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Abstract – This paper suggests a framework for multi-
sensor multi-target tracking with mobile sensors. Sensors
negotiate over which targets to track (possibly sharing tar-
gets to benefit from data fusion technology) using a game
theory based algorithm. Sensors’ preferences over negotia-
tion offers are articulated with individual utility functions
which encompass both information gain and directional
derivative. An approach to consider terrain effects on mo-
bile sensors is also explained. Simulation results show that
the negotiation algorithm has interesting advantages com-
pared to a greedy algorithm that seeks to optimise informa-
tion gain without consideration to derivatives. We notice
that the negotiation procedure forces sensors to share tar-
gets, while improving robustness to sensor failure. Sensors
also tend to proactively reconsider their target assignments
for long-term improved information gain.

Keywords: Sensor management, mobile sensors, negotia-
tion, game theory

1 Introduction
Mobile sensing resources (ormobile sensors for short)

provide a flexible aid to decision support systems for
decision-making in dynamic, spatially extensive environ-
ments. Their sensing capabilities contribute with observa-
tions to the decision support system and their mobility al-
low them to adapt to a changing world state and altered
mission requirements.

Sensors is a limited resource and to achieve good perfor-
mance in a system with mobile sensors, allocation and use
of sensors is a key aspect to consider.Sensor management
is the process that aims at controlling sensors to improve
overall system performance [1]. Typical factors of concern
for a practical sensor management system are probability
of target detection, track/identification accuracy, probabil-
ity of loss-of-track, probability of survival, probability of
target kill, etc [2].

One aspect of managing mobile sensors is coordination
of their actions. Choosing acentralised approach to coor-
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dinate the system promises to provide the system with op-
timal coordination. However, such a system is both vulner-
able (e.g., if the centralised control node is destroyed, the
whole system will fail) and slow (e.g., sensors have to await
orders from the centralised control). Decentralised control,
on the other hand, assumes that the system is mainly con-
trolled by its components (e.g., mobile sensors), allowing
it to “degrade gracefully” if some of its components fails.
However, achieving good performance with decentralised
control is a, by far, greater problem.

Distributed artificial intelligence (DAI) is a research field
that concerns itself with coordinated interaction among dis-
tributed entities, known asagents [3]. Game theory, consti-
tuting a toolbox of methods for analysing interactions be-
tween decision makers [4], has attracted a lot of attention
from the DAI community.

Game theory offers models for distributed allocation of
resources and provides at the same time mechanisms to
handle uncertainty. An important subtopic of game theory
is negotiation. As part of negotiation there are ways to gen-
erate multi-objective optimisation results that are at least
Pareto optimal. At the same time, these methods allow for
robust handling of game/agent configurations which makes
it robust to jamming and use of sensors with limited avail-
ability.

Works in DAI seldom consider uncertainties [5] such
as those imposed by the physical world (e.g., estimation
errors) which are inherent to target tracking applications.
Noteworthy, recent exceptions concerning target tracking
include [6] and [7]. In [6], static sensors form coalitions
(groups) where each coalition track a certain target. The
members of a coalition fuse their measurements to improve
target state estimation. In [7], mobile sensors form coali-
tions to track targets, each sensor capable of sensing one
target at a time. Movements of sensors are decided by a hi-
erarchy of coalition leaders, each responsible for a certain
geographical area.

In this paper, we address the issue of management of mo-
bile sensors for the multi-sensor target tracking problem.
Unlike [7], we do not consider the same level of compre-
hensive mission goals and let the sensors of ourtarget track-
ing system handle their own motion by themselves, rather



than appointing this task to some external process.
The management, in our approach, is performed using

negotiation models from game theory. We utilise an algo-
rithm for agent negotiation which we have previously de-
veloped and evaluated [8]. In the previous work, sensor
agents negotiated about which targets to track, dividing the
set of targets among themselves. Sensors were static, but
now we apply the same algorithm to the case with mobile
sensors and allow sensors to share targets. Our work con-
stitutes a framework for future studies of management of
distributed mobile sensors in the face of uncertainties and
sensor failures.

