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Abstract – Plan recognition generates high-level information of
opponents’ plans, typically a probability distribution over a set
of plausible plans. Estimations of plans, are in our work, made
at different decision-levels, both company-level and the subsumed
platoon-level. Naturally, successful plan recognition is heavily
dependent on the data that is supplied, and, hence, sensor man-
agement is a necessity. A key feature of the sensor management
discussed here is that it is driven by the information need of the
plan recognition process.

In our research, we have presented a general framework for
connecting information need to sensor management. In our frame-
work implementation, an essential part is the prioritization of
sensing tasks, which is necessary to efficiently utilize limited sens-
ing resources. In our first implementation, the priorities were cal-
culated from, for instance, the estimated threats of opponents (as
a function of plan estimates), the distance to the opponent, and the
uncertainty in its position.

In this article, we add a particle filter method to better rep-
resent the uncertainty in the opponent state estimate to make pri-
oritization more well-founded and, ultimately, to achieve robust
plan recognition. By using the particle filter we can obtain more
reliable state estimates (through the particle filter’s ability to rep-
resent complex probability distributions) and also a statistically
based threat variation (through Monte-Carlo simulation). The
state transition model of the particle filter can also be used to pre-
dict future states to direct sensors with a time delay (a common
property of large-scale sensing systems), such as sensors mounted
on UAVs which have to travel some distance to make a measure-
ment.

Keywords: plan recognition, sensor management, particle filter
tracking, predicted state, delayed measurements, stochastic simu-
lation, high-level information, large-scale system, task prioritiza-
tion

1 Introduction

Raw (sensor) data obtained from sensor resources is com-
bined in level one of the JDL model, i.e., multi-sensor data
fusion [1]. In this function, fusion activities such as identi-
fication, association, and classification, are performed. The
data are further refined into high-level information in levels
two and three of the JDL model, i.e., situation awareness
and impact assessment. Here, we focus on finding an ap-
propriate methodology for translating high-level informa-
tion to information needand connecting it to information
acquisition[2].

By high-level information we mean results obtained from
on-line stochastic multi-agent plan recognition(PlR) that
produces an estimate of a distribution over possible plan
alternatives of agentsacting in an environment. One of the
plan alternatives, in our case, is attack. The results of
PlR are interpretative and try to provide an explanation.

Predictive situation awareness [3] projects a situation
into the near future. Recognition of plans is one of the
methodologies that are aimed to support predictive situation
awareness. PlR gives users hints about what the agent is go-
ing to do next given relevant sensor information and a priori
knowledge about the agent. Due to high complexity and un-
certainty even experienced tacticians are only able to con-
sider two or three possible courses of action for all but the
simplest situations [4]. Moreover, we reuse this high-level
information for sensor managementthat, in our case, takes
into account both derived threatestimate and uncertaintyof
data.

PlR is heavily dependent on the acquired information. If
sensor resources are limited and cannot provide relevant in-
formation in a timely fashion, the results of the PlR will be
poor. By relevant we mean that more dangerous plan altern-
atives are desired to be better known than plan alternatives
that are less dangerous. Hence, the information acquisition
(IA) or sensor management aspect (JDL level four) is cru-
cial for PlR.

In our previous publications we propose [5] and imple-
ment [6] a methodology where the information of PlR is
reused in order to connect high-level information need with
IA. Here, we further develop this methodology in a more
statistically robust and reliable manner.

In this article, we replace our previous coarse (circular
shaped) state uncertainty representation [6] with a more
convenient one by using a particle filter (PF) [7, p. 11] (see
[8] for another use of PF for uncertainty representation in
terrain). To deal with the problem of lackingsensor data we
use the PF and introduce (Bayesian) robustplan recognition
(RPlR). By robust we mean in the sense of robust Bayesian
analysis [13]. This contributes to a better predictive situ-
ation awareness and improved sensor task prioritization.

Sensor resources have dynamic constraints and therefore
we need a prediction of future agent states to enable proact-
ivesensor control. Here, we use the PF for predicting states
in a number of following time steps. Finally, we combine



the properties above in our methodology for our proactive
multi-object sensor control.

Section 2 explains the context of the problem we are con-
sidering, presents the framework we use, and the experi-
ment scenario. Section 3, provides details about the PF we
use to represent and maintain state uncertainty. Section 4
presents PlR in general and the robust representation of the
current work. Section 5 provides details of various parts of
the implemented framework that relates to sensor manage-
ment. Section 6 provides the results of a simulation exper-
iment that visualizes the results of the PlR. The article is
summarized in Section 7, and future research opportunities
are discussed.

