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Abstract

This report suggests a framework for multi-sensor multi-target tracking with
mobile sensors. Sensors negotiate over which targets to track (possibly sharing tar-
gets to benefit from data fusion technology) using a game theory based algorithm.
Sensors’ preferences over negotiation offers are articulated with individual utility
functions which encompass both information gain and directional derivative. An
approach to consider terrain effects on mobile sensors is also explained. Simula-
tion results show that the negotiation algorithm has interesting advantages com-
pared to a greedy algorithm that seeks to optimise information gain without con-
sideration to derivatives. We notice that the negotiation procedure forces sensors
to share targets, while improving robustness to sensor failure. Sensors also tend
to proactively reconsider their target assignments for long-term improved inform-
ation gain.
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1 Introduction

Mobile sensing resources (ormobile sensors for short) provide a flexible aid to de-
cision support systems for decision-making in dynamic, extensive environments. Their
sensing capabilities contribute with observations to the decision support system and
their mobility allow them to adapt to changing information needs and altered mission
requirements.

Sensors are a limited resource and to achieve good performance in a system with
mobile sensors, allocation and use of sensor is a key aspect to consider.Sensor manage-
ment is the process that aims at controlling sensors to improve overall system perform-
ance [NN00]. Typical factors of concern for a practical sensor management system
are probability of target detection, track/identification accuracy, probability of loss-of-
track, probability of survival, probability of target kill, etc [XS02].

One aspect of managing mobile sensors is coordination of their actions. Choosing
a centralised approach to coordinate the system promises to provide the system with
optimal coordination. However, such a system is both vulnerable (e.g., if the centralised
control node is destroyed, the whole system will fail) and slow (e.g., sensors have to
await orders from the centralised control). These two factors are essential for systems
operating in civilian applications, and even more so in a military application since the
environment is expected to be hostile and willing to exploit the two drawbacks (e.g., by
jamming communication or targeting the centralised control). Decentralised control,
on the other hand, assumes that the system is mainly controlled by its components
(e.g., mobile sensors), allowing it to “degrade gracefully” if some of its components
fails. However, achieving good performance with decentralised control is a, by far,
greater problem.

Distributed artificial intelligence (DAI) is a research field that concerns itself with
coordinated interaction among distributed entities, known asagents [Wei99]. Game
theory, constituting a toolbox of methods for analysing interactions between decision
makers [OR94], has attracted a lot of attention from the DAI community. Interestingly,
game theory concepts seem to apply better to automated agents than to the real-life
human decision-makers for which it was originally intended [ZR96]. The reason is
simply that the agents are normally both rational and obedient, qualities which rarely
apply to their human counterparts.

Game theory offers models for distributed allocation of resources and provides at
the same time mechanisms to handle uncertainty. An important subtopic of game the-
ory is negotiation. As part of negotiation there are ways to generate multi-objective
optimisation results that are at least Pareto optimal. At the same time, these meth-
ods allow for robust handling of game/agent configurations which makes it robust to
jamming and use of sensors with limited availability.

Works in DAI seldom consider uncertainties [CFK97] such as those imposed by
the physical world (e.g., estimation errors) which are inherent to target tracking ap-
plications. Noteworthy recent exceptions concerning target tracking include [DN01]
and [CLOHd+01]. In [DN01], stationary sensors form coalitions (groups) where each
coalition track a certain target. The members of a coalition fuse their measurements
to improve target state estimation. In [CLOHd+01], mobile sensors form coalitions
to track targets, each sensor capable of sensing one target at a time. Movements of
sensors are decided by a hierarchy of coalition leaders, each responsible for a certain
geographical area.

The management, in our approach, is performed using negotiation models from
game theory. We utilise an algorithm for agent negotiation which we have previously
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developed and evaluated [XCS03]. In the previous work, sensor agents negotiated
about which targets to track, dividing the set of targets among themselves. Sensors
were stationary, but now we apply the same algorithm to the case with mobile sensors
and allow sensors to share targets. Our work constitutes a framework for future studies
of management of distributed mobile sensors in the face of uncertainties and sensor
failures.

In future work, we want to show the advantages of the game theoretic approach
when faced with uncertainties and possible sensor failures.

The next section will place this work in the context of prior work. Section 3 presents
the primary objectives of this work, including management of mobile sensors and shar-
ing of targets. Section 4 explains the negotiation procedure and its utility functions.
Section 5 presents some results of using the negotiation strategy and, finally, Section 7
concludes and suggests future research.

2 Target allocation using sensor agent negotiation

The work that precedes the work described in this paper considered a sensor network
consisting of geographically dispersed, non-mobile sensing resources [XCS03]. The
sensing resources (sensors) were expected to cooperatively monitor some geographical
area to keep track of all targets known to be within that region. A solution to the
problem would be a partition of the target set into disjoint subsets, and an assignment
of subsets to sensors so that every subset was assigned to exactly one sensor. In other
words, a valid solution required that every target be tracked by exactly one sensor.
However, sensors were allowed to track more than one target each.

A solution algorithm based on the game theory concept of negotiation was pro-
posed and the utilities of negotiation offers were calculated from the information gain
(explained in Section 2.2) the corresponding target division was expected to bring.

2.1 Agent negotiation

There are two kinds of consequences of an agent negotiation: agreement and disagree-
ment. Disagreement means that no solution acceptable for all agents can be reached.
In the other case, an agreement between the agents can be reached.

Every agent has its own preference relation over possible agreements and times of
agreements. We assume that a sensor agenti∈S, S being the set of sensor agents, has a
utility function,Ui, which represents its preference relation. The utility function assign
values to all possible outcomes of a negotiation:{O×{0,1, . . .,K}∪{Disagreement}},
whereO is the set of possible offers andK refers to the final step of negotiations.

As agents negotiate in order to realize cooperative behaviours among themselves
in multi-target tracking, reaching an agreement is in line with the interests of all agents
and no one can benefit from disagreement (i.e., non-coordinated behaviour1).

A formal description of the negotiation game we study is the 5-tuple
< S,O,H,P(H),(Ui) >, where

S is the set of sensor agents (called players in game theory terminology)

1Clearly, non-coordinated behaviour (i.e., sensors tracking whatever target they like, disregarding the
allocations of the other sensors) would be unlikely to meet the system requirements, such as ensuring that all
targets are tracked.
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O is the set ofnegotiation offers, i.e., the possible sensor to target allocations. A
member ofO, o, is an allocation function that maps sensors to subsets of the set
of targets,T , i.e.,o : S→2T .

H is the set of sequences of offers and responses (calledhistories in game theory) in
a negotiation. A non-terminal history is a sequence, for instance(o0,R,o1,R),
which ends with a rejection,R, preceded by a series of consecutive offers (ot is
the offer a stept in the negotiation). A terminal history, on the other hand, ends
with an agreement, e.g.,(o0,R,o1,R,o2,A).

P(H) is a function that determines which agent has the turn to make an offer after a
non-terminal historyh.

(Ui) are utility functions of sensor agentsi∈S over outcomes, which describes how the
agents value every allocated group of targets

It is assumed that at a particular step of a negotiation, one of the agents makes an
offer and the other agents respond to it by acceptance or rejection. The order in which
the agents make their proposals is specified before the negotiation begins. The first
action in the game occurs in step zero when one agent makes the first offer and the
other agents accept or reject it. Acceptance by all other agents ends the game with
agreement while rejection by at least one other agent forces the game to continue with
another step. Subsequently, another agent proposes something in the next step which
is then accepted or rejected by the others. The game continues in this manner until an
agreement has been reached or until the final stepK. If no agreement is reached at step
K, we say that the game ends with disagreement.

