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Abstract — Plan recognition generates high-level information of By high-level informationwe mean results obtained from
opponents’ plans, typically a probability distribution over a sebn-line stochastic multi-agent plan recognition(PIR) that
of plausible plans. Estimations of plans, are in our work, madproduces an estimate of a distribution over possible plan
at different decision-levels, both company-level and the subsumgghrnatives of agentsacting in an environment. One of the
platoon-level. Naturally, successful plan recognition is heavilwan alternatives, in our case, is at t ack. The results of
dependent on the data that is supplied, and, hence, sensor M8k are interpretative and try to provide an explanation.

agement is a necessity. A key feature of the sensor manageme _ - ) o
discussed here is that it is driven by the information need of therlgredlctlvestuatlon awareness [3] projects a situdtion

plan recognition process. into the near future. Recognition of plans is one of the

In our research, we have presented a general framework fBfethodologiesthat areaimed to support predictive situation
connecting information need to sensor management. In our franfdvareness. PIR gives users hints about what the agent is go-
work implementation, an essential part is the prioritization ofig to do next given relevant sensor information and a priori
sensing tasks, which is necessary to efficiently utilize limited sekgiowledge about the agent. Due to high complexity and un-
ing resources. In our first implementation, the priorities were cakertainty even experienced tacticians are only able to con-
culated from, for instance, the estimated threats of opponents @ger two or three possible courses of action for all but the
a functign of pl.an esti.mates), the distance to the opponent, and gi‘ﬁ‘lplest situations [4]. Moreover, we reuse this high-level
uncertainty in its position. o information for sensor managemettat, in our case, takes

In this article, we a_dd a particle filter metho_d to better "®P1 hto account both derived threatestimate and uncertaintyof
resent the uncertainty in the opponent state estimate to make pyi-
oritization more well-founded and, ultimately, to achieve robu . . . . .
plan recognition. By using the particle filter we can obtain more PIR is heavily depgndgnt on the acquired I'nformatlon.. If
reliable state estimates (through the particle filter’s ability to repSeNsor resourcesare limited and cannot providerelevant in-
resent complex probability distributions) and also a statisticallformation in atimely fashion, the results of the PIR will be
based threat variation (through Monte-Carlo simulation). Th¢goor. By relevant we mean that more dangerousplan altern-
state transition model of the particle filter can also be used to pretives are desired to be better known than plan alternatives
dict future states to direct sensors with a time delay (a commemat are |ess dangerous. Hence, the information acquisition

property of large-scale sensing systems), such as sensors mouv(\mg or sensor management aspect (JDL level four) is cru-
on UAVs which have to travel some distance to make a measygy for PIR.

ment.
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1 Introduction

Raw (sensor) data obtained from sensor resources is com-
bined in level one of the JDL modél, i.e., multi-sensor data
fusion [1]. In this function, fusion activities such as identi-
fication, association, and classification, are performed. The
data are further refined into high-level informationin levels

In our previous publications we propose [5] and imple-
ment [6] a methodology where the information of PIR is
reused in order to connect high-level information need with
IA. Here, we further develop this methodology in a more
statistically robust and reliable manner.

In this article, we replace our previous coarse (circular
shaped) state uncertainty representation [6] with a more
convenient one by using a particlefilter (PF) [7, p. 11] (see
[8] for another use of PF for uncertainty representation in
terrain). To deal with the problem of lackingsensor datawe
usethe PF and introduce (Bayesian) robustplan recognition
(RPIR). By robust we mean in the sense of robust Bayesian
analysis [13]. This contributes to a better predictive situ-

two and three of the JDL modd, i.e., situation awareness ation awareness and improved sensor task prioritization.

and impact assessmenHere, we focus on finding an ap-

Sensor resources have dynamic constraints and therefore

propriate methodology for trandating high-level informa- we need a prediction of future agent states to enable proact-

tion to information needand connecting it to information
acquisition[2].

ive sensor control. Here, we use the PF for predicting states
in a number of following time steps. Finally, we combine



the properties above in our methodology for our proactive
multi-object sensor control.

