
Particle filter-based information acquisition for
robust plan recognition

L. Ronnie M. Johansson Robert Suzić
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Abstract— Plan recognition generates high-level information
of opponents’ plans, typically a probability distribution over a
set of plausible plans. Estimations of plans, are in our work,
made at different decision-levels, both company-level and the
subsumed platoon-level. Naturally, successful plan recognition
is heavily dependent on the data that is supplied, and, hence,
sensor management is a necessity. A key feature of the sensor
management discussed here is that it is driven by the information
need of the plan recognition process.

In our research, we have presented a general framework
for connecting information need to sensor management. In our
framework implementation, an essential part is the prioritization
of sensing tasks, which is necessary to efficiently utilize limited
sensing resources. In our first implementation, the priorities were
calculated from, for instance, the estimated threats of opponents
(as a function of plan estimates), the distance to the opponent,
and the uncertainty in its position.

In this article, we add a particle filter method to more
carefully represent the uncertainty in the opponent state estimate
to make prioritization more well founded and, ultimately, to
achieve robust plan recognition. By using the particle filter we
can obtain more reliable state estimates (through the particle
filter’s ability to represent complex probability distributions) and
also a statistically based threat variation (through Monte-Carlo
simulation). The state transition model of the particle filter can
also be used to predict future states to direct sensors with a time
delay (a common property of large-scale sensing systems), such
as sensors mounted on UAVs that have to travel some distance
to make a measurement.

I. INTRODUCTION

Raw (sensor) data obtained from sensor resources is com-
bined in level one of the JDL model, i.e., multi-sensor data
fusion [1]. In this function, fusion activities such as identific-
ation, association, and classification, are performed. The data
are further refined into high-level information in levels two and
three of the JDL model, i.e., situation awareness and impact
assessment. Here, we focus on finding an appropriate meth-
odology for translating high-level information to information
need and connecting it to information acquisition [2].

By high-level information we mean results obtained from
on-line stochastic multi-agent plan recognition (PlR) that
produces an estimate of a distribution over possible plan
alternatives of agents acting in an environment. One of the
plan alternatives, in our case, is attack. The results of PlR
are interpretative and try to provide an explanation of agent
behaviors.

Predictive situation awareness [3] is the projection of a
situation into the near future. Recognition of plans is one of the
methodologies that are aimed to support predictive situation
awareness. PlR gives users hints about what the agent is going
to do next given sensor information and a priori knowledge
about the agent. Due to high complexity and uncertainty, even
experienced tacticians are only able to consider two or three
possible courses of action for all but the simplest situations
[4]. Moreover, we reuse the high-level information for sensor
management that, in our case, takes into account both derived
threat estimate and uncertainty of data.

PlR is heavily dependent on the acquired information.
If sensor resources are limited and cannot provide relevant
information in a timely fashion, the results of the PlR will be
poor. By relevant we mean that more dangerous plan alternat-
ives are desired to be better known than plan alternatives that
are less dangerous. Hence, the information acquisition (IA) or
sensor management aspect (JDL level four) is crucial for PlR.

In our previous publications, we propose [5] and implement
[6] a methodology where the information of PlR is reused in
order to connect high-level information need with IA. The
need for a holistic approach to information fusion, such as
the one we attempt, has also been raised by other authors,
e.g., [7]. Here, we further develop this methodology in a more
statistically robust and reliable manner.

In this article, we replace our previous coarse (circular
shaped) state uncertainty representation [6] with a more con-
venient one by using a particle filter (PF) [8, pp. 11] . To
deal with the problem of lacking sensor data, we use the PF
and introduce (Bayesian) robust plan recognition (RPlR). By
robust we mean in the sense of robust Bayesian analysis [9].
This contributes to a better predictive situation awareness and
improved sensor task prioritization.

Sensor resources have dynamic constraints and therefore we
need a prediction of future agent states to enable proactive
sensor control. Here, we use the PF for predicting states in
a number of following time steps. Finally, we combine the
properties above in our methodology for our proactive multi-
object sensor control.

Section II explains the context of the problem we are
considering, presents the framework we use, and the exper-
iment scenario. Section III provides details about the PF we



use to represent and maintain state uncertainty. Section IV
presents PlR in general and the robust representation of the
current work. Section V provides details of various parts of the
implemented framework that relates to sensor management.
Section VI provides the results of a simulation experiment that
visualizes the results of the PlR. The article is summarized in
Section VII and future research opportunities are discussed.