2 The decision support context

The primary subject of our study is plan recognition, i.e.,
the estimation of the intention of some agentobserved in
a mission-relevant environment.1 The purpose of PlR is
here to support some information consumersacting (e.g.,
performing a mission) in an uncertain environment. The
consumers are, furthermore, assumed to be inter-connected
through a networkthat connects a set of nodes. Formally,
we could represent the network with a graph G = (N,E),
where N is a set of nodes and E is a set of edges (or
communication links) that connects the nodes. The con-
sumers themselves are considered to be members of N.
The network structure facilitates, e.g., reliability (through
the redundancy of multiple communication paths between
nodes in the network) and flexibility through information
exchange between arbitrary nodes in the network. Each
node of the network is assumed to have at least communic-
ation and computational skills. The individual success of a
consumer is dependent on the result of the its (local) PlR
for each observed agent, but the resources used to acquire
the information that fuels the PlR process are shared.

We do not make any assumption about the network con-
cerning, e.g., topology, communication protocols and in-
formation security. Many of those questions have to be
settled by the designer of the network, based on available
technology, resources, and possibly of the designing organ-
ization’s policies. However, we do require that the network
is capable of conveying information throughout itself and
that it (somehow) can collect sensor measurements and per-
form tracking based on this information. Network nodes
should also be prepared to share fused and inferred inform-
ation with interested nodes, and to assign tasks to sensing
resources(i.e., sensors) and appropriate sensor configura-
tion. At this point we do not make an attempt to describe
how this could be performed.

The instance of the general problem discussed above,
which we simulate and present in this article, is the scen-
ario depicted in Figure 1. It concerns an extensive geo-
graphic environment including two consumers located in
the middle of the view (a1 and a2). The two consumers
have individual goals (for the one on the right it is to defend

1The part of the observable environment that can have any ef-
fect on the mission held by the consumer.

the city in which it is located), but belong to the same net-
work. They both perform PlR based on information about
agent states. In the scenario there are nine (hostile) agents,
i.e., platoons. Groups of three platoons belong to a com-
pany. There are two companies near the perimeter to the
north (labeled cn1 and cn2 respectively) and one in the far
south of the view (cs). There are two types of resources
modeled. One type is the UAV observer which can travel
quickly but can only give state estimates from a distance
(to ensure its own security). The other one is the ground
soldier who is limited in speed but who can hide itself close
to the road and make comparatively precise state estimates
of a passing agent. The network, invisible in the figure,
has duties such as collecting measurements to track hostile
agents, and to configure and engage sensors in IA tasks (an
activity widely known as sensor management).

The objective of a consumer is to know as much as pos-
sible about the varying threatsderived from PlR estimates
of the hostile agents. Threat estimation is defined in Sec-
tion 5.1.
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Figure 1: Scenario for use of plan recognition

To approach the problem of resource sharing to support
PlR processes, we proposed a framework that emphasizes
aspects which we believe are useful to flexibly connect in-
formation needto information acquisition[5]. Information
need is interpreted as a lack of information about the state
of the environment, that if it was relieved, is believed to
improve the decision-making of the system. Aspects that
the framework tries to capture include: multiple consumers
or objectives, heterogeneous sensors, dependencies among
tasks and services, and a separation between the actual
sensing resources and the interface of services they provide.
In a previous article [5], we compared the framework to oth-
ers that have been proposed.

The general structure of the framework (depicted in Fig-
ure 2) involves two types of entities: spaceand function.
The four space entities: task origin, task, serviceand re-
sourceare containers of structured information. The struc-
ture of information of each space entity should suit the in-
tersecting function entities: task creation and management,
allocation scheme, and service management and resource
allocation.
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Figure 2: The framework

The framework prescribes that information need (con-
tained within the task origin space) is formulated as in-
formation tasks with assigned properties (e.g., priority or
time horizon depending on what properties the system is
designed to handle). Such tasks belong to the task space in
our framework.

The materialization of tasks to satisfy a certain inform-
ation need could be the responsibility of the task creation
and management function. The service space contains ser-
vices that the sensors in the resource space (independently
or jointly) can perform. The allocation scheme describes
how tasks are connected to feasible services. These func-
tions are further discussed in [5].

In the current work, the functions of the framework per-
form the following chores.