Section 2 presents the primary objectives of this work, in-
cluding management of mobile sensors and sharing of tar-
gets. Section 3 explains the negotiation procedure and its
utility functions. Section 4 presents some results of using
the negotiation strategy and, finally, Section 5 concludes
and suggests future research.

2 Primary objectives
In this paper, we extend the preceding work [8] by incor-

porating the following three aspects:

Mobile sensors We allow sensors to move to increase sen-
sor performance. We further allow the characteristics
of the terrain to affect thepreferred direction of mo-
tion.

Shared targets We extend the previous work by allowing
sensors to track the same targets (previously, the tar-
gets were divided between the sensors). Through use
of multiple sensors tracking the same target, it is pos-
sible to improve the performance on state estimates as
typically found in the multi-sensor tracking and multi-
sensor fusion literature (e.g., [9]). Here, this problem
is studied in the context of target assignment and per-
formance optimisation.

Performance loss when tracking many targetsWe
model that the measurement performance on each
target tracked by a sensor decreases with the number
of targets tracked by the same sensor. The reason is,
of course, that a sensor has limited time and resources
for its measurements and if it has to track more targets
and divide its resources among the targets, then also
the measurement error covariance will increase for
every target (hence, decreasing sensor performance
on every target).

In order to allow the mobility of sensors to have any ef-
fect, we further assume that sensor platforms have the abil-
ity to move at a speed that is comparable to the speed of the
targets.

3 Utility and Negotiation for Mobile
sensors

Sensor agents negotiate by making offers that the other
agents might accept or reject. As in the previous work, an

offer,o, is a specification of allocations, that assigns groups
of targets to sensors. Unlike the previous work, the target
groups may overlap. From the preceding work, we bring
the negotiation procedure and the notions ofreward and
sensor information gain. The negotiation procedure was
shown to have the interesting property that the first propos-
ing agent of a round of negotiations could, given that the
other agents were benign (i.e., cooperative), propose an of-
fer that all other agents immediately would accept (hence,
minimising usage of communication resources). To evalu-
ate offers, agents used a utility function based on the con-
cepts of reward and sensor information gain. The informa-
tion gain was

g j(i) = ‖HT
i j R

−1
i j Hi j‖, (1)

i.e., the information gain on targetj by a sensori. The
concept of information gain originates from the target state
estimation error covariance in Kalman filter theory (e.g., in
[10]). The reward function of an agent integrated the gains
on all targets into a representative value for the performance
of the sensor.

For negotiation about target allocation of mobile sensors,
we consider both the reward for each sensor as well as its
directional derivative in the preferred direction of motion.
The reward, as we will see, is calculated somewhat differ-
ently than in the previous work and does not immediately
yield the negotiation utility. The preferred direction of a
sensor platform is the spatial direction in which the sensor
would like to travel. When we do not consider terrain char-
acteristics, the preferred direction will simply coincide with
the gradient of the reward function.

In the next section, we will first present an approach
to consider mobility in the negotiation. In the subsequent
sections 3.2-3.4, we will discuss how to calculate both
the reward for the novel considerations of overlapping tar-
get groups and decreased tracking performance, and the
preferred direction. We also address the resulting multi-
objective optimisation problem.

3.1 Negotiation
Before we start to discuss the details about reward and

directional derivative, we will for this work assume that ev-
ery sensor agent has the required information and is capable
of calculating both objectives for all sensors.1 Hence, given
a sensor agenti∈S (S being the set of all sensor agents) and
an offer of allocations of sensors to targetso∈O (O being
the set of offers), we can calculate rewardri∈R and direc-
tional derivativer′i,δ∈R, i.e., a sensor and an offer yield a
reward and preferred direction,S×O→R×R. Hereδ∈∆ is
the preferred direction, and∆ the set of unit vectors.

We want to consider both factors, reward and derivative
(measured as change in reward per length unit), simultane-
ously to acquire a combined utility metric for our negotia-
tion. The problem we are facing is that of multi-objective

1In a practical application, the complete knowledge is not going to be
available to all sensors, but for an initial study it is convenient to make this
assumption.



optimisation. Whereas elaborate approaches to this prob-
lem has been proposed (such as [11]), in this work we pre-
fer to study the results of an approach that does not suggest
a preference of one factor over the other. (Hence, it might
not work optimally for every application, but is expected to
work well for every application.) We order the offers only
according todominance.