II. THE DECISION SUPPORT CONTEXT

The primary subject of our study is plan recognition, i.e.,
the estimation of the intention of some agent observed in a
mission-relevant environment.1 The purpose of PlR is here
to support some information consumers (observers) acting
(e.g., performing a mission) in an uncertain environment. The
consumers are, furthermore, assumed to be inter-connected
through a network that connects a set of nodes. Formally, we
could represent the network with a graph G = (N,E), where
N is a set of nodes and E is a set of edges (or communication
links) that connects the nodes. The consumers themselves
are considered to be members of N. The network structure
facilitates, e.g., reliability (through the redundancy of multiple
communication paths between nodes in the network) and
flexibility (through information exchange between arbitrary
nodes in the network). Each node of the network is assumed
to have at least communication and computational skills. The
individual success of a consumer is dependent on the result of
the its (local) PlR for each observed agent, but the resources
used to acquire the information that fuels the PlR process are
shared among consumers.

We do not make any assumption about the network concern-
ing, e.g., topology, communication protocols and information
security. Many of those questions have to be settled by the
designer of the network, based on available technology, re-
sources, and possibly of the designing organization’s policies.
However, we do require that the network is capable of con-
veying information throughout itself and that it (somehow)
can collect sensor measurements and perform tracking based
on this information. Network nodes should also be prepared
to share fused and inferred information with interested nodes,
and to assign tasks to sensing resources (i.e., sensors) and
appropriate sensor configurations. At this point we do not
make an attempt to describe how this could be performed.

The instance of the general problem discussed above, which
we simulate and present in this article, is the scenario depicted
in Figure 1. It concerns an extensive geographic environment
including two consumers located in the middle of the view
(a1 and a2). The two consumers have individual goals (for
the one on the right it is to defend the city in which it is
located), but belong to the same network. They both perform
PlR based on information about agent states. In the scenario
there are nine (hostile) agents, i.e., platoons. Groups of three
platoons belong to a company. There are two companies near
the perimeter to the north (labeled cn1 and cn2 respectively)

1The part of the observable environment that can have any effect on the
mission held by the observer.

and one in the far south of the view (cs). There are two
types of resources modeled. One type is the UAV observer
which can travel quickly but can only give state estimates
from a distance (to ensure its own security). The other one
is the ground soldier who is limited in speed but who can
hide itself close to the road and make comparatively precise
state estimates of a passing agent. The network has duties
such as collecting measurements to track hostile agents and to
configure and engage sensors in IA tasks (an activity widely
known as sensor management).

The objective of a consumer is to know as much as possible
about the varying threats derived from PlR estimates of the
hostile agents. Threat estimation is defined in Section V-A.
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Fig. 1. Scenario for use of plan recognition

To approach the problem of resource sharing to support
PlR processes, we proposed a framework that emphasizes
aspects which we believe are useful to flexibly connect in-
formation need to information acquisition [5]. Information
need is interpreted as a lack of information about the state
of the environment, that if it was relieved, is believed to
improve the decision-making of the system. Aspects that the
framework tries to capture include: multiple consumers or
objectives, heterogeneous sensors, dependencies among tasks
and services, and a separation between the actual sensing
resources and the interface of services they provide. In a
previous article [5], we compared the framework to others
that have been proposed.

The general structure of the framework (depicted in Fig-
ure 2) involves two types of entities: space and function. The
four space entities: task origin, task, service and resource
are containers of structured information. The structure of
information of each space entity should suit the intersecting
function entities: task creation and management, allocation
scheme, and service management and resource allocation.

The framework prescribes that information need (contained
within the task origin space) is formulated as information tasks
with assigned properties (e.g., priority or time horizon depend-
ing on what properties the system is designed to handle). Such
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Fig. 2. The framework

tasks belong to the task space in our framework.
The materialization of tasks to satisfy a certain information

need could be the responsibility of the task creation and
management function. The service space contains services that
the sensors in the resource space (independently or jointly)
can perform. The allocation scheme describes how tasks are
connected to feasible services. These functions are further
discussed in [5].

In the current work, the functions of the framework perform
the following chores.

• Task origin space (TO): It is populated by two origins,
i.e., the two consumers a1, a2∈TO. As the state of the
environment evolves over time, the two consumers are in
constant need of new information (i.e., state estimates) of
the hostile agents.