Task origin space (TO): It is populated by two origins,
i.e., the two consumersa1, a2∈TO. As the state of
the environment evolves over time, the two consumers
are in constant need of new information (i.e., state es-
timates) of the hostile agents.

Task management and space: Tasks are created every
time step in the simulation from the information need
expressed by the consumers. The tasks in the task
spaceT = {τi}i are simple and basically only ex-
pressed in terms of the agent to observe (α) and a pri-
ority valueprio, i.e.,τi = (α, prio).

Resource space (R): Contains UAVs and ground soldiers.
Both types can make observations, but they have dif-
ferent properties: UAVs are fast, but make uncertain
observations. Ground soldiers on the other hand are
slow, but their observations are more certain.

Service management and space: In our implementation,
for each resource inR there is a corresponding ser-
vices in the service spaceS. The service management
makes sure that the resources are properly configured
(e.g., have flight paths) when associated with tasks.

Allocation scheme: Connects created tasks to available
services, based on their priorities. Connected pairs of
tasks and services are referred to as allocations, e.g.,
alloc = (t, s)∈Allocs. A service may refuse to per-
form a task if the cost, for using the resource for the
task at hand is too high. Services may also bepree-
mpted, i.e., removed from one task and connected to
another.

3 Particle filter-based state estimation
In a previous article [6], we used a circular agent posi-
tion uncertainty representation that grew homogeneously
whenever observations were not made. To get an assess-
ment of the threat (basically as a function of an estimated
plan distribution) posed by an agent with an associated un-
certainty circle, we considered a Monte-Carlo approach,
i.e., to draw samples uniformly from the uncertainty circle
and estimate expected threat and variance. However, the
rough uncertainty representation of the circle would have
produced poor estimates, since samples within the circle
could have been drawn from highly unlikely positions in
the environment.

Here we replace the uncertainty circle with a PF for each
agent. The PF has several advantages: (i) the position un-
certainty representation is more expressive; (ii) the state es-
timate becomes less sensitive to spurious observations, and
(iii) Monte-Carlo simulation can be performed by simply
drawing particles from the particle set.

In the particle filter algorithm, the state probability
p(Xt|z0:t) at time t, whereXt is the agent state andz0:t

is a sequence of observations, is inferred and approxim-
ately represented by a set ofN particles{x(i)

t }N
i=1. The

inference at each time step is generally performed in two
steps: importance samplingandselection. In the import-
ance sampling step, for each particle a samplex̃(i)

t+1 is

drawn from thestate transitiondistributionp(Xt+1|x(i)
t ).

Each sample is, furthermore, associated with a weight re-
lated to itslikelihoodgiven a new observationzt+1, w̃(i)

t+1 =
p(zt+1|x̃(i)

t+1). The weights are then normalized. In the sub-
sequent selection step,N particles are drawn (with replace-
ment) from the weighted set of samples. This set is the
posterior at timet+ 1 and will be the prior in the next time
step.

The particle filter we use is the one in [7, p. 11] slightly
modified. The reason we chose to modify it is because
observations may sometimes be infrequent. As a con-
sequence, the particles will drift randomly (possibly away
from the area of interest) and also, if a new observation is
made it may have little effect since the closest particle may
be far away from the observation (i.e., in that case even the
most likely particle is unlikely). To counter these problems,
we add two modifications to the original algorithm: (i) we
let the particles (through the transition model used in the
prediction step) be attracted by the consumers, and (ii) the
PF is re-initialized whenever observations are too far away
from the nearest particle (i.e., a fraction of the particles are
relocated to the vicinity of the observation). The rationale
behind these modifications is that we use some extra a pri-
ori information (i.e., a generic estimation of the opponents’
intentions and that a correct observation should be reflected
in the configuration of the particle set).

In Section 3.1 and 3.2 we describe the details of our
transition and likelihood models.

3.1 State transition model
We describe the state of each particlex(i)

t by four values.
The first two values represent the position of the particle in



x andy-coordinates. The following two are direction,φ,
and speed,|v|.

x(i)
t = [ x y φ |v| ] (1)

Each particle in this case represents a hypothesis of the
corresponding (hostile) agent’s state. Therefore we say that
the particle set is a representation of a multi-modal statist-
ical distribution. Additionally, by using our state transition
model we can make a (short time) prediction depending on
the sensors mobility and distance to particles.

The agent is influenced by physical and doctrinal prop-
erties. Our transition model takes into account the follow-
ing factors:previous statex(i)

t , terrain properties, strategic
sites(such as own forces).