A sensor agent,i, will prefer an offero1 to another of-
fer o2, o1�io2, if and only if o1 dominateso2. An offer o1

can only dominate another offero2 if one of the reward and
directional derivative values ofo1 is greater than the corre-
sponding value ofo2 and the other one at least as great as its
counterpart, i.e.,ri(o1) ≥ ri(o2) andr′i,δ(o1) ≥ r′i,δ(o2) and
at least one of the inequalities should be strict. If neithero1

nor o2 dominates the other, we writeo1∼io2.
We elaborate further on the topic of dominance. Figure

1 shows twenty offers, here depicted with circles, plotted in
a graph according to the reward and derivative in the pre-
ferred direction of a certain agent (in general, of course,
the graph will look different for every agent). We find that
there are, in this example, five offers that are not dominated
by any other offer. We conclude that these are the “best”
offers the agent could get. We call the set (orclass) of these
theoffers of the first order. We iteratively classify the rest
of the offers, knowing that an offerok, which is dominated
by an offerol of orderl, will be a member of orderl +1 or
greater. Each offer in Figure 1 belongs to one of five orders
and the members of each order are connected to each other
with dashed lines for illustration.

A more formal definition of class of offers for a particular
agent is as follows.

Definition: Class of offers All pairs of offers
(o1,o2), o1,o2∈O, that fulfill the condition that
o1∼o2∧¬∃om∈O [(om∼o j∧om�ok)] for j �=k and
j,k∈{1,2} are said to belong to the same class of
offers.

A class may not be empty, but may contain a single offer
os iff ∀o j∃ok [o j∼os∧o j∼ok→ok�os∨ok≺os]. In order to
strictly define class order, we first define the notion ofclass
dominance.

Definition: Class dominance A class of offers Ca is
said to dominate another classCb, Ca�Cb, iff
∃oa∃ob [oa�ob], oa∈Ca,ob∈Cb.

We use the following recursive definition to define order
of class.

Definition: Class of first order A classC of offers is said
to be of the first order iff none of its offers are dom-
inated by another offer,¬∃om∈O\C [om�o j] for all
o j∈C.

Definition: Class ofkth order A class of offersC is said
to be of orderk iff its members are dominated only by
members of classes of orderk and less.

Now, we will express the utility function for sensors. Us-
ing our notion of orders we can assign a utility value to the
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Figure 1: Twenty offers plotted according to derivative of
preferred direction and reward. Offers which belong to the
same class are connected with lines.

offers for all agents. Furthermore, according to the negoti-
ation procedure described in [8], the utility of an offer ac-
cepted at timet + 1 is always less valuable than the same
offer accepted at timet. Therefore we need to construct
a utility function that is dependent on the time step of the
negotiation:

Ui(o, t) = αU (K − t)−orderi(o), αU > 0, (2)

whereorderi(o) is a function that maps offers to its order
for sensor agenti. Thus, offers of low order (which are
desired by the agent) yield a high utility value.

The interpretation of the utility function in Equation 2 is
that the agents will accept less offers the longer the negoti-
ation continues.

The negotiation procedure in the preceding work is virtu-
ally unaffected by the extensions we make in this work. The
reason for this is that all the novelties (in Section 2) have
been encapsulated in the calculations of the utility func-
tion. However, the result of the negotiation will of course
be quite different.

An agent that has several “best” offers to choose from
should select one according to some second criterion. This
could for instance comprise minimising the sum of or-
ders for all agents, i.e., if the set of best offers isO ′,
then the offer to select should be the oneo∗ that satisfies
o∗ = argmino∈O′ ∑i orderi(o). Another suitable criterion
could be to select the offer inO ′ that minimises maximum
order for any sensor, i.e.,o∗ = argmino∈O′ maxi orderi(o).
If there are still more than one offer that fulfills the crite-
rion, then one offer could be selected randomly.