Section 2 explainsthe context of the problem we are con-
sidering, presents the framework we use, and the experi-
ment scenario. Section 3, provides details about the PF we
use to represent and maintain state uncertainty. Section 4
presents PIR in general and the robust representation of the
current work. Section 5 provides details of various parts of
the implemented framework that relates to sensor manage-
ment. Section 6 provides the results of a simulation exper-
iment that visualizes the results of the PIR. The article is
summarized in Section 7, and future research opportunities
are discussed.

2 Thedecision support context

The primary subject of our study is plan recognitioni.e.,
the estimation of the intention of some agentobserved in
a mission-relevant environment.> The purpose of PIR is
here to support some information consumeracting (e.g.,
performing a mission) in an uncertain environment. The
consumers are, furthermore, assumed to be inter-connected
through a networkthat connects a set of nodes Formally,
we could represent the network with agraph G = (N, E),
where N is a set of nodes and E is a set of edges (or
communication links) that connects the nodes. The con-
sumers themselves are considered to be members of IN.
The network structure facilitates, e.g., reliability (through
the redundancy of multiple communication paths between
nodes in the network) and flexibility through information
exchange between arbitrary nodes in the network. Each
node of the network is assumed to have at least communic-
ation and computational skills. The individual success of a
consumer is dependent on the result of the its (local) PIR
for each observed agent, but the resources used to acquire
the information that fuelsthe PIR process are shared.

We do not make any assumption about the network con-
cerning, e.g., topology, communication protocols and in-
formation security. Many of those gquestions have to be
settled by the designer of the network, based on available
technology, resources, and possibly of the designing organ-
ization's policies. However, we do require that the network
is capable of conveying information throughout itself and
that it (somehow) can collect sensor measurementsand per-
form tracking based on this information. Network nodes
should also be prepared to share fused and inferred inform-
ation with interested nodes, and to assign tasks to sensing
resources(i.e., sensors) and appropriate sensor configura-
tion. At this point we do not make an attempt to describe
how this could be performed.

The instance of the general problem discussed above,
which we simulate and present in this article, is the scen-
ario depicted in Figure 1. It concerns an extensive geo-
graphic environment including two consumers located in
the middle of the view (al and a2). The two consumers
have individual goals (for the one on theright it isto defend

1The part of the observable environment that can have any ef-
fect on the mission held by the consumer.

the city in which it is located), but belong to the same net-
work. They both perform PIR based on information about
agent states. In the scenario there are nine (hostile) agents,
i.e., platoons Groups of three platoons belong to a com-
pany. There are two companies near the perimeter to the
north (labeled cnl and cn2 respectively) and oneinthefar
south of the view (cs). There are two types of resources
modeled. One type is the UAV observer which can travel
quickly but can only give state estimates from a distance
(to ensure its own security). The other one is the ground
soldier who islimited in speed but who can hideitself close
to the road and make comparatively precise state estimates
of a passing agent. The network, invisible in the figure,
has duties such as collecting measurementsto track hostile
agents, and to configure and engage sensorsin |A tasks (an
activity widely known as sensor management

The objective of a consumer is to know as much as pos-
sible about the varying threatsderived from PIR estimates
of the hostile agents. Threat estimation is defined in Sec-
tion5.1.
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Figure 1: Scenario for use of plan recognition

To approach the problem of resource sharing to support
PIR processes, we proposed a framework that emphasizes
aspects which we believe are useful to flexibly connect in-
formation needo information acquisitiori5]. Information
need is interpreted as a lack of information about the state
of the environment, that if it was relieved, is believed to
improve the decision-making of the system. Aspects that
the framework tries to capture include: multiple consumers
or objectives, heterogeneous sensors, dependencies among
tasks and services, and a separation between the actual
sensing resourcesand theinterface of servicesthey provide.
Inapreviousarticle[5], we compared the framework to oth-
ersthat have been proposed.