A negotiation strategy for an agent is essentially a function that specifies what the
agent has to do after every possible history.2 Concretely, the strategy prescribes what
offer to make when it is the turn of the agent to make an offer, and whether to accept
or reject an offer in steps when the agent is to respond to a proposal made by another
agent. Astrategy profile is a collection of strategies for all involved agents. We would
like to find a strategy profile leading to an outcome that is profitable for all participants
and that no agent can benefit from using a strategy not belonging to the profile.

A fundamental concept for analysing behaviours of rational agents is theNash
Equilibrium [Nas53]. A strategy profile of a game of alternating offers is a Nash
Equilibrium if no agent can profit by deviation given that all other agents use the
strategies specified for them in the profile. Unfortunately, simple Nash Equilibrium
seems not sufficient in extensive games3 in the sense that it ensures the equilibrium of
its strategies only from the beginning of the negotiation, but may be unstable in the
intermediate stages.

A stronger notion for extensive games is that ofsubgame perfect equilibrium (SPE)
[OR94] that requires that the strategy profile included in every subgame is a Nash
Equilibrium of that subgame. This is a comprehensive concept implying that agents
are rational at any stage of the negotiation process: no one can be better off by using
another strategy regardless of what happens. It was shown in the preceding paper that
if all agents honour SPE strategies, there is an offer made in the first step which is
preferred by all parties over all possible future outcomes.

2Thus,strategy is similar to the concept ofpolicy in AI-literature
3In extensive games, agent actions are performed in sequence as opposed to strategic games, or one-shot

games, where actions are performed simultaneously.
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When reasoning about strategies, we start at the final step of negotiations,K. If no
agreement has been reached yet, one will certainly be reached in the final step since
disagreement (which would be the outcome of a rejection of the final offer) is the worst
outcome for all agents and will be avoided. If it is agenti’s turn to make an offer at step
K, it will choose the offer that is best for its own payoff, and the other agents accept
this offer, since disagreement is the only alternative.

At all steps beforeK, the agent, whose turn it is to make the offer, will consider the
agreement that would be reached at the next step and proposes something that is better
or at least as good (in terms of utility) for all agents than what they can expect to attain
in future steps.

Supposeo∗(t +1) represents the agreement that will be reached at stept +1. Given
that the agents are rational, then for all parties at timet thesuper(t)-set defines the set
of acceptable solutions:

Super(t) = {o∈O | ∀i Ui(o, t) ≥ Ui(o∗(t +1), t +1)} (1)

If an agent selects its offer from theSuper-set in Equation 1, then all other (rational)
agents will accept it since no offers with higher utility will be offered in future steps.

Furthermore, it is important to notice that theSuper set is non-empty for all steps
beforeK. This is induced from the characteristic that the utilities of offers decrease over
time. Particularly, the offero∗(t + 1) is included inSuper(t) since we haveUi(o∗(t +
1),t) > Ui(o∗(t +1),t +1) for all agentsi.

TheSuper set of acceptable offers is very useful to establish SPE strategies at steps
beforeK. The non-emptiness of this set ensures that the agent whose turn it is to make
an offer has enough choices to make its proposal acceptable to the other agents. The
strategy we use is that the agenti whose turn it is to make an offer at stept will propose
the offero∗∈Super(t) that maximisesUi(o, t). If several candidate offers maximise
Ui, (this set was denotedCompet(i, t), in the preceding work) we let agenti propose
the offer that not only maximisesUi(o, t) but also the sum of the utilities of the other
agents, i.e.,o∗(t) = argmaxo∈Compet(i,t) ∑k∈S\iUk(o, t).

Finally, the fact thatUi(o(t),t) ≥ Ui(o(t +1), t +1) for all agents causes the game
to end already in the first step with agreemento∗(0).

2.2 Sensor performance utilities

We assume that the sensors track targets using a Kalman filter and let the utility func-
tions of the agents,Ui, depend on the decrease in uncertainty that is estimated in the
Kalman calculations.

We will not present the entire Kalman filter method here (instead see, e.g., [BSF88]),
just simply point out what part of the method was used in the previous work to derive
a utility measure for target tracking sensors.

In the Kalman filter method, we letx j(k) represent the system model of targetj
at timek, andy j(k) the corresponding measurement model. The following familiar
equations are used:

x j(k) = Fjx j(k−1)+ wj(k−1)
y j(k) = Hi jx j(k)+ vi j(k)

(2)

In Equation 2,wj(k) andvi j(k) are system and measurement noise, respectively.
An expression for the update of the target estimation error covariance reveals the

measure of performance [BSL93] which we use:

P−1
i j (k|k) = P−1

i j (k|k−1)+ HT
i jR

−1
i j Hi j (3)
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Here,Pi j(k|k) is the updated state estimation error covariance andPi j(k|k− 1) is the
predicted covariance. The matrixHT

i j R
−1
i j Hi j is derived from sensor characteristics,

whereRi j is the measurement noise covariance. Note that a decrease in the measure-
ment noise covariance also leads to a decrease in the state covariance, i.e., a reduction
of uncertainty about the target state. In view of this, we define the norm of the matrix
HT

i j R
−1
i j Hi j assensor information gain, g(i, j), contributed by sensori on targetj.

g(i, j) ∆=
{ ‖HT

i j R
−1
i j Hi j‖, if sensori tracks targetj

0, if not
(4)

By means of sensor information gain, we establish the measure of performance
of a sensor estimating properties of all targets assigned to it. Suppose sensori is in
charge of a group of targets,Di, then its contribution to the global picture is accrued by
measuring all assigned targets. Hence, the performance of sensori, Pi, is defined to be
the sum of these information gains for state estimates of targets inDi,

Pi(Di)
∆= ∑

j∈Di

g(i, j) = ∑
j∈Di

‖HT
i j R

−1
i j Hi j‖ (5)

We call a value given by the expressionPi(Di) for thesensor performance of sensor
i when tracking a group of targetsDi.

We note that an offer is a distributionD of targets among sensors,D =
S

iDi, i.e.,
each sensori gets a subset of targetsDi to track. For every sensor, the acquired set of
targets corresponds to a value of sensor performance using the definition in Equation
5, and we will now explain how we use the sensor performance value, for a sensor and
a set of targets, to calculate the corresponding utility value.

An agent is assumed to receive areward not more than unity in terms of its con-
tributed performance. The purpose of doing so is to normalise the sensor performance
value for easy handling and to allow for non-zero rewards for sensors that accept no
work (i.e., do not track any targets). The reason to allow sensors to be “lazy” is to
encourage them not to reveal themselves (by use of active sensors) too often, i.e., to be
quiescent. The rewardri of sensori, appointed target groupDi, is given by

ri(Di)
∆= α +(1−α)(1− e−β·Pi(Di)), 0≤α < 1 andβ > 0 (6)

such thatPi∈R+ is converted into a regular interval[α,1). Here,β is a parameter which
decides how eager the sensor is to acquire more information about a target. A high
value onβ means that the sensor agent is satisfied with less certain state estimates (cf
α j in Figure 2). The other parameter,α, controls the agent’s willingness to differentiate
between the offers. For instance,α = 1 means complete indifference, i.e., all offers
have the same value (ri(Di) = 1).