3.2 Workload effect on tracking perfor-
mance

A sensor is expected to make less certain measurements
for each target if it tracks many targets than if it tracks only
a few. Let us assume that sensors have some sort of resource
(e.g., time, energy, money, samplings) that they can utilise
to make measurements. The maximum amount of this re-
source available to a sensori for a time unit isρi,max and



the amount it chooses to use to track some targetj is de-
notedρi j. We model that the measurement noisevi j in the
Kalman measurement model is dependent on the dedicated
resource amountρi j. The measurement noise is Gaussian,
i.e., vi j∼N(0,R), with zero mean and the measurement er-
ror covariance matrixR.

R is composed of standard deviation functions for the
measurement variables. The functions,σl(ρ), will take a
minimum, σmin,l ≥ 0, for ρ = ρmax and will increase to-
wards infinity when the dedicated resource decreases to-
wards ρmin, limρ→ρmin( j) σl(ρ)→∞, whereρmin( j) is the
minimum resource amount necessary to track targetj.

Hence, a varying workload on a sensor will affect the
standard deviation and the measurement error covariance
matrix, which in turn will have effect on the refined sensor
gain expression which we will discuss in the next section.

Note that using this model, we allow sensors to allocate
different amounts of resources to different targets.

3.3 Target allocation
In the preceding work, the specific task was studied

where every target was tracked by exactly one sensor. In
this work, we relax that restriction and allow sensors to
“share” targets. Thus, we are able to reduce uncertainty
by fusing measurements from different sensors and get a
higher grade of sensor usage than in the case of disjoint tar-
get groups.

Our approach here to determine the reward for every sen-
sor,ri, is to divide thetotal reward on every target,∑ j r j(S j)
(S j being the set of sensors tracking targetj), among the
sensors inS j proportionally to their individual contribution.

We define the reward on every target to be

r j(S j)
∆= 1− e−α jg j(S j), α j > 0 , (3)

where
g j(S j) = ∑

k∈S j

‖HT
k jR

−1
k j Hk j‖, (4)

i.e., the total information gain on targetj. Here, we might
want to replaceg j with some measure from information
theory. Previously, we used sensor information gain, but
now, as we allow multi-sensor fusion, we defineg j(S j) as
above and notice that wheneverS j contains a single sensor
i g j(S j) = g j(i) (equivalent to Equation 1).

Now, the net reward for every sensor (similarly ex-
pressed as in the previous work) is

rnet
i (Di)

∆= αi +(1−αi)rm
i (Di), 0≤ αi ≤ 1 , (5)

whereDi is the group of targets tracked by sensori, αi re-
flects the willingness of a sensor agent to compromise about
offers, and the measurement reward is

rm
i (Di)

∆= ∑
j∈Di

γi jr j(S j) (6)

and

γi j
∆=

g j(i)
g j(S j)

=
‖HT

i j R
−1
i j Hi j‖

∑i∈S j
‖HT

i R−1
i j Hi‖

, (7)

i.e., the relative contribution of sensori to the state estimate
of target j.

This definition of sensor reward,rm
i (Di), has the effect

that the same amount of information gain from a sensor on
a target will yield different rewards depending what other
sensors track the same target. This makes sense since the
target reward does not improve linearly with the informa-
tion gain (e.g., in a target tracking application, tracking air-
borne targets at high speeds, to go from metre to centimetre
precision in position estimates should not yield much extra
reward since the improved precision can not be efficiently
utilised).

3.4 Preferred direction
Given the measurement reward function,rm

i (Di), for
each sensor, the gradient can be calculated in this way:

grad rm
i ≡ ∇ rm

i ≡ (∂rm
i

∂xi
,
∂rm

i

∂yi

)
, (8)

wherexi andyi are the spatial coordinates of sensori’s po-
sition.

The gradient vector points in the direction in which the
reward for sensori will increase the most.2 This model
makes the subtle (and incorrect) assumption that the targets
are static. However, it is a fairly good approximation that
should be refined in the future; possibly by predicting and
exploiting future target states. The gradient would be the
preferred direction to move for the sensor if terrain proper-
ties were not considered.3 However, the terrain may make
motion in the direction of the gradient difficult or perhaps
even impossible, and a more passable path, although less
rewarding, might be a better preferred direction.