The general structure of the framework (depicted in Fig-
ure 2) involves two types of entities: spaceand function
The four space entities: task origin task serviceand re-
sourceare containers of structured information. The struc-
ture of information of each space entity should suit the in-

tersecting function entities: task creation and management
allocation schemeand service management and resource

allocation
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In a previous article [6], we used a circular agent posi-

! Task 1] ! Serv. ! Res. 1 . . .
— ! ! ! tion uncertainty representation that grew homogeneously
ystem | | | .
obiectives | : | ervice whenever observatlons. were not madg. To get an assess-
creation/ | - w ;| managemen ment of the threat (basically as a function of an estimated
management : resource depl

- plan distribution) posed by an agent with an associated un-
o ! ! : certainty circle, we considered a Monte-Carlo approach,
) scheme |

i.e., to draw samples uniformly from the uncertainty circle
and estimate expected threat and variance. However, the
rough uncertainty representation of the circle would have
Figure 2: The framework produced poor estimates, since samples within the circle
could have been drawn from highly unlikely positions in

The framework prescribes that information need (coff?€ €nvironment.
tained within the task origin space) is formulated as in- Here we replace the uncertainty circle with a PF for each
formation tasks with assigned properties (e.g., priority &dent. The PF has several advantages: (i) the position un-
time horizon depending on what properties the Systemqgrtainty representation is more expressive; (i) the state es-
designed to handle). Such tasks belong to the task spactnipte becomes less sensitive to spurious observations, and
our framework. (iii) Monte-Carlo simulation can be performed by simply
The materialization of tasks to satisfy a certain infornflrawing particles from the particle set.
ation need could be the responsibility of the task creation!n the particle filter algorithm, the state probability
and management function. The service space contains ¢ |Zo:t) at timet, whereX, is the agent state an,
vices that the sensors in the resource space (independei§ti} sequence of observations, is inferred and approxim-
or jointly) can perform. The allocation scheme describédely represented by a set of particles{xg”}ﬁil. The
how tasks are connected to feasible services. These fuiiéerence at each time step is generally performed in two

tions are further discussed in [5]. steps:importance samplingndselection In the import-
In the current work, the functions of the framework perance sampling step, for each particle a sanipgliél is
form the following chores. drawn from thestate transitiondistribution p(X,. 1 |x\").

Task origin space (TO): It is populated by two origins, Each sample is, furthermore, associated with a weight re-
i.e., the two consumers,, as€TO. As the state of lated toitsikelinoodgiven a new observatian .1, @), =
the environment evolves over time, the two consumepéz, , \igﬂ- The weights are then normalized. In the sub-
are in constant need of new information (i.e., state esequent selection stepy, particles are drawn (with replace-
timates) of the hostile agents. ment) from the weighted set of samples. This set is the

Task management and space: Tasks are created everygtoes;erlor at time + 1 and will be the prior in the next time
time step in the simulation from the information nee The particle filter we use is the one in [7, p. 11] slightly

expressed by the CONSUMers. The t.aSkS in the t‘fjlrrs1|c<Jdified. The reason we chose to modify it is because
spaceT = {r;}, are simple and basically only ex-

. . observations may sometimes be infrequent. As a con-
pressed in terms of the agent to obserjednd a pri- ; oo .
ority valueprio, i.e.,7; = (a, prio). sequence, the pa_\rtlcles will drift ran.domly (possibly away
from the area of interest) and also, if a new observation is
Resource space (R): Contains UAVs and ground soldiersmade it may have little effect since the closest particle may
Both types can make observations, but they have dife far away from the observation (i.e., in that case even the
ferent properties: UAVs are fast, but make uncertamost likely particle is unlikely). To counter these problems,
observations. Ground soldiers on the other hand ame add two modifications to the original algorithm: (i) we
slow, but their observations are more certain. let the particles (through the transition model used in the
) . ) prediction step) be attracted by the consumers, and (ii) the
Service management and space: In our implementation, pg jg re.jnitialized whenever observations are too far away
f‘?f ea_ch resource iR there is a correspondmg S€¥rom the nearest particle (i.e., a fraction of the particles are
vices in the service spacé. The service m"’magem,emrelocated to the vicinity of the observation). The rationale
makes sure that the resources are properly configuigthing these modifications is that we use some extra a pri-
(e.g., have flight paths) when associated with tasks. i jntormation (i.e., a generic estimation of the opponents’
Allocation scheme: Connects created tasks to availablitentions and that a correct observation should be reflected

services, based on their priorities. Connected pairs Bfthe configuration of the particle set).