• Task management and space: Tasks are created every
time step in the simulation from the information need
expressed by the consumers. The tasks in the task space
T = {τi}i are simple and basically only expressed in
terms of the agent to observe (α) and a priority value
prio, i.e., τi = (α, prio).

• Resource space (R): Contains UAVs and ground sol-
diers. Both types can make observations, but they have
different properties: UAVs are fast, but make uncertain
observations. Ground soldiers on the other hand are slow,
but their observations are more certain.

• Service management and space: In our implementation,
for each resource in R there is a corresponding service
s in the service space S. The service management makes
sure that the resources are properly configured (e.g., have
flight paths) when associated with tasks.

• Allocation scheme: Connects created tasks to available
services, based on their priorities. Connected pairs of
tasks and services are referred to as allocations, e.g.,
alloc = (t, s)∈Allocs. A service may refuse to perform
a task if the cost of using the resource for the task at
hand is too high. Services may also be preempted, i.e.,
removed from one task and connected to another.

III. PARTICLE FILTER-BASED STATE ESTIMATION

In a previous article [6], we used a circular agent position
uncertainty representation that grew homogeneously whenever
observations were not made. To get an assessment of the
threat (basically as a function of an estimated plan distribution)

posed by an agent with an associated uncertainty circle, we
considered a Monte-Carlo approach, i.e., to draw samples uni-
formly from the uncertainty circle and estimate expected threat
and variance. However, the rough uncertainty representation of
the circle would have produced poor estimates, since samples
within the circle could have been drawn from highly unlikely
positions in the environment.

Here we replace the uncertainty circle with a PF for each
agent. The PF has several advantages: (i) the position uncer-
tainty representation is more expressive (more distributions
may be represented); (ii) the state estimate becomes less sens-
itive to spurious observations, and (iii) Monte-Carlo simulated
threat estimation can be performed by simply drawing particles
from the particle set.

In the particle filter algorithm, the state probability
p(Xt|z0:t) at time t, where Xt is the agent state and z0:t

is a sequence of observations, is inferred and approximately
represented by a set of N particles {x(i)

t }Ni=1. The inference at
each time step is generally performed in two steps: importance
sampling and selection. In the importance sampling step, for
each particle a sample x̃(i)

t+1 is drawn from the state transition

distribution p(Xt+1|x(i)
t ). The purpose of the state transition

distribution is to predict the future agent state distribution.
Each sample is, furthermore, associated with a weight re-
lated to its likelihood given a new observation zt+1, i.e.,
w̃

(i)
t+1 = p(zt+1|x̃(i)

t+1). The weights are then normalized. In
the subsequent selection step, N particles are drawn (with
replacement) from the weighted set of samples. This set is
the posterior at time t + 1 and will be the prior in the next
time step.

The PF algorithm we use is the one in [8, pp. 11] slightly
modified. The reason we chose to modify it is because
observations may sometimes be infrequent. As a consequence,
the particles will drift randomly (possibly away from the
area of interest) and also, if a new observation is made it
may have little effect since the closest particle may be far
away from the observation (i.e., in that case even the most
likely particle is unlikely). To counter these problems, we
add two modifications to the original algorithm: (i) we let the
particles (through the transition model used in the prediction
step) be attracted by the consumers, and (ii) the PF is re-
initialized whenever observations are too far away from the
nearest particle (i.e., a fraction of the particles are relocated
to the vicinity of the observation). The rationale behind these
modifications is that we use some extra a priori information
(i.e., a generic estimation of the opponents’ intentions and that
a correct observation should be reflected in the configuration
of the particle set).

In Section III-A and III-B, we describe the details of our
transition and likelihood models.

A. State transition model

We describe the state of each particle x(i)
t by four values.

The first two values represent the position of the particle in
x and y-coordinates. The following two are direction, φ, and
speed, |v|.



x(i)
t = [ x y φ |v| ] (1)

Each particle, in this case, represents a hypothesis of the
corresponding (hostile) agent’s state. Therefore we say that
the particle set is a representation of a multi-modal statistical
distribution. Additionally, by using our state transition model
we can make a (short time) prediction depending on the
sensors mobility and distance to particles.