Now assume we can construct a (possibly rough) ter-
rain dependent function, which discounts the reward change
in various directions. Let theterrain function be t(p,eθ),
wherep is a two dimensional position in the environment
andeθ is a unit vector,θ∈[0,2π). Furthermore, let the ter-
rain function assume values between 0 and 1,t ∈ [0,1].
The terrain functiont(p,eθ) takes high values in directions
where the sensor platform can easily move (such as in the
direction of a good road) and low values in directions where
it cannot move very well (zero in the direction of an unpass-
able obstacle). We assume that the value reflects the pass-
ability in the chosen direction in the following time step.

The directional derivativer′eθ
in any direction,eθ, is sim-

ply a projection of the gradient ontoeθ, i.e.,r′eθ
= eθ • ∇ rm.

The parameterθ is the angle between the gradient andeθ.
Now, we propose that the preferred direction,δ∗, is the

unit vector that corresponds to the largest directional deriva-
tive discounted byt(p,eθ), i.e.,

δ∗ = argmax
eθ

{
t(p,eθ) · r′eθ

}
. (9)

2Note that we are, in this work, only considering the current target
states when calculating the gradient. Prediction of future target states to
further improve the performance of the mobile sensors is left for future
work.

3Hence, in the case of airborne sensors, the gradient would suffice as a
preferred direction.



We now expand our field of view to study the preferred
directions from a macro perspective. Figure 2 shows the
directional derivatives in various positions in the plane. A
target in position(400,350) (the small “x”) attracts a sen-
sor platform. An obstacle (representing almost unpassable
terrain) has been positioned to the left in figure. We note
that the derivatives are small in the periphery and close to
the target, and large in between (these are characteristics of
the measurement reward function in Equation 6). The pre-
ferred directions direct the sensor platform away from the
obstacle, while trying to preserve a course towards the tar-
get. For instance, along the upper and lower edges of the
obstacle, the preferred directions are along the edge of the
obstacle rather than into the obstacle.

Even though the approach with terrain functions pre-
sented here looks nice in this example, it is indeed short-
sighted. There is a risk that sensor platforms get stuck be-
hind obstacles. However, this does not necessarily mean
that the tracking will fail, rather it means that the current
allocation has been given a new value which will possibly
affect the outcome in the next round of negotiations (i.e.,
another allocation, with a better preferred direction, might
be a more appealing alternative).

Directional derivatives

6004002000
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Figure 2: An obstacle (representing very rough terrain) is
situated in the left part of the figure. The generated pre-
ferred directions tries to steer the sensor platform away
from the obstacle while preserving a course towards the tar-
get (the ’x’ ).

4 Experimental results
For our simulations,4 we assume that the standard de-

viation, σtot , of the measurement noise covariance, R, is
equal for every measurement component and tracked target.
We, furthermore, assume that it increases inversely linearly
with the dedicated relative resource amount, i.e., the stan-

dard deviation is scaled by a factor
(

ρ
ρmax

)−1
, and quadrat-

ically with the Euclidean distance d between target and
sensor. If the tracking resource, discussed in Section 3.2,
is divided evenly between n tracked targets, the resource

4In this paper, merely snapshots of simulations are
shown. However, full animations are available at this URL:
http://www.nada.kth.se/˜rjo/pubs/mobile/anim/.

amount used to track each of the targets is ρ(n) = ρmax/n,

yielding the scale factor
(

ρmax/n
ρmax

)−1
= n for the standard

deviation. From this discussion, we suggest the following
standard deviation expression for our experiments

σtot = σmin·n·(1 + cd2). (10)

The first two factors are always greater than zero and d≥0.
The coefficient c > 0 controls how greatly the distance from
sensor to target affects the measurement error covariance.

We require that the target tracking system always tracks
all targets (i.e., negotiation offers that do not include assign-
ments to all targets will be ignored by all sensor agents).

4.1 Target tracking with mobile sensors
For the simulations with mobile sensors, we use the util-

ity function in Equation 2, but we will for now assume that
the terrain has no effect on the negotiation.

For evaluation, we devise a comparison algorithm, a
“greedy” tracker (G-tracker), which operates indepen-
dently of the negotiation-based tracker (N-tracker). We
let the G-tracker reconsider the sensor to target assign-
ment as often as the N-tracker does. After having selected
the most optimal assignment, the sensors travel, at full
speed, in the direction of the gradient. Whereas that seems
reasonable, we will see examples where the G-tracker en-
counters difficulties.