tasks and services are referred to as allocations, e.g!n Section 3.1 and 3.2 we describe the details of our
alloc = (t, s)eAllocs. A service may refuse to per-transition and likelihood models.

form a task if the cost, for using the resource for the "

task at hand is too high. Services may alsopbee- -1 Statetransition model 4

mpted i.e., removed from one task and connected Ve describe the state of each partixﬁé> by four values.
another. The first two values represent the position of the particle in



x andy-coordinates. The following two are direction, Finally, particles that end up outside the area of in-
and speedy]|. terest are replaced by copies of other (propagated) particles,
where the probability for each particle is uniform.
(1) _
x'=lz y ¢ pl] @ 32 Likelihood model
Each particle in this case represents a hypothesis of thepired by [9], we propose the following likelihood func-
corresponding (hostile) agent's state. Therefore we say ttiah for sensor observations given a particle
the particle set is a representation of a multi-modal statist-
ical distribution. Additionally, by using our state transition p(zt‘;{gi)) - {
model we can make a (short time) prediction depending on
the sensors mobility and distance to particles. Herez, is the observation at time. d, and o, are

The agent is influenced by physical and doctrinal proRensor specific and related to the accuracy of the sensor,
erties. Our transition mocie;l takes into account the foIIovxél-ndd is the Euclidean distance between the particle and
1

ing factors:previous statex; *, terrain propertiesstrategic he ohservation. Therefore, all particles within a circular
sites(such as own forces). distance with radiug, of the observation will receive the

€+ ]-7 d<d5
€+ e~ (@=do)?/(203)  g>q,

1: for all particles{x,ﬁi)}f\i1 do same weight. For instance, in our experiments, we use
2. Randomly choose a strategically important placetwo sensors with different levels of accuracy. The small
from the consumers in the task origin spac® 0 < e < 1 improves the particle filter’s ability to recover a
3:  path< find the shortest road path frog” to ¢ track when observations are scarce.
4. &, calculate the direction of\” in path ' :
5. &, (cos(),sin(¢)) f;h\
6: & (&g +&y) /ey + &2 d
70 (znew ynew) <&-|v| + (Xgi)-$7 Xgi)@/) i | \
8.  (znew ynew) < most_likely_neighbor(znew, ynew) ' \
o: iﬁﬂp—[ rnew ynew ¢ +ep  [v]+ €y ] o \
10: end for " El \
We run our state transition algorithm for each time step, JR E— ]
i.e., we propagate particles for each time step with respect S0 10 0 s a0 s
to strategic sites (attractors), particles’ previous stath Distance (d) to observation

and local terrain properties.

Each particle propagation isndependentof other
particles, but is influenced by a global property that we call
gravity. In our military scenario, we say that particles ar
attracted tostrategically important placeflines 2-4). To
calculate the gravity vectog,, we calculate the shortest
terrain path. Thereforé, is not in the direction of the _ k o
straight line between the particle and the consumer. Instead, plz,|%") = I rt= %),
&, is calculated based on positions of the particle, terrain j=1
and strategic site. Our shortest path is the shortest distance

between the particle and the randomly chosen strategic sfle, M ulti-agent stochastic plan recognition

given terrain restrictions. The shortest path consists of\f|ti-agent stochastic PIR deals with stochastic outcomes
number of nodes and the traversability costs associated Withactions, uncertain observations [10], and incomplete
edges between nodes. After calculation of the shortest pathewledge. In military applications, the use of PIR could
the gravity vector is pointing in the direction of the shortegfe valuable when utilizing sensor data and is of decisive im-
path’s first node. portance in achieving information superiority and predict-

