,



E
X

[1LINk (X)] > 1− n/d, E
X

[1TAILk (X)] > 1− n/d, (5)

or else, PTest will output Reject with probability at least 1− e−n.
From Lemma 1, we know that PX [|Perk(X)|2> T 2 · k! ] 6 (k+1)/T 4. Again,

this implies that EX [1PERMk ] > 1− (k+1)/T 4.
We are now ready to prove our lemma. We know that 1k = 1LINk ∧ 1TAILk ∧

1PERMk . We know that if either of the claims in Equation (5) does not hold,
PTest outputs Reject with probability at least 1 − e−n. Thus, we assume that
both the claims in Equation (5) hold and get that for large enough n,

E
X

[1k(X)] > 1−E
X

[1− 1LINk (X)]−E
X

[1− 1TAILk (X)]−E
X

[1− 1PERMk (X)]

> 1− n/d− n/d− k+1/T 4 > 1− δ4c/96n− (n+1)δ4c2/256n4 > 1− δ4c/64n. ut

Main Induction Lemma. We now give a proof of the main induction lemma.

Proof. (of Lemma 4). Recall that Xi is the minor obtained by deleting the first
row and the ith column from X. We first split the probability space for X ∈ Ck×k

according to whether all of its minors Xi satisfy 1k−1(Xi) = 1 or not.

‖1k(X)(Ok(X)− Perk(X))‖2 =

(C)︷ ︸︸ ︷
‖1k(X) ·

∏
i1k−1(Xi)(Ok(X)− Perk(X))‖2

+ ‖1k(X)(1−
∏
i1k−1(Xi))(Ok(X)− Perk(X))‖2︸ ︷︷ ︸

(D)

Let 1̃k(X) = 1k(X)
∏
i 1k−1(Xi). Term (C), above, is bounded by adding and

subtracting the expression
∑
i x1iOk−1(Xi) and then expanding the permanent

along the first row.

‖1̃k(X)(Ok(X)− Perk(X))‖ 6 ‖1̃k(X)[Ok(X)−
∑
ix1iOk−1(Xi)]‖

+ ‖1̃k(X)[
∑
ix1iOk−1(Xi)−

∑
ix1iPerk−1(Xi)]‖︸ ︷︷ ︸

(E)

(6)

We know that if 1k(X) = 1, then |Ok(X) −
∑
i x1iOk−1(Xi)|2 is bounded by

n2δ2k! . Thus, the first term in eq. (6) is at most n2δ2k! . As for Term (E):

(E) =
∥∥∥1k(X) ·

∏
i1k−1(Xi)

[∑
iOk−1(Xi)−

∑
ix1iPerk−1(Xi)

]∥∥∥2
6 E
X1,...Xk

E
x11,...,x1k

[
∏
i1k−1(Xi) · |

∑
ix1iOk−1(Xi)−

∑
ix1iPerk−1(Xi)|2]

6 E
X1,...Xk

[
∏
i1k−1(Xi) ·

∑
i|Ok−1(Xi)− Perk−1(Xi)|2]

6
∑
i E
Xi

[
1k−1(Xi) · |Ok−1(Xi)− Perk−1(Xi)|2

]
6 kε2k−1(k − 1)! = ε2k−1k!

Combining the bounds on the two terms of eq. (6), we get,

(C) = E
X

[1k(X) ·
∏
i1k−1(Xi) · |Ok(X)− Perk(X)|2] 6 (εk−1 + nδ)2 · k! . (7)



Next, we bound term (D) as follows. First use lemma 3 to deduce PX [1k−1(Xi) =

0] 6 δ4c
64n (If it does not hold, we know that PTest outputs Reject with prob-

ability at least 1 − e−n). Since whenever 1k(X) = 1, we have |Ok(X)|6 T
√
k!

and |Perk(X)|6 T
√
k!. This implies that 1k(X) · |Ok(X) − Perk(X)|26 4T 2k!

everywhere. Thus, we have,

(D) = ‖1k(X)(1−
∏
i1k−1(Xi))(Ok(X)− Perk(X))‖2 6 4T 2k! E

X
[1−

∏
i1k−1(Xi)]

6 4T 2k! E
X

[
∑
i(1− 1k−1(Xi))] 6 4T 2k! ·k · δ4c/64n 6 n2δ2 · k! . (8)

Combining eqs. (6) to (8) completes the proof:

E
[
1k(X) · |Ok(X)− Perk(X)|2

]
6
(

(εk−1 + nδ)
2

+ n2δ2
)
·k!6 (εk−1 + 2nδ)

2·k! .
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