1: for all particles{x(i)
t }N

i=1 do
2: Randomly choose a strategically important placec

from the consumers in the task origin spaceTO
3: path← find the shortest road path fromx(i)

t to c
4: êg← calculate the direction ofx(i)

t in path
5: êv← (cos(φ), sin(φ))
6: êr← (êg + êv) /‖êg + êv‖2

7: (xnew, ynew)←êr·|v| +
(
x(i)

t .x,x(i)
t .y

)
8: (xnew, ynew)←most likely neighbor(xnew, ynew)
9: x̃(i)

t+1←[ xnew ynew φ+ εφ |v| + ε|v| ]
10: end for

We run our state transition algorithm for each time step,
i.e., we propagate particles for each time step with respect
to strategic sites (attractors), particles’ previous statex(i)

t−1

and local terrain properties.
Each particle propagation isindependentof other

particles, but is influenced by a global property that we call
gravity. In our military scenario, we say that particles are
attracted tostrategically important places(lines 2-4). To
calculate the gravity vector,̂eg, we calculate the shortest
terrain path. Thereforêeg is not in the direction of the
straight line between the particle and the consumer. Instead,
êg is calculated based on positions of the particle, terrain
and strategic site. Our shortest path is the shortest distance
between the particle and the randomly chosen strategic site,
given terrain restrictions. The shortest path consists of a
number of nodes and the traversability costs associated with
edges between nodes. After calculation of the shortest path,
the gravity vector is pointing in the direction of the shortest
path’s first node.

In the next step of the algorithm (lines5 and6), a direc-
tion vector,êv, is added tôeg. This calculation gives us a
resulting vector,̂er. Given the resulting vector’s direction
and speed, the new position of the particle is calculated in
line 7.

The new position of the particle is adjusted to local ter-
rain properties. Each particle position in our discrete terrain
representation can be associated with a traversability cost.
We specify the size of the localsurroundingas a parameter.
We place a particle at the position of minimum cost in the
specified surrounding (line8). In line 9 we add white noise
to the particle state.

Finally, particles that end up outside the area of in-
terest are replaced by copies of other (propagated) particles,
where the probability for each particle is uniform.

3.2 Likelihood model

Inspired by [9], we propose the following likelihood func-
tion for sensor observations given a particle

p(zt|x̃(i)
t ) ∝

{
ε+ 1, d<ds

ε+ e−(d−ds)
2/(2σ2

s), d≥ds

Here zt is the observation at timet. ds and σs are
sensor specific and related to the accuracy of the sensor,
andd is the Euclidean distance between the particle and
the observation. Therefore, all particles within a circular
distance with radiusds of the observation will receive the
same weight. For instance, in our experiments, we use
two sensors with different levels of accuracy. The small
0 < ε 
 1 improves the particle filter’s ability to recover a
track when observations are scarce.

0 10 20 30 40 50
0

1

Distance (d) to observation

sd
ε

Figure 3: Likelihood model

When we have several concurrent observations, sayk, of
the same platoon, we let the joint likelihood be the product
of all the individual likelihoods for each observation, i.e.,

p(zt|x̃(i)
t ) =

k∏
j=1

p(zj
t |x̃(i)

t ).

4 Multi-agent stochastic plan recognition
Multi-agent stochastic PlR deals with stochastic outcomes
of actions, uncertain observations [10], and incomplete
knowledge. In military applications, the use of PlR could
be valuable when utilizing sensor data and is of decisive im-
portance in achieving information superiority and predict-
ive situation awareness. One reason is that sensors them-
selves are not able to reveal the agents’ true intentions. Mil-
itary commanders have to act agilely and they do not have
much time (especially on tactical level) to interpret data.
In some cases, the difficulty to recognize different patterns
is caused by space-time separation, and limited capability
to correlate patterns. In some cases, behavior of individual
agents can be classified as harmless, but put in some greater
context such as agents’ mutual interrelations, environment
and their assumed doctrines the threat might be identified
as much higher. The methodology of PlR helps mitigating
these difficulties.



Our model for PlR [11] combines Bayesian statistics and
fuzzy membership functions [12]. The latter is used for
modeling incomplete knowledge and connecting observa-
tion data to a Dynamic Bayesian network (DBN) by enter-
ing contextrelevant evidence. The DBN is used for PlR
reasoning (inference) about agents on different decision
levels. Here, by decision levels we mean platoon and com-
pany levels.