The agent is influenced by physical and doctrinal properties.
Our transition model takes the following factors into account:
previous state x(i)

t , terrain properties, strategic sites (such as
own forces). The samples {x̃(i)

t+1}Ni=1 from the state transition
distribution are drawn in the following way:

1: for all particles {x(i)
t }Ni=1 do

2: Randomly choose a strategically important place c from
the set of consumers in the task origin space TO

3: path← find the shortest road path from x(i)
t to c

4: êg ← calculate the direction of c from x(i)
t in path

5: êv ← (cos(φ), sin(φ))
6: êr ← (êg + êv) /‖êg + êv‖2
7: (xnew, ynew)← êr·|v|+ (x, y)
8: (xnew, ynew)← most likely neighbor(xnew, ynew)
9: x̃(i)

t+1 ← [ xnew ynew φ + εφ |v|+ ε|v| ]
10: end for

We run our state transition algorithm for each time step,
i.e., we propagate particles for each time step with respect to
strategic sites (attractors), particles’ previous state x(i)

t−1 and
local terrain properties.

Each particle propagation is independent of other particles,
but is influenced by a global property that we call gravity.
In our military scenario, we say that particles are attracted to
strategically important places (lines 2-4), e.g., the consumers.
To calculate the gravity vector, êg , we calculate the shortest
terrain path. Therefore êg is not in the direction of the
straight line between the particle and the consumer. Instead,
êg is calculated based on positions of the particle, terrain and
strategic site. Our shortest path is the shortest distance between
the particle and the randomly chosen strategic site, given
terrain restrictions. The shortest path consists of a number
of terrain nodes and the traversability costs associated with
edges between nodes. After calculation of the shortest path,
the gravity vector is pointing in the direction of the shortest
path’s first node.

In the next step of the algorithm (lines 5 and 6), a direction
vector, êv , is added to êg . This calculation gives us a resulting
vector, êr. Given the resulting vector’s direction and speed, the
new position of the particle is calculated in line 7.

The new position of the particle is adjusted to local ter-
rain properties. Each particle position in our discrete terrain
representation can be associated with a traversability cost. We
specify the size of the local surrounding as a parameter. We
place a particle at the position of minimum cost in the specified
surrounding (line 8). In line 9 we add white noise to the
particle state.

Finally, particles that end up outside the area of interest
are replaced by copies of other predicted particles, where the
selection probability over predicted particles is uniform.

B. Likelihood model

Inspired by [10], we propose the following likelihood func-
tion for sensor observations given a particle

p(zt|x̃(i)
t ) ∝

{
ε + 1, d<ds

ε + e−(d−ds)2/(2σ2
s), d≥ds

Here zt is the observation at time t. ds and σs are sensor
specific and related to the accuracy of the sensor, and d is the
Euclidean distance between the particle and the observation.
Therefore, all particles within a circular distance with radius ds

of the observation will receive the same weight. For instance,
in our experiments, we use two sensors with different levels
of accuracy. The small 0 < ε � 1 improves the PF’s ability
to recover a track when observations are scarce.
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Fig. 3. Likelihood model

When we have several concurrent observations, say k, of
the same platoon, we let the joint likelihood be the product of
all the individual likelihoods for each observation, i.e.,

p(zt|x̃(i)
t ) =

k∏
j=1

p(zj
t |x̃(i)

t ).

IV. MULTI-AGENT STOCHASTIC PLAN RECOGNITION

Multi-agent stochastic PlR deals with stochastic outcomes
of actions, uncertain observations [11], and incomplete know-
ledge. In military applications, the use of PlR could be
valuable when utilizing sensor data and is of decisive im-
portance in achieving information superiority and predictive
situation awareness. One reason is that sensors themselves
are not able to reveal the agents’ true intentions. Military
commanders have to act agilely and they do not have much
time (especially on the tactical level) to interpret data. In some
cases, the difficulty to recognize different patterns is caused
by space-time separation, and limited capability to correlate
patterns. In some cases, behavior of individual agents can be
classified as harmless, but put in some greater context such as
agents’ mutual interrelations, environment and their assumed
doctrines, the threat might be identified as much higher. The
methodology of PlR helps mitigating these difficulties by
estimating intentions.



Our model for PlR [12] combines Bayesian statistics and
fuzzy membership functions [13]. The latter is used for mod-
eling incomplete knowledge and connecting observation data
to a Dynamic Bayesian network (DBN) by entering context
relevant soft evidence. The DBN is used for PlR reasoning
(inference) about agents on different decision levels. Here, by
decision levels we mean platoon and company levels.