In the next step of the algorithm (linésand6), a direc- jve situation awareness. One reason is that sensors them-
tion vector,&,, is added ta&,. This calculation gives us aselves are not able to reveal the agents’ true intentions. Mil-
resulting vectorg,.. Given the resulting vector’s directionitary commanders have to act agilely and they do not have
and speed, the new position of the particle is calculatedrfuch time (especially on tactical level) to interpret data.
line 7. In some cases, the difficulty to recognize different patterns

The new position of the particle is adjusted to local teis caused by space-time separation, and limited capability
rain properties. Each particle position in our discrete terraia correlate patterns. In some cases, behavior of individual
representation can be associated with a traversability cagents can be classified as harmless, but put in some greater
We specify the size of the localirroundingas a parameter. context such as agents’ mutual interrelations, environment
We place a particle at the position of minimum cost in thend their assumed doctrines the threat might be identified
specified surrounding (lind). In line 9 we add white noise as much higher. The methodology of PIR helps mitigating
to the particle state. these difficulties.

Figure 3: Likelihood model

When we have several concurrent observationsksay
tehe same platoon, we let the joint likelihood be the product
of all the individual likelihoods for each observation, i.e.,



Our model for PIR [11] combines Bayesian statistics and When reconstructing state priors, a straightforward ap-
fuzzy membership functions [12]. The latter is used fgroach is to select all of th& particles. We construct state
modeling incomplete knowledge and connecting obseryarorsS where eacls; is assigned the value of the particle
tion data to a Dynamic Bayesian network (DBN) by entestatex!”, for i = 1,...,n. We consider each of the selec-

ing contextr_elevant evidence. The DBN i§ used for P_IF}ed particIechi) to be equal te; of the state prior§. The
reasoning (mferencg) about agents on different deCISIﬁFIt_1| previous plan alternatives have to be combined with
levels. Here, by decision levels we mean platoon and COffg state prior. The result is a set of the posteriors where,

pany levels. at the next time step, the previous plan distributions are re-
] o placed byN-|I1;_ |-plan distributions where each plan dis-
4.1 Bayesian robust plan recognition tribution corresponds to a combination of a certain state and

A problem in Bayesian analysis is its sensitivity to prior@ previous plan alternative. The number of particles and
In Robust Bayesian Analysis [13], a single prior distribithe number of the state priors is constant (N). However, the
tion is replaced by a set of priors resulting in a set of posteflumber of plan distributiongIT;|, could grow exponen-
ors. Such an approach s also caligobal Robust Bayesian tially (N-[IIo|)-N*~*. Such calculations soon become in-
Analysis, see [13, pages 1-32]. In this section, we introdui@ctable. A more convenientway is to assume that our pri-
multi-agent stochastic BayesiaobustPIR (RPIR), which ors are the convex hull (of the previous posteriors) and take
extends multi-agent stochastic PIRfopustlydealing with only perimeter values of the previous plan alternatives into
uncertainty in state estimates and lack of observations. account, i.e.P(r;”|s;€Sp,_;,m/_;€convhul(II;_,)).

In our original multi-agent stochastic PIR [11], we as- For estimation of the prior plan distribution;_,, we
sumed that a unique, unimodal, qualified guess on agel@st two different approaches given a family of plan distri-
state, containing agent’s positions and velocities, could bgtions from time step — 1. The first approach is the me-
obtained at each time step. Later we relaxed the problemdiym value of each plan alternative that we dentﬁ_%, and
dropping the assumption of continual observations [6]. Thike second approach is finding an estimate based on max-
new approach was to infer plans only in cases when obsinum entropyyrf'ﬂt. In our case, we use only one previous
vations were received; between observations we assunpdah distribution.
that the latest plan alternative was valid. The latter approactDue to the large number of particles used in our experi-
implies that when new observations arrive, the new plan @sent we construct the state priors from a set of randomly
timate could greatly differ from the previous plan estimatelrawn particles. The cardinality of the state priors is typic-

Here, we introduce a PF that maintains a state estimily lower than the number of the particles, i|&|<N.
ate, even when observations are lacking, by using our statd he first approach is based on finding the medium value
transition model, i.e.p(X;|x:—1). The PF produces a(center of gravity) of probability for each plan alternative,
multi-modal state representation with each particle ashagiven all plan distributionsI®;), with L = |TI;_4],
mode. This representation cannot be used directly with
our PIR model. One way would be to take the average of
particle sets and take that state estimate into our PIR model.
However, bearing in mind that particles could spread in dif-

ferent directions, we do not consider such an approach torhe second approach is choosing the estimate that has

be sufficiently robust. The centers of particle sets coujle maximum entropy compared to other distributions, see
represent places with no particles, i.e., unlikely states; aggl 3 and [14],

the expressiveness of the particle set is largely ignored.