4.1 Bayesian robust plan recognition

A problem in Bayesian analysis is its sensitivity to priors.
In Robust Bayesian Analysis [13], a single prior distribu-
tion is replaced by a set of priors resulting in a set of posteri-
ors. Such an approach is also calledglobalRobust Bayesian
Analysis, see [13, pages 1-32]. In this section, we introduce
multi-agent stochastic BayesianrobustPlR (RPlR), which
extends multi-agent stochastic PlR byrobustlydealing with
uncertainty in state estimates and lack of observations.

In our original multi-agent stochastic PlR [11], we as-
sumed that a unique, unimodal, qualified guess on agents
state, containing agent’s positions and velocities, could be
obtained at each time step. Later we relaxed the problem by
dropping the assumption of continual observations [6]. The
new approach was to infer plans only in cases when obser-
vations were received; between observations we assumed
that the latest plan alternative was valid. The latter approach
implies that when new observations arrive, the new plan es-
timate could greatly differ from the previous plan estimate.

Here, we introduce a PF that maintains a state estim-
ate, even when observations are lacking, by using our state
transition model, i.e.,p(Xt|xt−1). The PF produces a
multi-modal state representation with each particle as a
mode. This representation cannot be used directly with
our PlR model. One way would be to take the average of
particle sets and take that state estimate into our PlR model.
However, bearing in mind that particles could spread in dif-
ferent directions, we do not consider such an approach to
be sufficiently robust. The centers of particle sets could
represent places with no particles, i.e., unlikely states; and
the expressiveness of the particle set is largely ignored.

Here, we propose reconstruction of the multi-modal state
representation into aset of priors (Θ) (required by the
DBN) instead of one single prior (θ). In the following step,
we use each prior separately and run PlR achieving a set
of posteriors of plan estimates (Πt). We call this approach
RPlR where plan estimates areP (Πt|Θ), i.e., instead of
one posterior,π, we get afamilyof posteriors,Πt.

The reconstruction of priors could be performed in sev-
eral manners. Each prior distribution,θi,j, consists of
two parts that are thestate prior, i = 1, . . ., |Sp|, and
the previous plan’s prior, j = 1, . . ., |Πt−1|. The state
prior spi∈Sp is one of the hypotheses of the agent’s
state. A set of plan priors estimated from the previous
time step,{πi,j

t−1}i=1...,|Sp|,j=1,...,|Πt−1|, is required since
we use the DBN for PlR, i.e., estimates of plans at the
previous time step has influence on plan estimates at the
current time step. Our plan distribution estimate for one
state prior with this notation could then be written as
P (πi,j

t |si∈Spt−1, πj,t−1∈Πt−1).

When reconstructing state priors, a straightforward ap-
proach is to select all of theN particles. We construct state
priorsS where eachsi is assigned the value of the particle
statex(i)

t , for i = 1, . . ., n. We consider each of the selec-
ted particlesx(i)

t to be equal tosi of the state priorsS. The
|Πt−1| previous plan alternatives have to be combined with
the state prior. The result is a set of the posteriors where,
at the next time step, the previous plan distributions are re-
placed byN ·|Πt−1|-plan distributions where each plan dis-
tribution corresponds to a combination of a certain state and
a previous plan alternative. The number of particles and
the number of the state priors is constant (N). However, the
number of plan distributions,|Πt|, could grow exponen-
tially (N ·|Π0|)·N t−1. Such calculations soon become in-
tractable. A more convenient way is to assume that our pri-
ors are the convex hull (of the previous posteriors) and take
only perimeter values of the previous plan alternatives into
account, i.e.,P (πi,j

t |si∈Spt−1, π
j
t−1∈convhull(Πt−1)).

For estimation of the prior plan distribution,πt−1, we
test two different approaches given a family of plan distri-
butions from time stept − 1. The first approach is the me-
dium value of each plan alternative that we denoteπ

cg
t−1 and

the second approach is finding an estimate based on max-
imum entropy,πent

t−1. In our case, we use only one previous
plan distribution.

Due to the large number of particles used in our experi-
ment we construct the state priors from a set of randomly
drawn particles. The cardinality of the state priors is typic-
ally lower than the number of the particles, i.e.,|S|≤N .