As explained in Section 2.1, utility is expected to decrease over time in the negoti-
ation, and we therefore define the time-dependent utility function in this way:

Ui(D, t) ∆= (K − t +1)ri(Di). (7)

3 Primary objectives

In this paper, we extend the previous work discussed in Section 2 considering the fol-
lowing three aspects:
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Mobile sensors We allow sensors to move to increase sensor performance. We further
allow the characteristics of the terrain to affect thepreferred direction of motion.

Shared targets We extend the previous work by allowing sensors to track the same
targets (previously, the targets were divided between the sensors). Through use
of multiple sensors tracking the same target, it is possible to improve the per-
formance on state estimates as typically found in the multi-sensor tracking and
multi-sensor fusion literature (e.g., [BSF88]). Here, this problem is studied in
the context of target assignment and performance optimisation. We model that
the value of tracking a target, which is already being tracked by other sensors, is
less than if none tracks the target.

Performance loss when tracking many targets We model that the measurement per-
formance on each target tracked by a sensor decreases with the number of targets
tracked by the same sensor. The reason is of course that the sensor has limited
time and resources for its measurements and if it has to track more targets and di-
vide its resources among the targets, then also the measurement error covariance
will increase for every target (and sensor gain decrease).

In order to allow the mobility of sensors to have any effect, we further assume that
sensor platforms have the ability to move at a speed that is comparable to the speed of
the targets.

4 Utility and Negotiation for Mobile sensors

There are only small differences between the game considered in the previous work
(defined in Section 2.1) and the one we consider here. Sensor agents negotiate by
making offers that the other agents might accept or reject. As in the previous work,
an offer,o, is a specification of allocations, that assigns groups of targets to sensors.
Unlike the previous work, the target groups may overlap, significantly increasing the
number of valid offers. The other difference is in the utility functions, which, we shall
see in the next section, has a two-dimensional values.

For negotiation about target allocation of mobile sensors, we consider both the
reward for each sensor as well as itsdirectional derivative in the preferred direction
of motion. The reward, as we will see, is calculated somewhat differently than in the
previous work and does not immediately yield the negotiation utility. The preferred
direction of a sensor platform is the spatial direction in which the sensor would like
to travel. When we do not consider terrain characteristics, the preferred direction will
simply coincide with the gradient of the reward function.

In the next section, we will first present an approach to consider mobility in the
negotiation. In the subsequent sections 4.2-4.4, we will discuss how to calculate both
the reward for the novel considerations of overlapping target groups and decreased
tracking performance, and the preferred direction. We also address the resulting multi-
objective optimisation problem.

4.1 Negotiation

Before we start to discuss the details about reward and directional derivative, we will,
for this work, assume that every sensor agent has the required information and is cap-
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able of calculating both objectives for all sensors.4 Hence, given a sensor agenti∈S
and an offer of allocations of sensors to targetso∈O, we can calculate rewardri∈R

and directional derivativer′i,δ∈R, i.e., a sensor and an offer yields a reward and pre-
ferred direction,S×O→R×R. Hereδ∈∆ is the preferred direction, and∆ the set of
unit vectors.

We want to consider both factors, reward and derivative (measured as change in
reward per length unit), simultaneously to acquire a combined utility metric. A valid
but tentative approach is to assert a utility functionU = U( f (r),g(d)) that analytically
combines the two. However, the factors are incommensurable, and, hence, such a
function is sensitive both to the application in question and the choice of measurement
unit. E.g., we might proposeU(r,d) = r + d. While this utility function might yield
satisfying results for some applications, it will certainly not do so in general. Rather,
the appropriate functions (f andg) have to be found for every specific application or
class of applications.

The problem we are facing is that of multi-objective optimisation. Whereas elab-
orate approaches to this problem has been proposed (such as [FF98]), in this work we
prefer to study the results of an approach that does not suggest a preference of one
factor over the other. (Hence, it might not work optimally for every application, but
is expected to work well for every application.) We order the offers only according to
dominance.

A sensor agent,i, will prefer an offero1 to another offero2, o1�io2, if and only ifo1

dominateso2. An offer o1 can only dominate another offero2 if one of the reward and
directional derivative values ofo1 is greater than the corresponding value ofo2 and the
other one at least as great as its counterpart, i.e.,ri(o1) ≥ ri(o2) andr′i,δ(o1) ≥ r′i,δ(o2)
and at least one of the inequalities should be strict. If neithero1 nor o2 dominates the
other, we writeo1∼io2.

We elaborate further on the topic of dominance. Figure 1 shows twenty offers,
here depicted with circles, plotted in a graph according to the reward and derivative
in the preferred direction of a certain agent (certainly, the plot would look different for
another agent). We find that there are, in this example, five offers that are not dominated
by any other offer. We conclude that these are the “best” offers the agent could get. We
call the set (orclass) of these theoffers of the first order. We iteratively classify the
rest of the offers, knowing that an offerok, which is dominated by an offerol of order
l, will be a member of orderl + 1 or greater. Each offer in Figure 1 belongs to one
of five orders and the members of each order are connected to each other with dashed
lines for illustration.

A more formal definition of class of offers for a particular sensor is as follows.

Definition: Class of offers All pairs of offers(o1,o2), o1,o2∈O, that fulfill the condi-
tion thato1∼o2∧¬∃om∈O [(om∼o j∧om�ok)] for j �=k and j,k∈{1,2} are said to
belong to the same class of offers.

A class may not be empty, but may contain a single offeros iff
∀o j∃ok [o j∼os∧o j∼ok→ok�os∨ok≺os]. In order to strictly define class order, we first
define the notion ofclass dominance.

Definition: Class dominance A class of offersCa is said to dominate another class
Cb, Ca�Cb, iff ∃oa∃ob [oa�ob], oa∈Ca,ob∈Cb.

4In a practical application, the complete knowledge is not going to be available to all sensors, but for an
initial study it is convenient to make this assumption.
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We use the following recursive definition to define order of class.

Definition: Class of first order A classC of offers is said to be of the first order iff
none of its offers are dominated by another offer,¬∃om∈O\C [om�o j] for all
o j∈C.

Definition: Class of kth order A class of offersC is said to be of orderk iff its mem-
bers are dominated only by members of classes of orderk and less.
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Figure 1: Twenty offers plotted according to derivative of preferred direction and re-
ward. Offers which belong to the same class are connected with lines.

Now, we will express the utility function for sensors. Using our notion of orders,
we can assign a utility value to the offers for all agents. Furthermore, according to the
negotiation procedure described in Section 2.1, the utility of an offer accepted at time
t +1 is always less valuable than the same offer accepted at timet. Therefore we need
to construct a utility function that is dependent on the time step of the negotiation:

Ui(o,t) ∆= αU (K − t)−orderi(o), integerαU > 0, (8)

whereorderi(o) is a function that maps offers to its order for sensor agenti.
The interpretation of the utility function in Equation 8 is that the agents will accept

less offers the longer the negotiation continues. In fact, for every step the negotiation
continues,αU number of orders of offers will become unacceptable for every sensor
agent. Thus, offers of low order (which are desired by the agent) yield a high utility
value.

The negotiation procedure in the preceding work described in Section 2 is virtually
unaffected by the extensions we make in this work. The reason for this is that all the
novelties have been encapsulated in the calculations of the utility function. However,
the result of the negotiation will of course be quite different.