Here, we propose reconstruction of the multi-modal state
representation into aet of priors(®) (required by the Pem(m_l) = max (Entropy(P(Il;_1))) . 3)
DBN) instead of one single priof). In the following step,
we use each prior separately and run PIR achieving a set Sengor management/I nfor mation
of posteriors of plan estimateEI¢{). We call this approach acquisition
RPIR where plan estimates af¥I1;|®), i.e., instead of
one posteriorgr, we get aamily of posteriorsII;. Sensor management, i.e., the active control of sensor para-

The reconstruction of priors could be performed in sevaeters (such as viewing angles, position, on/off, etc) to ac-
eral manners. Each prior distributios; j, consists of quire information about the mission-relevant environment,
two parts that are thetate prior ¢ = 1,...,|Sp|, and is animportant support for PIR.
the previous plan’s prior j = 1,...,|II;_1|. The state  Here, we address the problem of controlling a set of
prior sp,€Sp is one of the hypotheses of the agent'sensors to improve the PIR process. The context provides
state. A set of plan priors estimated from the previouke following features: there are multiple task origins, het-
time step,{wzil}izl___7|5p|J:Lm,mt_l‘, is required since erogeneous sensors, long time-intervals between initiated
we use the DBN for PIR, i.e., estimates of plans at tteensing action and result of the sensing actions, and re-
previous time step has influence on plan estimates at g@irce constraints.
current time step. Our plan distribution estimate for one To deal with the aforementioned scenario features, we
state prior with this notation could then be written amake a number of design choices within the framework
P(m;7|s,€Spy_q, mji—1€I_1). (described in Section 2) for our current implementation.
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Our current design of task management is described in Sexcbased on a function that calculates the agent’s least ex-
tion 5.1, allocation scheme in Section 5.2, and, finally, sgrensive (in terms of traversability) route from its current

vice management in Section 5.3. position to the consumer (also discussed in Section 3.1).
Finally, theGI fuzzy set expresses to what degree the
5.1 Task management agent can have a great impact on the consumer’s mission.

Tasks are generated by members of the task origin spa{%ethls work, we do not distinguish between the impact of

, : (1)) _
e.g., the consumeesl anda?2 (from our discussion in Sec- %h.osmi agentz alzjdfalways Wsx; ) = 1I'E 4 h
tion 2) that require information about the observed agents sing the standard fuzzy set operators, £q. 4 mathemat-

for their current mission. In the current work, each cor{(?ally conforms to

sumer maintains an estimate of the plans of each known
agent. The consumers formulate tasks themselves, one for
each opponent platoon. Naturally, the consumers never ) ) ) )
have enough information about agents and would like toA calculation ofiT is based on a single sampig’ from
know more about each one of them. Still for the networi€ particle set of the corresponding agent. What we want to
(system) to perform efficiently with its limited sensing redo is to also capture thg st'atistical properties (i.'e., expected
sources the consumers need to prioritize their tasks, ~ valué and standard deviation) of #ie membership degree
Here, we try to model the prioritization of the consume#!Ven the g;tate uncertainty expressed by the configuration
that assigns priorities to its tasks. The consumer is rigdithe particle set. _
primarily interested in a precise estimation of plan distribu- Calculating theiT membership degree for each of the
tions. Instead it should favor information that has the moBgrticles of the state uncertainty representation of an agent
relevance to its mission. A consumer has, for instance, litifecomputationally costly (as the number of particles is typ-
use of knowing the plans of some hostile agent precisely#@lly high). To alleviate this problem, we perform a Monte-
that agent only has little impact on the consumer’s missioiarlo simulation estimation of the expected membership
We decompose this mission-related prioritization into thr&k#gree offiT, uHr, and its standard deviatiomr, by
parts: (level ofhostility, time-separatiorandimpact The drawingM (typically much less thaiV) samples from the
first one concerns to what degree the agent’s plan is hoshirticle Set,{XE])}fil- The calculations are then the fol-
towards the consumer, the second to what degree the agewing basic estimates
is separated in time from the consumer (all other properties " o o o )
equal, closer agents should have higher priority), and the > HTG”) o > (HT ) —apr)
third concerns to what degree the agent can cause harm't5™ M  OHT M=1 (5)'