The first approach is based on finding the medium value
(center of gravity) of probability for each plan alternative,
h, given all plan distributions (Πt), with L = |Πt−1|,

P cg(πh
t−1) =

1
L

L∑
l=1

P l(πh
t−1). (2)

The second approach is choosing the estimate that has
the maximum entropy compared to other distributions, see
Eq. 3 and [14],

Pent(πt−1) = max (Entropy(P (Πt−1))) . (3)

5 Sensor management/Information
acquisition

Sensor management, i.e., the active control of sensor para-
meters (such as viewing angles, position, on/off, etc) to ac-
quire information about the mission-relevant environment,
is an important support for PlR.

Here, we address the problem of controlling a set of
sensors to improve the PlR process. The context provides
the following features: there are multiple task origins, het-
erogeneous sensors, long time-intervals between initiated
sensing action and result of the sensing actions, and re-
source constraints.

To deal with the aforementioned scenario features, we
make a number of design choices within the framework
(described in Section 2) for our current implementation.



Our current design of task management is described in Sec-
tion 5.1, allocation scheme in Section 5.2, and, finally, ser-
vice management in Section 5.3.

5.1 Task management

Tasks are generated by members of the task origin space,
e.g., the consumersa1 anda2 (from our discussion in Sec-
tion 2) that require information about the observed agents
for their current mission. In the current work, each con-
sumer maintains an estimate of the plans of each known
agent. The consumers formulate tasks themselves, one for
each opponent platoon. Naturally, the consumers never
have enough information about agents and would like to
know more about each one of them. Still for the network
(system) to perform efficiently with its limited sensing re-
sources the consumers need to prioritize their tasks.

Here, we try to model the prioritization of the consumer
that assigns priorities to its tasks. The consumer is not
primarily interested in a precise estimation of plan distribu-
tions. Instead it should favor information that has the most
relevance to its mission. A consumer has, for instance, little
use of knowing the plans of some hostile agent precisely if
that agent only has little impact on the consumer’s mission.
We decompose this mission-related prioritization into three
parts: (level of)hostility, time-separationandimpact. The
first one concerns to what degree the agent’s plan is hostile
towards the consumer, the second to what degree the agent
is separated in time from the consumer (all other properties
equal, closer agents should have higher priority), and the
third concerns to what degree the agent can cause harm to
the consumer’s mission.

One way to try to capture this is to usefuzzy set theory,
where the membership of an element to a set is not a binary
condition (in or not in). We tentatively propose a “high
threat” fuzzy set,HT, expressing the membership degree of
an agent statex(i)

t to the fuzzy set. The fuzzy setHT is now
a conjunction of the three parts, i.e.,

HT =
(
Hostc ∪ Hostp

) ∩ STimeS∩ GI, (4)

whereHostp is the “hostile platoon” fuzzy set andHostc is
the “hostile company” fuzzy set. The underpinning explan-
ation of the disjunction of the two hostility degrees is that
the hostility of a platoon should not be less than the hostility
inferred on the superordinate company.Hostp andHostc
are calculated as normalized and weighted linear combin-
ations of the associated plan distributions (here, denoted
π(x(i)

t )), making the membership degree one when the
probability of the plan alternative with the highest weight
is one, i.e.,

Hostp(x
(i)
t ) =

wT
p π(x(i)

t )
max(wp)

,

wherewp is a column vector of weights for platoon plan
alternatives. The calculation ofHostc is analogous except
for the change of weights.
STimeS expresses the degree to which the separation in

time between the consumer and agent is small. This value

is based on a function that calculates the agent’s least ex-
pensive (in terms of traversability) route from its current
position to the consumer (also discussed in Section 3.1).

Finally, theGI fuzzy set expresses to what degree the
agent can have a great impact on the consumer’s mission.
In this work, we do not distinguish between the impact of
the hostile agents and always useGI(x(i)

t ) = 1.
Using the standard fuzzy set operators, Eq. 4 mathemat-

ically conforms to

HT = min
(
max

(
Hostc, Hostp

)
, STimeS, GI

)
.

A calculation ofHT is based on a single samplex(i)
t from

the particle set of the corresponding agent. What we want to
do is to also capture the statistical properties (i.e., expected
value and standard deviation) of theHT membership degree
given the state uncertainty expressed by the configuration
of the particle set.