An agent that have several “best” offers to choose from should select one accord-
ing to some second criterion. This could for instance entail minimising the sum of
orders, i.e., if the set of best offers isO ′, then the offer to select should be the one
o∗ that satisfieso∗ = argmino∈O′ ∑i orderi(o). Another suitable criterion could be
to select the offer inO ′ that minimises maximum order for any sensor, i.e.,o∗ =
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argmino∈O maxi orderi(o). If there are still more than one offer that fulfills the cri-
terion, then one offer could be selected randomly.

4.2 Workload effect on tracking performance

A sensor is expected to make less certain measurements for each target if it tracks
many targets than if it tracks only a few. Let us assume that sensors have some sort
of resource (e.g., time, energy, money, samplings) that they can spend utilise to make
measurements. The maximum amount of this resource available to the sensor for a time
unit isρi,max and the amount it chooses to use to track some targetj is denotedρi j. We
model that the measurement noisevi j in Equation 2 is dependent on the dedicated
resource amountρi j. The measurement noise is Gaussian, i.e.,vi j∼N(0,R), with zero
mean and the measurement error covariance matrixR which we encountered in the
sensor performance formula in Equation 5.

DissectingR, we notice that it is a diagonal matrix (since a prerequisite for the Kal-
man filtering is that the, sayk, measurement noise components ofvi j are independent)

R =




σ2
1 0

. . .
0 σ2

k


 (9)

with the variancesσ2
l , l∈{1, . . . ,k}, as diagonal elements.

The standard deviation functions,σl(ρ), will take a minimum,σmin,l ≥ 0, for ρ =
ρmax and will increase towards infinity when the dedicated resource decreases towards
ρmin, limρ→ρmin( j) σl(ρ)→∞, whereρmin( j) is the minimum resource amount necessary
to track targetj.

Hence, a varying workload on a sensor will affect the standard deviation and the
measurement error covariance matrix, which in turn will have effect on the refined
sensor gain expression which we will discuss in the next section.

Note that using this model, we allow sensors to allocate different amounts of re-
sources to different targets.

4.3 Target allocation

In the preceding work, the specific task was studied where every target was tracked by
exactly one sensor. In this work, we relax that restriction and allow sensors to “share”
targets. Thus, we are able to reduce uncertainty by fusing measurements from different
sensors and get a higher grade of sensor usage than in the disjoint case.

Our approach here to determine the reward for every sensor,ri, is to divide thetotal
reward on every target,∑ j r j(S j) (S j being the set of sensors tracking targetj), among
the sensors inS j proportionally to their individual contribution.

We define the reward on every target to be

r j(S j)
∆= 1− e−α jg j(S j), α j > 0 (10)

where
g j(S j) = ∑

k∈S j

‖HT
k jR

−1
k j Hk j‖, (11)

i.e., the total information gain on targetj. Here, we might want to replaceg j with some
measure from information theory when a Kalman filter is not applicable. Previously,
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we used sensor information gain (Equation 4), but now, as we allow multi-sensor fu-
sion, we defineg j(S j) as above and notice that wheneverS j contains a single sensori
g j(S j) = g j(i) = g(i, j).

Now, thenet reward for every sensor (similarly expressed as in the previous work)
is

rnet
i (Di)

∆= αi +(1−αi)rm
i (Di) 0≤ αi ≤ 1 (12)

whereDi is the group of targets tracked by sensori, αi reflects the willingness of a
sensor agent to compromise about offers, and the measurement reward is

rm
i (Di)

∆= ∑
j∈Di

γi jr j(S j) (13)

and

γi j
∆=

g j(i)
g j(S j)

=
‖HT

i j R
−1
i j Hi j‖

∑i∈S j
‖HT

i R−1
i j Hi‖

, (14)

i.e., the relative contribution of sensori to the state estimate of targetj.
This definition of sensor reward,rm

i (Di), has the effect that the same gain from a
sensor on a target will yield different rewards depending what other sensors track the
same target. This makes sense since the target reward does not improve linearly with
the information gain (e.g., in a target tracking application, tracking airborne targets at
high speeds, to go from metre to centimetre precision in position estimates should not
yield much extra reward since the improved precision can not be efficiently utilised).

To prove thatrm
i (Di) is actually a disbursement of the total reward on targets we

need to show that∑i rm
i (Di) = ∑ j r j(S j).

∑i rm
i (Di) = ∑i ∑ j∈Di

γi jr j(S j) =
{

Group allr j-terms in the sum
}

=

∑ j r j(S j)∑i∈S j
γi j =

{
∑i∈S j

γi j
∆= 1

}
= ∑ j r j(S j)

(15)

�
Typical appearances of net reward functions,rnet

i , are shown in Figure 2. In the
figure, we useαi = 0.3 and plotrnet

i for αi ∈ {1,10,100}. We show the results for a
single sensor tracking a single target. The curves have similar shape for other values
on αi. For these curves, we have used the covariance matrix in Section 5.1. From the
curves, we can see that that an increase in the value ofα j implies that the sensor is
satisfied with less certain target state estimates.

4.4 Preferred direction

Given the measurement reward function,rm
i (Di), for each sensor, the gradient can be

calculated in this way:

grad rm
i ≡ ∇ rm

i ≡ (∂rm
i

∂xi
,
∂rm

i

∂yi

)
, (16)

wherexi andyi are the spatial coordinates of sensori’s position.
The gradient vector points in the direction in which the reward for sensori will

increase the most.5 This model makes the subtle (and incorrect) assumption that the

5Note that we are, in this work, only considering the current target states when calculating the gradient.
Prediction of future target states to further improve the performance of the mobile sensors is left for future
work.
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Figure 2: The three curves show a net reward function plotted withαi = 0.3 andα j =
1,10,and 100.

targets are stationary. However, it is a fairly good approximation that should be refined
in the future; possibly by predicting and exploiting future target states. The gradient
would be the preferred direction to move for the sensor if terrain properties were not
considered.6 However, the terrain may make motion in the direction of the gradient
difficult or perhaps even impossible, and a more passable path, although less rewarding,
might be a better preferred direction.

Now assume we can construct a (possibly rough) terrain dependent function, which
discounts the reward change in various directions. Let theterrain function bet(p,eθ),
wherep is a two dimensional position in the environment andeθ is a unit vector,
θ∈[0,2π). Furthermore, let the terrain function assume values between 0 and 1,t ∈
[0,1]. The terrain functiont(p,eθ) takes high values in directions where the sensor
platform can easily move (such as in the direction of a good road) and low values
in directions where it cannot move very well (zero in the direction of an unpassable
obstacle). We assume that the value reflects the passability in the chosen direction in
the following time step.

The directional derivativer′eθ
in any direction,eθ, is simply a projection of the

gradient ontoeθ, i.e.,r′eθ
= eθ• ∇ rm. The parameterθ is the angle between the gradient

andeθ, as shown in Figure 3.
Now, we propose that the preferred direction,δ∗, is the unit vector that corresponds

to the largest directional derivative discounted byt(p,eθ), i.e.,

δ∗ = argmax
eθ

{
t(p,eθ) · r′eθ

}
. (17)

Figure 4(a) shows a terrain function in a positionp where terrain has no effect
on the mobility, i.e., in all directions,φ, t(p,eφ) = 1. Figure 4(b) shows the resulting
discounted directional derivatives (which in this case were unaffected by the terrain
function) where the gradient is depicted as the solid line with a cross on its end point.
The length of a line corresponds to the size of its derivative. Directions with deriv-
atives less than zero (those directions which have more than a 90 degree angle to the

6Hence, in the case of airborne sensors, the gradient would suffice as a preferred direction.
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Figure 3: The directional derivative,r′eθ
, in the direction of the unit vectoreθ is calcu-

lated as the projection of the gradient,∇ r, oneθ.

gradient) are not depicted. Since directional derivatives do not change sign due to the
terrain function; they are only discounted with a positive factor so the smallest discoun-
ted derivative possible is zero. Hence, the directions with negative derivatives can be
ignored.
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Figure 4: (a) shows the terrain functiont(p,eφ). In this caset = 1 for all φ, so it is
the function of the unit circle.(b) shows the size of some discounted directional deriv-
atives when the gradient is the solid line pointing upwards and right. In this case, the
directional derivatives are discounted with the function in (a) and are thus unaffected.