the consumers mission. The estimategHT andéHr are calculated by each con-

One way to try to c_apture this is to uberzy S.Et theory sumer for each mission-relevant agent, and stored in a task
where the membership of an elementto a set is not a bm@ Ucture,r — (a, prio), whereprio — (AN, 6HT). In

cond|t,!on (in or not in). W? tentatively propose a h gkburcurrentimplementation, we leave it up to the allocation
threat” fuzzy setHT, expressing the membership degree %f

) } cheme (Section 5.2) to order the tasks by comparison. For
an agent state, ' to the fuzzy set. The fuzzy SBT iSNoW  he comparison to be fair and make sense, we require that
a conjunction of the three parts, i.e.,

all consumers use the same threat calculation (i.e., Eq. 4)
and statistical estimates (i.e., Eq. 5).

The task management performed for one consumer can
be summarized in the following algorithm

HT = min (max (Hostc, Hostp) ,STimeS, GI) .

HT = (Host. UHost,) N STimeS N GI, (4)

whereHost, is the “hostile platoon” fuzzy set aritbst. is
the “hostile company” fuzzy set. The underpinning expland: for all agentsx do

ation of the disjunction of the two hostility degrees is that2: ~ calculateisr anddsr according to Eq. 5
the hostility of a platoon should not be less than the hostility: ~ prio< (jiur, Gur)

inferred on the superordinate compaipst, andHost,  4:  if there already exists@as.t.7.a == a then

are calculated as normalized and weighted linear combir¥: T.Prio«—prio
ations of the associated plan distributions (here, denotédl  €lse
7(x\")), making the membership degree one when thé: create a new task' = (v, prio)
probability of the plan alternative with the highest weight® ~ end if
is one, i.e., 9: end for
‘ The only line in the algorithm that requires an explana-
wz; w(xg”) tion is line 4. It checks whether there is already a task

()Y _
Hostp(x; ') = max(w,) ’ concerning agent. If so, line 5, updates its priority (i.e.,

the priority of a task is allowed to change over time).
wherew, is a column vector of weights for platoon plan
alternatives. The calculation #@bst. is analogous excepts 2  A|location scheme
for the change of weights.
STimeS expresses the degree to which the separationTihe allocation scheme maintains a set of prioritized tasks
time between the consumer and agent is small. This val{p®ssibly updated as described in Section 5.1), references



(and means to contact) to the servi@&sand connections have combined these two into a summarized value by a
between tasks and services, i.e., allocatiAnkcs. weighted sum in the task management function. Here, in-

Some of the tasks concern the same hostile agent, thisad, we want to allow the network to decide what is more
is because several consumers may be interested in informportant, expected threat or standard deviation. To do so,
ation about the same agent. In this implementation, the @le introduce two preference relatiofs?,, and PR, that
location scheme merely considers the maximum value ovepresent both desires, respectively.