A. Bayesian robust plan recognition

A problem in Bayesian analysis is its sensitivity to priors.
In Robust Bayesian Analysis [9], a single prior distribution is
replaced by a set of priors resulting in a set of posteriors. Such
an approach is also called global Robust Bayesian Analysis,
see [9, pp. 1-32]. In this section, we introduce multi-agent
stochastic Bayesian robust PlR (RPlR), which extends multi-
agent stochastic PlR by robustly dealing with uncertainty in
state estimates and lack of observations.

In our original multi-agent stochastic PlR [12], we assumed
that a unique, unimodal, qualified guess on agents states, con-
taining agents’ positions and velocities, could be obtained at
each time step. Later we relaxed the problem by dropping the
assumption of continual observations [6]. The new approach
was to infer plans only in cases when observations were
received; between observations we assumed that the latest plan
alternative was valid. The latter approach implies that when
new observations arrive, the new plan estimate could greatly
differ from the previous plan estimate.

Here, we introduce a PF that maintains a state estimate, even
when observations are lacking, by using our state transition
model, i.e., p(Xt|xt−1) in Section III-A. The PF produces
a multi-modal state representation with each particle as a
mode. This representation cannot be used directly with our
PlR model. One way would be to take the average of particle
sets and take that state estimate into our PlR model. However,
bearing in mind that particles could spread in different direc-
tions, we do not consider such an approach to be sufficiently
robust. The centers of particle sets could represent places with
no particles, i.e., unlikely states; and the expressiveness of the
particle set is largely ignored.

Here, we propose reconstruction of the multi-modal state
representation into a set of priors Θt = Spt ×Πt−1 (for the
DBN) instead of one single prior (θ). Spt is the set of state
priors, i.e., {x(i)

t }Ni=1 at time t. Πt−1 are the plans inferred at
time t− 1. In the following step, we use each prior separately
and run PlR achieving a set of posteriors of plan estimates
(Πt). We call this approach RPlR where plan estimates are
P (Πt|Θt), i.e., instead of one posterior, π, we get a family
of posteriors, Πt.

The reconstruction of priors could be performed in several
manners. Each prior distribution, θi,j∈Θt, consists of two
parts that are the current state prior, i = 1, . . ., |Spt|, and
the previous plan’s prior, j = 1, . . ., |Πt−1|. The state prior
spi∈Spt is one of the hypotheses of the agent’s state. A
set of plan priors estimated from the previous time step,
{πi,j

t−1}i=1...,|Sp|,j=1,...,|Πt−1|, is required since we use the
DBN for PlR, i.e., estimates of plans at the previous time step

has influence on plan estimates at the current time step. Our
plan distribution estimate for one state prior with this notation
could then be written as P (πi,j

t |spi∈Spt, πj,t−1∈Πt−1).
When reconstructing state priors, a straightforward approach

is to select all of the N particles. We construct state priors
Sp where each spi is assigned the value of the particle state
x(i)

t , for i = 1, . . ., n. We consider each of the selected
particles x(i)

t to be equal to spi of the state priors Sp. The
|Πt−1| previous plan alternatives have to be combined with
the state prior. The result is a set of the posteriors where, at
the next time step, the previous plan distributions are replaced
by N ·|Πt−1| plan distributions where each plan distribution
corresponds to a combination of a certain state and a previous
plan alternative. The number of particles and the number of
the state priors is constant (N). However, the number of plan
distributions, |Πt|, will grow exponentially (N ·|Π0|)·N t−1.
Hence, calculations will soon become intractable. A more
convenient way is to assume that our priors are the convex
hull (of the previous posteriors) and take only perimeter
values of the previous plan alternatives into account, i.e.,
P (πi,j

t |spi∈Spt, π
j
t−1∈convhull(Πt−1)).

Here, we test two other approaches for the estimation of
a single summarized prior plan distribution, πt−1. The first
approach is the medium value of each plan alternative that we
denote π

cg
t−1 and the second approach is finding an estimate

based on maximum entropy, πent
t−1.

Due to the large number of particles used in our experiment,
for both approaches we construct the state priors from a set of
randomly drawn particles. The cardinality of the state priors
is therefore typically lower than the number of the particles,
i.e., |Sp|≤N .