Figure 5(a) shows the heterogeneous terrain function

t(p,eφ) =




2φ/π φ∈[0,π/2]
1 φ∈(π/2,3π/2]
0 φ∈(3π/2,2π)

(18)

Figure 5(b) shows the same gradient as in Figure 4(b), but here the directional deriv-
atives have been discounted with the function in Equation 18. The direction which has
the greatest directional derivative is depicted with a solid line, calculated with Equation
17, and would be the preferred direction of an agent. This direction deviates notably
from the gradient.

We have now seen how the preferred directions of a sensor platform are calculated
for terrain which has no effect on the platform (in Figure 4(b)) and terrain which has
(Figure 5(b)). We now expand our field of view to study the preferred directions in
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Figure 5:(a) shows the plot of the terrain function in Equation 18.(b) shows some of
the directional derivatives discounted with the terrain function in Equation 18.

a whole area. Figure 6(a) shows the directional derivatives in various positions in
the plane when its preferred direction is unaffected by terrain conditions. A target
in position (400,350) (the small “x”) attracts a sensor platform. We note that the
derivatives are small in the periphery and close to the target, and large in between. This
is the same characteristics we saw in the curves in Figure 2.

In Figure 6(b), an obstacle (representing almost unpassable terrain) has been po-
sitioned to the left in figure. The preferred directions direct the sensor platform away
from the obstacle, while trying to preserve a course towards the target. For instance,
along the upper and lower edges of the obstacle, the preferred directions are along the
edge of the obstacle rather than into the obstacle.

Even though the approach with terrain functions presented here looks nice in this
example, it is indeed short-sighted. There is a risk that sensor platforms get stuck be-
hind obstacles. However, this does not necessarily mean that the tracking will fail,
rather it means that the current allocation has been given a new value which will pos-
sibly affect the outcome in the next round of negotiations (i.e., another allocation, with
a better preferred direction, might be a more appealing alternative).

5 Experimental results

First, we verify that the negotiation algorithm is still beneficial for stationary sensors
with respect to the new features of the problem (Section 3). Then we move on to verify
its suitability to the case with mobile sensors.7 In Appendix A we select the values
of some of the parameters used in the simulation, and in Appendix B we derive an
analytical expression for the gradient.

5.1 Selected parameters and requirements

For our simulations, we assume that the standard deviation,σtot , of the measurement
noise covarianceR, is equal for every measurement component and tracked target.

7In this paper, merely snapshots of simulations are shown. However, full animations are available at this
URL: http://www.nada.kth.se/˜rjo/pubs/mobile/anim/.
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Figure 6: (a) The derivatives of the preferred directions in various positions. The target,
the “x” in position (400,350), acts as the force that attracts the sensor platform and the
terrain does not affect the preferred directions of the platform. (b) Here, an obstacle
(representing very rough terrain) is situated in the left part of the figure. The generated
preferred directions tries to steer the sensor platform away from the obstacle while
preserving a course towards the target.

We, furthermore, assume that it increases inversely linearly with the dedicated relat-

ive resource amount, i.e., the standard deviation is scaled by a factor
(

ρ
ρmax

)−1
, and

quadratically with the Euclidean distance d between target and sensor. If the tracking
resource, discussed in Section 4.2, is divided evenly between n tracked targets, the re-
source amount used to track each of the targets is ρ(n) = ρmax/n, yielding the scale

factor
(

ρmax/n
ρmax

)−1
= n for the standard deviation. From this discussion, we suggest the

following standard deviation expression for our experiments

σtot = σmin·n·(1 + cd2). (19)

The first two factors are always greater than zero and d≥0. The coefficient c > 0
controls how greatly the distance from sensor to target affects the measurement error
covariance.

Equation 19 is plotted in Figure 7 for one to four targets. The values on the x-
axis denotes the distance to target and the y-axis the relative increase in covariance,
with σmin = 1 as reference. We see, e.g., that the covariance for one target at distance
400 metres, when concurrently tracking four targets, is about ten times the minimum
covariance.

We require that the tracking system always tracks all targets (i.e., sensor to target
assignments that do not include assignments to all targets will be ignored by all sensor
agents).

5.2 Computational issues

The time complexity of the algorithm to implement is heavily dependent on the number
of offers to consider, q, which, in turn, is dependent on the number of sensors, s,
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Figure 7: The covariance function in Equation 19 is here plotted for one to four con-
currently tracked targets.

and targets, t. In the previous work, offers contained only target distributions where
targets were not shared. In that work, the number of offers were q = O(st), i.e., it was
exponential in the number of targets.

Now, since targets may be shared by sensors, the size of the offer set increases to
O(2ts) 8 and is, hence, exponential in both the number of targets and sensors. Hence, in
our work it is necessary to adopt some heuristic to lower the number of possible offers.

By studying the problem at hand, it is often quite possible to design suitable ap-
proximations. In this case, we assume that it is quite unlikely and unwanted that sensor
agents change their allocations much from one negotiation to the other. In support of
this assumption is the fact that target positions are dependent on kinematic constraints,
and the optimal allocation of targets is therefore expected to change slowly over time.
Exploiting the expected inertia in the change of the optimal allocation, we construct
the set of offers to negotiate about in the following way:

Given the current allocation of targets to sensors, let the set of offers to negotiate
about include all combinations for which each sensor, either

• keeps its current allocation,

• drops one target of the current allocation or picks up a new one, or

• exchanges one target for another.

Even though this heuristic reduces the size of the offer set considerably to O(t2s),
it is still exponential in the number of sensors. For future work, the size of the offer set
will have to be decreased even further, but for the experiments in this article it suffices.

8Any sensor may track any number of targets, hence, every sensor may allocate 2t targets, yielding a total
number of (2t )s = 2ts possible allocations.
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5.3 Target tracking with stationary sensors

The first thing we want to verify is that the negotiation algorithm still, with an imple-
mentation of the conditions in Section 3, produces satisfying results.

We run a simulation, very much similar to the one used in the preceding work.
In the scenario (Figure 8), three stationary sensors, spatially separated and placed on
a line in east-west direction, track four targets for some time. The targets approach
the sensors in pairs, one pair approaching from the east and the other from the west.
Targets τ3 and τ4 travel slightly faster than τ1 and τ2.

0

0

τ1

s1 s2
τ3

τ4

s3

2τ

Figure 8: In this scenario, three stationary sensors (s1, s2 and s3) track four targets (τ1

to τ4).

In the previous work [XCS03], we compared our negotiation algorithm with an op-
timal algorithm which optimised the sum of information gain. The results showed that
the negotiation algorithm reached a result which was very close (99%) to the optimal
algorithm in terms of average total sensor information gain.