all tasks that concern the same agent. PR, prefers a taskm to anotherr, if 7 .prio.u —
1: T« sort tasks according to preference relatiRR Ta.prio.p > 8. If 0 < 71.prio.u — 12.prio.u<d, 7 is only
2: for all sorted tasks; in T; at timet do preferred tor, if 71.prio.c > m.prio.c. PR, is defined
31 cur-alloc—get_current_alloc(7) symmetrically.
4:  best_alloc—get best_alloc(r, S)
5. if curr_alloc == best_alloc then 5.3 Service management and resource
6: continue with next task ifT’; deployment
7. endif : :
: . . The resource deployment part of our implementation per-
g Wh;'ﬁgijfﬁffgf 'si:vc;z:mpwo forms a simple path planning for the UAV sensors and sends
) NV them on their way. The path planning we choose reuses
10: cur-alloc’ —get current alloc(s) the particle set approximation of the state uncertainty for
11 if (s not occupied) or 4 is preferred to P bp . . y
cur-alloc’ task according taP R) then an agent by applylng the s_,tate t.ransmon angnthm (Sec-
12 if_s occﬁpiedhen tion 3.1) _to _predlct the configuration of the partllcles when
13: remove previous allocation far the UAV is Il.kely to be able to make an qbservat|on. A path
14: end if forthe UAV is then constructed by drqwmg path nqd'es from
15: if cur_alloc is not emptythen th_e predlpte_zd_part|cle set. An evaluation of the efflc!ency of
16: ren;ovecur alloc this heunstlc is beyo.n'd. the scope of the current article.
17: end if T It is the respons]blhty of the service management to
18: add new allocatiomest_alloc ch_eck whether. services have completeq or reached the end
1 9: break B of its path gnq if so make the service available (even to tasks
20: end if with low priority). .
21: S—8\ {s} Note that, although not implemented here, some of the
. responsibilities of service management and resource de-
22 best_alloc—get best_alloc(, S)
. ployment could be deferred to the resources themselves.
23:  end while
24: end for

6 Experiments
Line 1, in the algorithm, orders the presented tasks ac- P

cording to the selected preference relation (which will bevaluating the proposed framework and implementation of
described below in this section). The task with the highedte scenario described in Section 2 is difficult considering
priority will be served first. Line 3 finds the current allocaits complexity (i.e., it involves a multitude of parameters
tion of 7 if there is one (thus, we allow for a task to changeoncerning PIR, 1A, and their connection). The proposed
to a more beneficial service). Line 4 finds the best (mogtoblem space is also uncommon and there is little to com-
beneficial) allocation for, i.e., the allocation that gets thepare to in the literature.
best payoff based on a calculation of utility and codf. Figure 4 shows a comparison between the best pos-
the cost for the service is too high, the service might rejegible (pbp) estimates of theat t ack probability (prob-
7. Line 5 checks whether is already connected to its most@bly the most interesting plan alternative for a decision-
preferred service. If so, it continues with the nexttask. maker) and two of our RPIR estimates. T estimate
Line 10 finds the current allocatianr_alloc’ of the ser- iS achieved given continual and accurate observations of
vice s in best_alloc if it exists. If s is occupied in another all agents. The first RPIR estimate represents our center

allocation and ifr, has a lower priority than the task g  Of gravity (cg) attack estimate from the set of posteriors
current allocatioreur_alloc’, the program continues on line(Ed. 2). Here, we represent uncertainty intervals (dashed),
21 where the next best allocation is found (if any). Othefmin IT3**2<%; max IT3**2<¥], of the posteriors as well. We
wise best_alloc is employed. Line 13 realizes the preempalso show the maximum entropy estimatee) calculated
tion property of the algorithm, i.e., that an allocation maysing Eqg. 3 (dash and dot in the figure). Both estimates are
be removed if there is a task that is in more need of a serviég@Pendent on the implemented IA, described in Section 5,
than the one currently allocated. using thePR,, preference relation.

In Section 5.1, we explained that the priority stored for a I Figure 4, initially cs is observed by both UAVs
task is actually the tupléir, 547). Optionally, we could @nd ground observers and the estimated attack probabil-

ity is close tobp and the uncertainty interval is small.

2The utility is based on the quality of the expected observatiof€ increasing attack probability attracts the interest of
and the time it is anticpated to take before the observation canth@ sensors and the uncertainty interval is kept relatively
made. The cost is based on the cost of initiating and running tBenall. By the end of the scenario, near time step 80, the at-
sensor (e.g., in terms of fuel to transport the UAV). tack probability has decreased (becatisés moving away
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