Calculating theHT membership degree for each of the
particles of the state uncertainty representation of an agent
is computationally costly (as the number of particles is typ-
ically high). To alleviate this problem, we perform a Monte-
Carlo simulation estimation of the expected membership
degree ofHT, µHT, and its standard deviation,σHT, by
drawingM (typically much less thanN ) samples from the
particle set,{x(j)

t }M
j=1. The calculations are then the fol-

lowing basic estimates

µ̂HT =
∑M

j=1
HT(x

(j)
t )

M , σ̂2
HT =

∑M

j=1

(
HT(x

(j)
t )−µ̂HT

)2

M−1 .
(5)

The estimateŝµHT andσ̂HT are calculated by each con-
sumer for each mission-relevant agent, and stored in a task
structure,τ = (α, prio), whereprio = (µ̂HT, σ̂HT). In
our current implementation, we leave it up to the allocation
scheme (Section 5.2) to order the tasks by comparison. For
the comparison to be fair and make sense, we require that
all consumers use the same threat calculation (i.e., Eq. 4)
and statistical estimates (i.e., Eq. 5).

The task management performed for one consumer can
be summarized in the following algorithm

1: for all agentsα do
2: calculateµ̂HT andσ̂HT according to Eq. 5
3: prio← (µ̂HT, σ̂HT)
4: if there already exists aτ s.t.τ.α == α then
5: τ.prio←prio
6: else
7: create a new taskτ ′ = (α, prio)
8: end if
9: end for

The only line in the algorithm that requires an explana-
tion is line 4. It checks whether there is already a taskτ
concerning agentα. If so, line 5, updates its priority (i.e.,
the priority of a task is allowed to change over time).

5.2 Allocation scheme

The allocation scheme maintains a set of prioritized tasksT
(possibly updated as described in Section 5.1), references



(and means to contact) to the servicesS, and connections
between tasks and services, i.e., allocationsAllocs.

Some of the tasks concern the same hostile agent, this
is because several consumers may be interested in inform-
ation about the same agent. In this implementation, the al-
location scheme merely considers the maximum value over
all tasks that concern the same agent.

1: Tt← sort tasks according to preference relationPR
2: for all sorted tasksτt in Tt at timet do
3: cur alloc←get current alloc(τt)
4: best alloc←get best alloc(τt,S)
5: if curr alloc == best alloc then
6: continue with next task inTt

7: end if
8: while best alloc is not emptydo
9: s←best alloc.service

10: cur alloc′←get current alloc(s)
11: if (s not occupied) or (τt is preferred to

cur alloc′.task according toPR) then
12: if s occupiedthen
13: remove previous allocation fors
14: end if
15: if cur alloc is not emptythen
16: removecur alloc
17: end if
18: add new allocationbest alloc
19: break
20: end if
21: S←S \ {s}
22: best alloc←get best alloc(τt,S)
23: end while
24: end for

Line 1, in the algorithm, orders the presented tasks ac-
cording to the selected preference relation (which will be
described below in this section). The task with the highest
priority will be served first. Line 3 finds the current alloca-
tion of τ if there is one (thus, we allow for a task to change
to a more beneficial service). Line 4 finds the best (most
beneficial) allocation forτt, i.e., the allocation that gets the
best payoff based on a calculation of utility and cost.2 If
the cost for the service is too high, the service might reject
τ . Line 5 checks whetherτ is already connected to its most
preferred service. If so, it continues with the next task.

Line 10 finds the current allocationcur alloc′ of the ser-
vice s in best alloc if it exists. If s is occupied in another
allocation and ifτt has a lower priority than the task ofs’s
current allocationcur alloc′, the program continues on line
21 where the next best allocation is found (if any). Other-
wisebest alloc is employed. Line 13 realizes the preemp-
tion property of the algorithm, i.e., that an allocation may
be removed if there is a task that is in more need of a service
than the one currently allocated.

In Section 5.1, we explained that the priority stored for a
task is actually the tuple(µ̂HT, σ̂HT). Optionally, we could

2The utility is based on the quality of the expected observation
and the time it is anticpated to take before the observation can be
made. The cost is based on the cost of initiating and running the
sensor (e.g., in terms of fuel to transport the UAV).

have combined these two into a summarized value by a
weighted sum in the task management function. Here, in-
stead, we want to allow the network to decide what is more
important, expected threat or standard deviation. To do so,
we introduce two preference relationsPRµ andPRσ, that
represent both desires, respectively.
PRµ prefers a taskτ1 to anotherτ2, if τ1.prio.µ −

τ2.prio.µ > δ. If 0 ≤ τ1.prio.µ − τ2.prio.µ≤δ, τ1 is only
preferred toτ2 if τ1.prio.σ > τ2.prio.σ. PRσ is defined
symmetrically.