A second criterion to observe was concentration degree, i.e., a measure of how
well the targets are divided among the sensors. E.g., a target distribution in which
all targets are tracked by a single sensor will yield a high concentration degree. This
is an awkward situation since if the sensor that tracks all targets fails or is destroyed
all targets will be lost. Thus, a low concentration degree, representing that targets are
divided evenly among the sensors, is desired. In the previous work, the concentration
degree turned out to be about 10% better for the negotiation algorithm compared to the
optimal algorithm in a simulation.

In the current work, for every completed negotiation, we compare the result of the
negotiation algorithm (i.e., an assignment of sensors to targets) with the result that the
optimal algorithm would have yielded in the same situation. In our experiment, we
want to compare the following criteria for our negotiation algorithm and an optimal
one,

Total reward This is the value of the sum of the target rewards, i.e., ∑ j r j . Of course,
a high value of total reward corresponds to a good overall tracking performance
and is desirable.
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Redundancy This is the number of targets that are being tracked by one or more
sensors. For those targets that are being tracked by one or more sensors, we have
redundant measurements which can be fused. This is wanted for that reason,
but also because if one sensor fails or is destroyed, the other sensor(s) will still
receive measurements. If only one sensor tracks a target, if that sensor is lost so
is the target. A high value, while preserving high total reward, is desirable.

Lost targets This is a value of the average number of targets lost if one of the sensors
fails or is destroyed. A low value is desired.

In the following simulation, the three stationary sensors track the four targets over
five hundred rounds of negotiations. The targets are moving fast and the sensors are
re-negotiating their target assignments (i.e., starting a new round of negotiations) in
every time step (perhaps every second or so).

Figure 9 shows the result of the negotiation algorithm (N-tracker) and Figure 10
the result of the optimal algorithm (O-tracker). In each diagram, the x-axis is time
and y-axis which targets are being tracked by the sensor corresponding to the diagram.
As we can see, the results of the two algorithms appear to be very similar.
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Figure 9: The diagrams shows the target allocations of all three sensors for every time
step in the negotiation.

In Figure 11, we see three diagrams. The topmost diagram depicts the relative
reward of the N-tracker in every time step, i.e., the reward of the N-tracker divided
by the reward of the O-tracker. Of course, the N-tracker will never receive as much
reward as the O-tracker, but its rewards are certainly comparable.

The middle diagram depicts the differences in redundancy between the two al-
gorithms. In every time step, the redundancy of the O-tracker is subtracted from the
redundancy of the N-tracker. As shown, most of the time, the difference is zero, i.e.,
the two algorithms have the same redundancy. However, quite often the N-tracker
has a greater redundancy and only during a few time steps the O-tracker has a greater
redundancy.
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Figure 10: The diagrams shows the optimal target allocations of all three sensors for
every time step in the negotiation.

The bottommost diagram shows the average number of lost targets (if one sensor is
destroyed) plotted for both algorithms for every time step. The values of the N-tracker
is plotted with a dotted line and the values of the O-tracker is plotted with a dashed
line. We see that the results seem to coincide with the redundancy diagram, i.e., the
O-tracker outperforms the N-tracker only in a few time steps.

Our experiments with stationary sensors show that the negotiation algorithm yields
near-optimal tracking quality while improving robustness to sensor failure.

5.4 Target tracking with mobile sensors

Now, we introduce mobile negotiating sensors and wish to evaluate their performance.
We here use the utility function in Section 4.1, but we will for now assume that the
terrain has no effect on the negotiation.

For evaluation, we make two types of comparisons:

• For every sensor to target assignment the negotiation algorithm produces, we
compare it to an optimal reward one (just like in the stationary case).

• We design and implement a “greedy” tracker (G-tracker) which operates inde-
pendently of the negotiation based tracker (N-tracker).

We let the G-tracker reconsider the sensor to target assignment as often as the
N-tracker does. After having selected the most optimal assignment, the sensors
travel, at full speed, in the direction of the gradient. Whereas that seems reasonable, we
will see in Section 5.5 what effects such an approach might have in a scenario where
speed is dependent on terrain.

In our first simulation with mobile sensors, we want to know whether our reward
function makes sensors try to fixate one target or if they tend to locate themselves where
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Figure 11: In these diagrams, we compare the results of the O-tracker and the
N-tracker. The topmost diagram shows the relative reward of the N-tracker com-
pared to the O-tracker. The middle diagram shows the difference in redundancy
between both algorithms in every time step. The bottommost diagram plots the av-
erage number of lost targets (if one sensor fails) for both algorithms (the dotted line
corresponds to the result of the N-tracker).
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measurement performance on all targets is good. In Figure 12, two sensors track four
targets. In this and the following figures that depict snapshots of target tracking with
mobile sensors, the crosses are targets, the tiny circles are the mobile sensors, and the
line that extends from the centre of each sensor indicates the current direction of motion
of the sensor (it does not, however, indicate the speed of the sensor). Additionally, in
some of the figures, dotted lines are drawn from sensors to targets. These lines clarify
which sensors are tracking which targets.

The simulation starts at time t = t1, and at this time the targets are divided between
the two sensors in such a way that the upper sensor is willing to track the two upper
targets and the lower sensor is willing to track the two lower targets. The upper targets
are moving upwards and the lower targets are moving downwards. We see that the
sensors, which in this simulation have the ability to catch up with the targets, prefer to
situate themselves in between the targets.

Time = 

Time = 

Time =

Time =

Time = 

Time = 

t 2

1t

t

3

3
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1t

Figure 12: The Figure shows three superimposed snapshots, at times t1, t2 and t3 (t1 <
t2 < t3), of a scenario where two sensors track two targets each.

In our next experiment, we study a scenario where the G-tracker runs into prob-
lems. In this case, sensor s1 (in Figure 13(a)) wants to track the targets τ1 and τ2.
However, they move in opposite directions, leaving s1 with a resulting zero gradient,
i.e., s1 gets stuck while the targets move away (as seen in Figure 13(b)). Sensor s2 on
the right has a similar problem since its targets are also moving in opposite directions.
After a while, however, the G-tracker assigns targets τ1 and τ3 to sensor s1 and the
others to s2, allowing sensor s1 to escape from its deadlock. If we align targets τ3 and
τ4 with sensor s2 and rerun the simulation, we can actually make both sensors get stuck
forever.

The N-tracker, run on the same scenario, yields a more appealing result. To
begin with, we see that the negotiation brings about a somewhat surprising assignment
of targets to sensors (Figure 14(a)); s1 tracks τ3 and τ4, and s2 the other two, contrary to
the allocation of the G-tracker (see once again Figure 13(a)). The reason is of course
that the “greedy” allocation yields very low directional derivatives which allows the
N-tracker to reach other solutions.

After a short while, sensor s1 starts to follow the targets τ2 and τ4 that are moving
downwards, and the other two are followed by sensor s2 (Figure 14(b)).