The first approach is based on finding the medium value
(center of gravity) of probability for each plan alternative, h,
given all plan distributions (Πt−1), with L = |Πt−1|,

π
cg
t−1(h) � 1

L

L∑
l=1

πl
t−1(h), (2)

where πl
t−1(h) is the probability of plan alternative h for

πl
t−1∈Πt−1.
The second approach is choosing the estimate that has

the maximum entropy compared to the other distributions in
Πt−1, see Eq. 3 and [14],

πent
t−1 � arg max

πl
t−1∈Πt−1

Entropy(πl
t−1), (3)

where Entropy(πl
t−1) = −∑

h πl
t−1(h) log2

(
πl

t−1(h)
)
.

V. SENSOR MANAGEMENT/INFORMATION ACQUISITION

Sensor management, i.e., the active control of sensor para-
meters (such as viewing angles, position, on/off, etc) to acquire
information about the mission-relevant environment, is an
important support for PlR.

Here, we address the problem of controlling a set of sensors
to improve the PlR process. The context provides the follow-
ing features: there are multiple task origins, heterogeneous



sensors, long time-intervals between initiated sensing action
and result of the sensing actions, and resource constraints.

To deal with the aforementioned scenario features, we make
a number of design choices within the framework (described in
Section II) for our current implementation. Our current design
of task management is described in Section V-A, allocation
scheme in Section V-B, and, finally, service management in
Section V-C.

A. Task management

Tasks are generated by members of the task origin space,
e.g., the consumers a1 and a2 (from our discussion in
Section II) who require information about the observed agents
for their current mission. In the current work, each consumer
maintains an estimate of the plans of each known agent.
The consumers formulate tasks themselves, one for each
opponent platoon. Typically, the consumers never have enough
information about agents and would like to know more about
each one of them. Still for the network (system) to perform
efficiently, with its limited sensing resources, the consumers
need to prioritize their tasks.

Here, we try to model the prioritization of a consumer that
assigns priorities to its tasks. The consumer is not primarily
interested in a precise estimation of plan distributions. Instead
it should favor information that has the most relevance to its
mission. A consumer has, for instance, little use of knowing
the plans of some hostile agent precisely if that agent only has
little impact on the consumer’s mission. We decompose this
mission-related prioritization into three elements: (level of)
hostility, time-separation and impact. The first one concerns to
what degree the agent’s plan is hostile towards the consumer,
the second to what degree the agent is separated in time from
the consumer (all other properties equal, closer agents should
have higher priority), and the third concerns to what degree
the agent can cause harm to the consumer’s mission.

One way to try to capture this is to use fuzzy set theory,
where the membership of an element to a set is not a binary
condition (in or not in). We tentatively propose a “high
threat” fuzzy set, HT, expressing the membership degree of
an agent state x(i)

t to the fuzzy set. The fuzzy set HT is now
a conjunction of the three parts, i.e.,

HT =
(
Hostc ∪ Hostp

) ∩ STimeS ∩ GI, (4)

where Hostp is the “hostile platoon” fuzzy set and Hostc is
the “hostile company” fuzzy set. The underpinning explanation
of the disjunction of the two hostility degrees is that the
hostility of a platoon should not be less than the hostility
inferred on the superordinate company. Hostp and Hostc are
calculated as normalized and weighted linear combinations
of the associated plan distributions (here, denoted π(x(i)

t )),
making the membership degree one when the probability of
the plan alternative with the highest weight is one, i.e.,

Hostp(x
(i)
t ) =

wT
p π(x(i)

t )
max(wp)

,

where wp is a column vector of weights for platoon plan
alternatives. The calculation of Hostc is analogous except for
the change of weights.
STimeS expresses the degree to which the separation in time

between the consumer and agent is small. This value is based
on a function that calculates the agent’s least expensive (in
terms of traversability) route from its current position to the
consumer (also discussed in Section III-A).

Finally, the GI fuzzy set expresses to what degree the agent
can have a great impact on the consumer’s mission. In this
work, we do not distinguish between the impact of the hostile
agents and always use GI(x(i)

t ) = 1.
Using the standard fuzzy set operators, Eq. 4 mathematically

conforms to

HT = min
(
max

(
Hostc, Hostp

)
, STimeS, GI

)
.

A calculation of HT is based on a single sample x(i)
t from the

particle set of the corresponding agent. What we also want to
do is to capture the statistical properties (i.e., expected value
and standard deviation) of the HT membership degree given
the state uncertainty expressed by the particle set.