In our first simulation, we want to know whether our
reward function makes sensors try to fixate one target or
if they tend to locate themselves where measurement per-
formance on all targets is good. In Figure 3, two sensors
track four targets. In this and the following figures that de-
pict snapshots of target tracking, the crosses are targets, the
tiny circles are the mobile sensors, and the line that extends
from the centre of each sensor indicates the current direc-
tion of motion of the sensor (it does not, however, indicate
the speed of the sensor). Additionally, in some of the fig-
ures, dotted lines are drawn from sensors to targets. These
lines clarify which sensors are tracking which targets.

The simulation starts at time t = t1, and at this time the
targets are divided between the two sensors in such a way
that the upper sensor is willing to track the two upper targets
and the lower sensor is willing to track the two lower tar-
gets. The upper targets are moving upwards and the lower
targets are moving downwards. We see that the sensors,
which in this simulation have the ability to catch up with
the targets, prefer to situate themselves in between the tar-
gets.

In our next experiment, we study a scenario where the
G-tracker runs into problems. In this case, sensor s1 (in
Figure 4(a)) wants to track the targets τ1 and τ2. However,
they move in opposite directions, leaving s1 with a result-
ing zero gradient, i.e., s1 gets stuck while the targets move
away (as seen in Figure 4(b)). Sensor s2 on the right has a
similar problem since its targets are also moving in opposite
directions. After a while, however, the G-tracker assigns
targets τ1 and τ3 to sensor s1 and the others to s2, allowing
sensor s1 to escape from its deadlock. If we align targets
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Figure 3: The Figure shows three superimposed snapshots,
at times t1, t2 and t3 (t1 < t2 < t3), of a scenario where two
sensors track two targets each.

τ3 and τ4 with sensor s2 and rerun the simulation, we can
actually make both sensors get stuck forever.

The N-tracker, run on the same scenario, yields a more
appealing result. To begin with, we see that the negotiation
brings about a somewhat surprising assignment of targets to
sensors (Figure 5(a)); s1 tracks τ3 and τ4, and s2 the other
two, contrary to the allocation of the G-tracker (see once
again Figure 4(a)). The reason is of course that the “greedy”
allocation yields very low directional derivatives which al-
lows the N-tracker to reach other solutions.

After a short while, sensor s1 starts to follow the targets
τ2 and τ4 that are moving downwards, and the other two are
followed by sensor s2 (Figure 5(b)).

In Figure 6, we compare the results of the N-tracker
and G-tracker in terms of reward. At time t = 10, the
N-tracker decides that sensor s1 should track targets τ2

and τ4 and quickly receives a total reward which is greater
than that of the G-tracker. At time t = 27, also the
G-tracker decides that one sensor should track the tar-
gets moving upwards and the other the ones going down-
wards. That explains the negative slope of the curve in the
end. However, as we can see from the rewards in the figure,
the G-tracker is unable to catch up with the N-tracker.
Since the targets in this scenario are allowed to travel at a
higher speed than the sensors, the reward drops rapidly and
at time t = 40 and beyond, both algorithms receive very low
rewards.

In the final experiment of this section, we study the sce-
nario in Figure 7. Three sensors track four targets. The
targets travel in two pairs, one pair entering from the left
and one from the right. The flight paths of all targets are
shown with dashed lines in the figure.

We run both the G-tracker and the N-tracker and
compare the results in Table 1. We compare three values
for the two trackers. Reward is simply the average reward
of every round of negotiations, redundancy is the average
number of targets being tracked by one or more sensors,
and lost targets is the average number of targets without
any sensor tracking them if one of the sensors fails. We see
that the N-tracker is defeated in measurement accuracy

Time = 3

τ2

3τ

τ4

s
21 s

1τ

(a)

Time = 17

τ 1

τ 2

s

τ 4

τ 3

2s1

(b)

Figure 4: (a) In this scenario, two sensors s1 and s2 track
four targets τ1 to τ4. Targets τ1 and τ3 are moving upwards
and τ2 and τ4 downwards. Initially, the G-tracker assigns
τ1 and τ2 to s1 and τ3 and τ4 to s2. (b) After some time,
the targets have moved, but due to the greedy allocation
of targets to sensors, the sensors are stuck between their
assigned targets and have hardly moved.