In Figure 15, we compare the results of the N-tracker and G-tracker in terms of
reward. At time t = 10, the N-tracker decides that sensor s1 should track targets τ2
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Figure 13: (a) In this scenario, two sensors s1 and s2 track four targets τ1 to τ4. Targets
τ1 and τ3 are moving upwards and τ2 and τ4 downwards. Initially, the G-tracker
assigns τ1 and τ2 to s1 and τ3 and τ4 to s2. (b) After some time, the targets have moved,
but due to the “greedy” allocation of targets to sensors, the sensors are stuck between
their assigned targets and have hardly moved.
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Figure 14: (a) Initially, the negotiation algorithm assigns targets τ3 and τ4 to sensor s1

and the rest to sensor s2. (b) After some time, the negotiation algorithm assigns targets
τ2 and τ4 to sensor s1 and the rest to sensor s2.
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and τ4 and quickly receives a total reward which is greater than that of the G-tracker.
At time t = 27, also the G-tracker decides that one sensor should track the targets
moving upwards and the other the ones going downwards. However, as we can see from
the rewards in the figure, the G-tracker is unable to catch up with the N-tracker.
Since the targets in this scenario are allowed to travel at a higher speed than the sensors,
the reward drops rapidly and at time t = 40 and beyond, both algorithms receive very
low rewards.
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Figure 15: This graph compares the total rewards of the G-tracker and the N-tracker
to each other. The absolute reward has been plotted in the top graph (’*’ for
G-trackerand ’+’ for N-tracker. In the lower graph, the relative reward of the
N-tracker compared to the G-tracker has been plotted. For the first time steps, the
G-tracker outperforms the negotiation one. At time t = 10, the negotiation assigns
targets τ2 and τ4 to sensor s1 which results in an increase in performance compared to
the G-tracker. At time t = 27 the G-tracker comes to the same conclusion, which
explains the negative slope of the curve.

In the final experiment of this section, we once again study the scenario in Figure
8. However, this time the sensors are mobile and both distances to targets and speed
of targets have been decreased so that the sensor can take advantage of their mobility
(i.e., it is not beneficial to use mobile sensors if their maximum speed is relatively low
compared to the targets).

We run both the G-tracker and the N-tracker and compare the results in Table 1.
We see that the N-tracker loses in measurement accuracy (its average measurement
performance was 90% of that of the G-tracker). However, the N-tracker instead
impresses by its robustness with an average of 1.39 targets being tracked by one or
more sensors and average of 0.87 (27% better than the result of the G-tracker) of
lost targets if one sensor is lost. The reason for this result is that the sensors, through
the negotiation, are forced to share targets with each other, and, hence, yield better
robustness for the target tracking system as a whole.

5.5 Mobile tracking with terrain considerations

Until now, we have not considered terrain effects on mobile sensors in our experiments.
Since it is highly unlikely that the designer of a mobile sensor system can expect a
homogeneous environment, we need to consider varying terrain and its effects. In
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Table 1: Comparison between G-tracker and N-tracker
G-tracker N-tracker Relative

Reward 3.7372 3.3765 0.90
Redundancy 0.4510 1.3922 3.09
Lost targets 1.1830 0.8693 0.73

Section 4.4, we discussed how a so-called terrain function can be used to discount the
directional derivative generated by a certain assignment.

In the scenario in Figure 16, we have put an obstacle into the environment. This
obstacle has the property that when a mobile sensor tries to cross it, the maximum
speed of the sensor reduces drastically. Such an obstacle represents, for instance, rough
terrain or a steep hill. In this example, the speed reduces to 30% of the maximum speed
it could achieve in an ideal terrain. Close to the obstacle, the terrain function discounts
directional derivatives that lead into the obstacle.

Time = 0

τ 1
s1

2s

2τ

Figure 16: Initially, sensor s1 tracks target τ1 and sensor s2 target τ2. The rectangle
represents an area which slows down mobile sensors that enter it.

We notice that the G-tracker, which does not consider terrain, leads the sensors
straight into the obstacle, as shown in Figure 17(a). As a result of this, the sensors
lose touch with the targets. In the case of the negotiation algorithm, the sensors switch
targets close to the border of the obstacle, as shown in Figure 17(b). One reason for
this is that offers that give directions that lead into the obstacle get small derivatives
and are suppressed.

6 Discussion

There are a number of parameters that can be altered that affect the behaviour of the
target tracking system. α j , in Equation 10, influences the target reward and reflects the
value the system assigns to increased accuracy in measurements. As can be seen in Fig-
ure 2, by varying the value of α j, we can customise the value of increase measurement
accuracy.

Also included in Figure 2 is αi which is a parameter in the sensor net reward func-
tion (Equation 12). By varying αi between 0 and 1, we can modify the ability of sensor
agents to differentiate between rewards of offers. For αi = 0 the ability of the agent
to differentiate between rewards is at its maximum, but for αi = 1 all offers appear to
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Figure 17: (a) The G-tracker does not consider terrain and leads the sensors into
the obstacle, where they are slowed down considerably. (b) The negotiation algorithm
decides to switch targets between the sensors instead.

the sensor agent to have same reward. This can be understood by once again studying
Figure 2 where αi is set to 0.3 and imagining the effect of increasing the αi value.

The negotiation procedure can be adjusted in several ways, e.g., by 1) altering the
order of offers, by 2) changing the way the number of valid offers is reduced during a
negotiation, and by 3) changing the number of steps in the negotiation.

To reiterate, as we explained in Section 2.1, due to the facts that the agents are
benign and have complete information about the others, the agent that begins the nego-
tiation can calculate an offer which all other agents will accept. Hence, when we talk
about negotiation in the following discussion, we are referring to the search procedure
by which the offer, which all agents will accept, is found.

The first way to adjust the negotiation procedure involves deciding on a policy
for in which order agents should make their offers (this is the P(H) function of the
game definition in Section 2.1). Naturally, the agent who makes the first offer has an
advantage. There are several ways to do this, one might for instance want the agent
that received the best/worst reward in the previous round of negotiations to start and
the others to follow in increasing/decreasing order. In most of our experiments, we
used another policy which we considered to be more fair. We let all agents have the
advantage of commencing the negotiations about the same amount of times each. In a
round-robin fashion, one of the agents, say a1, started a round of negotiations, another
agent, a2, made the second offer, and a third agent, a3, made the third offer, etc.

Quite often, the number of steps in the negotiation was larger than the number of
agents (allowing every agent to participate in the negotiation), and in those cases, when
the last agent had made its first offer, the first agent, a1, continued. In the next round of
negotiations, it was a2’s turn to commence the negotiation, followed by agent a3, and
so on.

The second way to adjust the negotiation procedure is to change how the set of
valid offers evolves during a round of negotiations. Valid offers are offers, o, that do
not violate the requirements of Equation 1. In the previous work, the composition of
the set of offers was heavily dependent on the utility functions of the agents. If the
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utility of the offers for all agents, given by Equation 7, differed only slightly, then
even for many negotiation steps, the set of valid offers would still be considerable. If
so, the agent which commences the negotiation will have a great influence over the
outcome. It might be debated whether this is a disadvantage or not. On the one hand,
the commencing agent will be very powerful, possibly completely ignoring the wishes
of the other agents, which might be undesirable. On the other hand, that the offers
have similar values to an agent could be interpreted as indifference on the behalf of
the agent. Thus, in that case, the agent simply does not care about the outcome of the
negotiation.

In this work, we experimented with another approach that systematically reduces
the set of valid offers with each step of the negotiation, guaranteeing that the agent that
begins the negotiation will have a more restricted set of offers to choose from. Starting

from a larger set of possible offers, η = #offers
#negotiation steps number of offers are ex-

cluded from the negotiation (i.e., becomes invalid) with every step in the negotiation,
ensuring that there are only η offers left to choose from in the end.