Calculating the HT membership degree for each of the
particles of the state uncertainty representation of an agent is
computationally costly (as the number of particles is typically
high). To alleviate this problem, we perform a Monte-Carlo
simulation estimation of the expected membership degree
of HT, µHT, and its standard deviation, σHT, by drawing
M (typically much less than N ) samples from the particle
set, {x(j)

t }Mj=1. The calculations are then the following basic
estimates

µ̂HT =
∑ M

j=1 HT(x
(j)
t )

M , σ̂2
HT =

∑ M
j=1

(
HT(x

(j)
t )−µ̂HT

)2

M−1 .
(5)

The estimates µ̂HT and σ̂HT are calculated by each con-
sumer for each mission-relevant agent, and stored in a task
structure, τ = (α, prio), where prio = (µ̂HT, σ̂HT). In
our current implementation, we leave it up to the allocation
scheme (Section V-B) to order the tasks by comparison. For
the comparison to be fair and make sense, we require that all
consumers use the same threat calculation (i.e., Eq. 4) and
statistical estimates (i.e., Eq. 5).

The task management performed for each consumer can be
summarized in the following algorithm

1: for all agents α do
2: calculate µ̂HT and σ̂HT according to Eq. 5
3: prio← (µ̂HT, σ̂HT)
4: if there already exists a τ s.t. τ.α == α then
5: τ.prio←prio
6: else
7: create a new task τ ′ = (α, prio)
8: end if
9: end for
The only line in the algorithm that requires an explanation

is line 4. It checks whether there is already a task τ concerning
agent α. If so, line 5, updates its priority (i.e., the priority of
a task is allowed to change over time).



B. Allocation scheme

The allocation scheme maintains a set of prioritized tasks
T (possibly updated as described in Section V-A), references
(and means to contact) to the services S, and connections
between tasks and services, i.e., allocations Allocs.

Some of the tasks concern the same hostile agent, this is
because several consumers may be interested in information
about the same agent. In this implementation, the allocation
scheme merely considers the maximum value over all tasks
that concern the same agent.

1: Tt← sort tasks according to preference relation PR
2: for all sorted tasks τt in Tt at time t do
3: cur alloc←get current alloc(τt)
4: best alloc←get best alloc(τt,S)
5: if curr alloc == best alloc then
6: continue with next task in Tt

7: end if
8: while best alloc is not empty do
9: s←best alloc.service

10: cur alloc′←get current alloc(s)
11: if (s not occupied) or (τt is preferred to

cur alloc′.task according to PR) then
12: if s occupied then
13: remove previous allocation for s
14: end if
15: if cur alloc is not empty then
16: remove cur alloc
17: end if
18: add new allocation best alloc
19: break
20: end if
21: S←S \ {s}
22: best alloc←get best alloc(τt,S)
23: end while
24: end for

Line 1, in the algorithm, orders the presented tasks accord-
ing to the selected preference relation (which will be described
below in this section). The task with the highest priority will
be served first. Line 3 finds the current allocation of τ if there
is one (thus, we allow for a task to change to a more beneficial
service). Line 4 finds the best (most beneficial) allocation for
τt, i.e., the allocation that gets the best payoff based on a
calculation of utility and cost.2 If the cost for the service is
too high, the service might reject τ . Line 5 checks whether
τ is already connected to its most preferred service. If so, it
continues with the next task.

Line 10 finds the current allocation cur alloc′ of the service
s in best alloc if it exists. If s is occupied in another allocation
and if τt has a lower priority than the task of s’s current
allocation cur alloc′, the program continues on line 21 where
the next best allocation is found (if any). Otherwise best alloc

2The utility is based on the quality of the expected observation and the
time it is anticipated to take before the observation can be made. The cost is
based on the cost of initiating and running the sensor (e.g., in terms of fuel
to transport the UAV).

is employed. Line 13 realizes the preemption property of the
algorithm, i.e., that an allocation may be removed if there is
a task that is in more need of a service than the one currently
allocated.

In Section V-A, we explained that the priority stored for a
task is actually the tuple (µ̂HT, σ̂HT). Optionally, we could have
combined these two into a summarized value by a weighted
sum in the task management function. Here, instead, we allow
the network to decide what is more important, expected threat
or standard deviation. To do so, we tentatively introduce
two preference relations PRµ and PRσ, that represent both
desires, respectively.