5.3 Service management and resource
deployment

The resource deployment part of our implementation per-
forms a simple path planning for the UAV sensors and sends
them on their way. The path planning we choose reuses
the particle set approximation of the state uncertainty for
an agent by applying the state transition algorithm (Sec-
tion 3.1) to predict the configuration of the particles when
the UAV is likely to be able to make an observation. A path
for the UAV is then constructed by drawing path nodes from
the predicted particle set. An evaluation of the efficiency of
this heuristic is beyond the scope of the current article.

It is the responsibility of the service management to
check whether services have completed or reached the end
of its path and if so make the service available (even to tasks
with low priority).

Note that, although not implemented here, some of the
responsibilities of service management and resource de-
ployment could be deferred to the resources themselves.

6 Experiments

Evaluating the proposed framework and implementation of
the scenario described in Section 2 is difficult considering
its complexity (i.e., it involves a multitude of parameters
concerning PlR, IA, and their connection). The proposed
problem space is also uncommon and there is little to com-
pare to in the literature.

Figure 4 shows a comparison between the best pos-
sible (bp) estimates of theattack probability (prob-
ably the most interesting plan alternative for a decision-
maker) and two of our RPlR estimates. Thebp estimate
is achieved given continual and accurate observations of
all agents. The first RPlR estimate represents our center
of gravity (cg) attack estimate from the set of posteriors
(Eq. 2). Here, we represent uncertainty intervals (dashed),
[minΠattack

t ; maxΠattack
t ], of the posteriors as well. We

also show the maximum entropy estimate (me) calculated
using Eq. 3 (dash and dot in the figure). Both estimates are
dependent on the implemented IA, described in Section 5,
using thePRµ preference relation.

In Figure 4, initially cs is observed by both UAVs
and ground observers and the estimated attack probabil-
ity is close tobp and the uncertainty interval is small.
The increasing attack probability attracts the interest of
the sensors and the uncertainty interval is kept relatively
small. By the end of the scenario, near time step 80, the at-
tack probability has decreased (becausecs is moving away
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Figure 4: Attack probability estimate for agentcs for pre-
dictive situation awareness.

from the consumers) and the interest of the sensors has been
lowered. This, together with the bias of the state transition
model (which pulls particles towards the consumers), ex-
plains why the uncertainty interval fails to cover thebp es-
timate in the last time steps.

For this experiment, thecg rather appears to better ap-
proximatebp thanme. Thecg approximation considers
the whole set of distributions unlike theme estimate.

7 Conclusions and discussion
The consequence of using a PF for PlR is that we obtain
more reliable results for agent plan estimates, than our pre-
vious results in [6], by introducing RPlR. The reason is ba-
sically that the PF better represents the uncertainty in the
state estimates.

The proposed PF also contributes to the IA part of this
research. The state transition model of the PF can be ex-
ploited to predict (the most likely) future agent states to
proactively control sensors. The PF in conjunction with the
RPlR can also be used to estimate expected threat and vari-
ance for sensor task prioritization.

In terms of the proposed framework, we have practically
explored parts of its domain. We have, however, yet to ex-
plore, e.g., dependencies among services and tasks, which
appears to be challenging to master efficiently.

In the future, we would like to enrich the state transition
model by conditioning particle behavior on plan distribu-
tions, and introduce other agent-like properties. Concern-
ing RPlR, it needs to be both formalized and its potential
investigated (e.g., to evaluate the trade-offs between com-
pleteness and tractability).
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[6] R. Suzić and R. Johansson. Realization of a bridge
between high-level information need and sensor man-
agement using a common DBN. InThe 2004 IEEE
Intl Conf. on Information Reuse and Integration.
IEEE, 2004.

[7] A. Doucet, N. De Freitas, and N. Gordon.Sequential
Monte Carlo Methods in Practice. Springer Verlag,
2001.

[8] H. Sidenbladh. Multi-target particle filtering for the
probability hypothesis density. InProc. of the 6th Intl
Conf. on Information Fusion, pages 800–806. Interna-
tional Society of Information Fusion, 2003.

[9] J. Lichtenauer, M. Reinders, and E. Hendriks. Influ-
ence of the observation likelihood function on particle
filtering performance in tracking applications. In
Proc. of the 6th Intl Conference on Automatic Face
and Gesture Recognition, 2004.

[10] H. H. Bui, S. Venkatesh, and G. West. Policy recogni-
tion in the abstract hidden markov model.Journal of
AI Research, 17:451–499, 2002.
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