To explain by which criterion offers are removed, consider Figure 18. The figure
illustrates the common situation where offers have different utility for different agents.
Assume that an offer, o, has been proposed at some step of the negotiation. Now,
every other offer o′ has a certain distance in utility to o for every agent i, disti(o,o′) =
|Ui(o)−Ui(o′)|. Let the maximum distance of all agents for an offer, o′, be dist(o,o′) =
maxidisti(o,o′). Finally, to decrease the set of offers with every step of the negotiation,
the η offers with the largest dist(o,o′) are removed. Despite the appealing property of
this approach, i.e., the strict monotonic decrease of the size of the offer set, we are not
yet convinced by its positive effect on the negotiations.

2

increasing preference/utility

dist (o , o )1 21

o
Agent 3
preference

Agent 2
preference

Agent 1
preference

o 1

o 1

o 1

o 2

o 2

Figure 18: Different offers have different values to different agents. For instance, in
this example, o1�1o2 but o2�3o1

The third way to affect the negotiation is to change the number of steps of the ne-
gotiation. In our experiments, we used quite lengthy negotiations of at least 30 steps,
sometimes many more. The outcome of the negotiation, is under some circumstances,
very much dependent on the exact number of negotiation steps. This potential problem
is to some extent avoided when the systematic approach to decreasing the set of valid
offers, presented in the previous paragraph, is applied. Generally, the more negoti-
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ation steps used to reach an agreement, the more “democratic” is the outcome of the
negotiation.

Finally, we find our solution to the multiple-objective optimisation problem, that
arose in Section 4.1, intriguing and it encourages to further investigation.

7 Conclusion and future work

In this report, we have presented a game theoretic model for allocating targets to mobile
sensors. Sensor agents negotiate by proposing offers of allocations that involve all
sensors. Each agent can evaluate each offer to decide its individual utility.

The utility is composed of two objectives: sensor reward and directional derivative.
The first objective, sensor reward, is dependent on the distance between sensor and
targets, the number of targets the sensor is concurrently tracking, and whether other
sensors track the same target. The other part, directional derivative, is directly calcu-
lated from the allocation of the offer, or, when terrain conditions are considered, by
discounting derivatives in inconvenient directions.

We showed, in the experiments in Section 5, two interesting properties of our ne-
gotiation algorithm: first, the negotiation forces sensors to share targets, improving
robustness to the target tracking system (e.g., the scenario in Figure 8). Secondly,
considering directional derivatives allow sensors to proactively reconsider target as-
signments, possibly improving long-term information gain (e.g., as in Figures 14(b)
and 17(b)).

Further studies should investigate under what circumstances these properties imply
advantages to the target tracking system. With the support of these early results, we
anticipate interesting discoveries in our future exploration of negotiation-based, dis-
tributed sensor management.

Some of the most salient, concrete directions for future studies are:

• introduction of uncertainty (e.g., in target or sensor state) into the negotiations,

• prediction of (near) future target and sensor states to improve tracking perform-
ance,

• to explore and devise a policy to select negotiation strategy depending on the
state of the environment.
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A Simulation parameters

The Hi j matrices in the Kalman measurement equation (Equation 2) used here are all
equal:

Hi j =
[

1 0 0 0
0 0 1 0

]
.

The measurement error covariance matrices Ri j are also assumed to be identical:

Ri j =
[

σ2
tot 0
0 σ2

tot

]
,
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We here assume that the standard deviations for measurements, σtot , for both meas-
urement components, e.g., x- and y- coordinates, are equal and independent.

B Gradient derivation

Recall that the components of the gradient, depicted in Equation 16, are the partial
derivatives of the measurement reward function in Equation 13. Important to notice is
that both factors of the measurement reward function, γi j and r j(S j), are dependent on
the derivation variables, xi and yi.

The partial derivatives, ∂rm
i

∂xi
and ∂rm

i
∂yi

, are similar, and, thus, we show only the de-

tailed calculation of ∂rm
i

∂xi
and claim that the calculation of other derivative is almost

identical.

∂
∂xi

(rm
i ) = {since D( f g) = f g′ + f ′g} = ∑ j γi j

∂
∂xi

(r j)+ ∂
∂xi

(γi j)r j (20)

We know r j and γi j from Equation 14 and Equation 10, respectively. However,
∂

∂xi
(r j) and ∂

∂xi
(γi j) have yet to be determined.

∂
∂xi

(r j) = α j
∂

∂xi
(g j(S j))eα jg j(S j) =

{
since eα jg j(S j) = 1− r j

}
=

α j
∂

∂xi
(g j(S j))(1− r j)

(21)

∂
∂xi

(g j(S j)) =
{

g j(S j) = ∑k∈S j
‖HT

k jR
−1
k j Hk j‖ from Equation 14

}
=

∂
∂xi

(
∑k∈S j

‖HT
k jR

−1
k j Hk j‖

)
=

{
∂

∂xi

(
‖HT

k jR
−1
k j Hk j‖

)
= 0,∀k �=i

}
= ∂

∂xi

(
‖HT

i j R
−1
i j Hi j‖

)
(22)

The matrices Hi j and Ri j used are described in Appendix A, but in order to calculate

the partial derivative ∂
∂xi

(
‖HT

i j R
−1
i j Hi j‖

)
we also have to decide which matrix norm to

use. In this work we use the Frobenius norm, ‖·‖F , which considers every element of
the matrix.9

‖HT
i j R

−1
i j Hi j‖F =

∥∥∥∥∥∥∥∥




σ−2
tot 0 0 0
0 0 0 0
0 0 σ−2

tot 0
0 0 0 0




∥∥∥∥∥∥∥∥
F

= 21/2σ−2
tot (23)

Thus, the partial derivative then becomes

∂
∂xi

(
‖HT

i R−1
i j Hi‖F

)
= −23/2σ−3

tot
∂

∂xi
(σtot) = {using σtot in Eq. 19} =

−25/2c(σminn)−2(1 + cd2)−3(xi − x j)
(24)

9The Frobenius norm of a m×n matrix A with cell elements ai j is

‖A‖F
∆=

√
∑m

i=1∑n
j=1 |ai j |2.
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With the result achieved in Equation 24 the derivative in Equation 21 can finally be
calculated,

∂
∂xi

(r j) = α j
∂

∂xi
(g j(S j))(1− r j) = −25/2α jc(σminn)−2(1 + cd2)−3(xi − x j)(1− r j)

(25)
Now only ∂

∂xi
(γi j) is missing to complete the calculation of Equation 20.

∂
∂xi

(γi j) = ∂
∂xi

(
g j(i)

g j(S j)

)
=

{
since D( f

g ) = f ′g− f g′
g2

}
=

∂
∂xi

(g j(i))g j(S j)−g j(i) ∂
∂xi

(g j(S j))
g j(S j)2 =

{
since ∂

∂xi
(g j(S j)) ≡ ∂

∂xi
(g j(i))

}
=

∂
∂xi

(g j(i))
g j(S j)

(
1− g j(i)

g j(S j)

)
=

∂
∂xi

(g j(i))
g j(S j)

(1−γi j)
(26)

The partial derivative ∂
∂xi

(γi j) is now completely known since γi j and g j(S j) are

known from Equation 14 and ∂
∂xi

(g j(i)) from Equation 22.

Now, the partial derivative of the measurement reward function, ∂
∂xi

(rm
i ), is com-

pletely determined by inserting Equations 21 and 26 into Equation 20.
The other partial derivative, ∂

∂yi
(rm

i ), and is equivalent except for only the factor
(x0 − x j) in Equation 25 which should be replaced with (yi − y j).
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