PRσ, e.g., is constructed to prefer tasks with a high
associated threat variance, i.e., tasks for which the sensors
can improve the predictive situation awareness by lowering
the threat variance through observations.

Formally, PRσ is defined to prefer a task τ1 to another
τ2 (denoted τ1PRστ2), if τ1.prio.σ − τ2.prio.σ > δ. If
0 ≤ τ1.prio.σ − τ2.prio.σ≤δ, τ1PRστ2 only if τ1.prio.µ >
τ2.prio.µ. PRµ is defined symmetrically.

C. Service management and resource deployment

The resource deployment part of our implementation per-
forms a simple path planning for the UAV sensors and sends
them on their way. The path planning we choose reuses the
particle set approximation of the state uncertainty for an agent
by applying the state transition algorithm (Section III-A) to
predict the configuration of the particles when the UAV is
likely to be able to make an observation. A path for the UAV
is then constructed by drawing path nodes from the predicted
particle set. An evaluation of the efficiency of this heuristic is
beyond the scope of the current article.

It is the responsibility of the service management to check
whether services have completed or reached the end of its path
and if so make the service available (even to tasks with low
priority).

Note that, although not implemented here, some of the re-
sponsibilities of service management and resource deployment
(such as path planning) could be deferred to the resources
themselves.

VI. EXPERIMENTS

Evaluating the proposed framework and implementation of
the scenario described in Section II is difficult considering
its complexity (i.e., it involves a multitude of parameters
concerning PlR, IA, and their connection). The proposed
problem space is also uncommon and there is little to compare
to in the literature.

Figure 4 shows a comparison between the best possible
(bp) estimates of the attack probability (probably the most
interesting plan alternative for a decision-maker) and two
of our RPlR estimates. The bp estimate is achieved given
continual and accurate observations of all agents and is shown
for comparison. The first RPlR estimate represents our center
of gravity (cg) attack estimate from the set of posteriors
(Eq. 2). Here, we represent uncertainty intervals (dashed),



[minΠattack
t ;maxΠattack

t ], of the posteriors as well. We also
show the maximum entropy estimate (me) calculated using
Eq. 3 (dash and dot in the figure). Both estimates are dependent
on the implemented IA, described in Section V, using the PRµ

preference relation.
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Fig. 4. Attack probability estimate for agent cs for predictive situation
awareness.

In Figure 4, initially cs is observed by both UAVs and
ground observers and the estimated attack probability is close
to bp and the uncertainty interval is small. The increasing
attack probability attracts the interest of the sensors and the
uncertainty interval is kept relatively small. By the end of
the scenario, near time step 80, the attack probability has
decreased (because cs is moving away from the consumers)
and the interest of the sensors has been lowered. This, together
with the bias of the state transition model (which pulls particles
towards the consumers), explains why the uncertainty interval
fails to cover the bp estimate in the last time steps.

For this experiment, the cg rather appears to better approx-
imate bp than me. The cg approximation considers the whole
set of distributions unlike the me estimate.

VII. SUMMARY AND DISCUSSION

The consequence of using a particle filter (PF) for plan
recognition (PlR) is that we obtain more reliable results for
agent plan estimates, than our previous results in [6], by
introducing robust PlR. The reason is basically that the particle
filter better represents the uncertainty in the state estimates
and that the plan recognition manages the particle filter state
representation in a useful manner.

The proposed PF also contributes to the information acquisi-
tion (IA) part of this research. The state transition model of the
PF can be exploited to predict (the most likely) future agent
states to proactively control sensors. The PF in conjunction
with the robust PlR is used here to estimate the expected threat
and variance for sensor task prioritization.

In terms of the proposed framework, we have practically
started to explore parts of its domain. Our implementation

integrates, e.g., multiple objectives, heterogeneous sensors,
long-term sensing actions, sensor preemption, and mission-
relevant sensor management. We have, however, yet to explore,
e.g., decentralized allocation schemes, dependencies among
services and tasks, and how to efficiently manage services.

In the future, we would like to enrich the state transition
model by conditioning particle behavior on plan distributions,
and introduce other agent-like properties. Concerning robust
PlR, it needs to be both formalized and its potential invest-
igated (e.g., to evaluate the trade-offs between completeness
and tractability).
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