(its average reward was 90% of that of the G-tracker).
However, the N-tracker instead impresses by its robust-
ness with an average of 1.39 targets being tracked by one
or more sensors and an average of 0.87 (27% better than
the result of the G-tracker) of lost targets if one sensor is
lost. The reason for this result is that the sensors, through
the negotiation, are forced to share targets with each other,
and, hence, yield better robustness for the target tracking
system as a whole.

Table 1: Comparison between G-tracker and N-tracker
G-tracker N-tracker Relative

Reward 3.7372 3.3765 0.90
Redundancy 0.4510 1.3922 3.09
Lost targets 1.1830 0.8693 0.73

4.2 Mobile tracking with terrain considera-
tions

Until now, we have not considered terrain effects on mo-
bile sensors in our experiments. Since it is highly unlikely
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Figure 5: (a) Initially, the negotiation algorithm assigns tar-
gets τ3 and τ4 to sensor s1 and the rest to sensor s2. (b)
After some time, the negotiation algorithm assigns targets
τ2 and τ4 to sensor s1 and the rest to sensor s2.

that the designer of a mobile sensor system can expect a ho-
mogeneous environment, we need to consider varying ter-
rain and its effects. In Section 3.4, we discussed how a
so-called terrain function can be used to discount the direc-
tional derivative generated by a certain assignment.

In the scenario in Figure 8, we have put an obstacle into
the environment. This obstacle has the property that when
a mobile sensor tries to cross it, the maximum speed of
the sensor reduces drastically. Such an obstacle represents,
for instance, rough terrain or a steep hill. In this example,
the speed reduces to 30% of the maximum speed it could
achieve in an ideal terrain. Close to the obstacle, the terrain
function discounts directional derivatives that lead into the
obstacle.

We notice that the G-tracker, which does not consider
terrain, leads the sensors straight into the obstacle, as shown
in Figure 9(a). As a result of this, the sensors lose touch
with the targets. In the case of the negotiation algorithm,
the sensors switch targets close to the border of the obsta-
cle, as shown in Figure 9(b). One reason for this is that of-
fers that give directions that lead into the obstacle get small
derivatives and are suppressed.

5 Conclusion and future work
In this paper, we have presented a game theoretic model

for assigning targets to mobile sensors. Sensor agents ne-
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Figure 6: This graph compares the total rewards of the
G-tracker and the N-tracker to each other. The relative
reward of the N-tracker compared to the G-tracker has
been plotted.
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Figure 7: In this scenario, three mobile sensors (s1, s2 and
s3) track four targets (τ1 to τ4).

gotiate by proposing offers of allocations that involve all
sensors. Each agent can evaluate each offer to decide its
individual utility.

We showed, in the experiments in Section 4, two interest-
ing properties of our negotiation algorithm: first, the nego-
tiation forces sensors to share targets, improving robustness
to the target tracking system (e.g., the scenario in Figure 7).
Secondly, considering directional derivatives allow sensors
to proactively reconsider target assignments, possibly im-
proving long-term information gain (e.g., as in Figures 5(b)
and 9(b)).

Further studies should investigate under what circum-
stances these properties imply advantages to the target
tracking system. With the support of these early results, we

Time = 0

τ 1
s1

2s

2τ

Figure 8: Initially, sensor s1 tracks target τ1 and sensor s2

target τ2. The rectangle represents an area which slows
down mobile sensors that enter it.



Time = 18

τ1

τ2 s2

s1

(a)

Time = 16

1

s2

s

τ2

τ1

(b)

Figure 9: (a) The G-tracker does not consider terrain and
leads the sensors into the obstacle, where they are slowed
down considerably. (b) The negotiation algorithm decides
to switch targets between the sensors instead.

anticipate interesting discoveries in our future exploration
of negotiation-based, distributed sensor management.

Some of the most salient, concrete directions for future
studies are:

• introduction of uncertainty (e.g., in target or sensor
state) into the negotiations,

• prediction of (near) future target and sensor states to
improve tracking performance,

• to explore and devise a policy to select negotiation
strategy depending on the state of the environment.
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