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Abstract. We explore the intricate interdependent relationship among
counting problems, considered from three frameworks for such problems:
Holant Problems, counting CSP and weighted H-colorings. We consider
these problems for general complex valued functions that take Boolean
inputs. We show that results from one framework can be used to derive
results in another, and this happens in both directions. Holographic re-
ductions discover an underlying unity, which is only revealed when these
counting problems are investigated in the complex domain C. We prove
three complexity dichotomy theorems, leading to a general theorem for
Holantc problems. This is the natural class of Holant problems where
one can assign constants 0 or 1. More specifically, given any signature
grid on G = (V, E) over a set F of symmetric functions, we completely
classify the complexity to be in P or #P-hard, according to F , ofX

σ:E→{0,1}

Y
v∈V

fv(σ |E(v)),

where fv ∈ F ∪ {0, 1} (0, 1 are the unary constant 0, 1 functions).
Not only is holographic reduction the main tool, but also the final di-
chotomy is naturally stated in the language of holographic transforma-
tions. The proof goes through another dichotomy theorem on Boolean
complex weighted #CSP.

1 Introduction

In order to study the complexity of counting problems, several interesting frame-
works have been proposed. One is called counting Constraint Satisfaction Prob-
lems (#CSP) [1–3, 13, 17]. Another well studied framework is called H-coloring
or Graph Homomorphism, which can be viewed as a special case of #CSP prob-
lems [4, 5, 14–16, 19, 20]. Recently, we proposed a new refined framework called
Holant Problems [8, 10] inspired by Valiant’s Holographic Algorithms [25, 26].
One reason such frameworks are interesting is because the language is expres-
sive enough so that they can express many natural counting problems, while
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specific enough so that we can prove dichotomy theorems (i.e., every problem in
the class is either in P or #P-hard) [11]. By a theorem of Ladner, if P 6= NP,
or P 6= P#P , then such a dichotomy for NP, or for #P, is false. Many natu-
ral counting problems can be expressed in all three frameworks. This includes
counting the number of vertex covers, the number of k-colorings in a graph, and
many others. However, some natural and important counting problems, such as
counting the number of perfect matchings in a graph, cannot be expressed as a
graph homomorphism function [18], but can be naturally expressed as a Holant
Problem. Both #CSP and Graph Homomorphisms can be viewed as special
cases of Holant Problems. The Holant framework of counting problems makes
a finer complexity classification. A rich mathematical structure is uncovered in
the Holant framework regarding the complexity of counting problems, which is
sometimes difficult even to state in #CSP. This is particularly true when we
apply holographic reductions [25, 26, 8].

We give a brief description of the Holant framework. 4 A signature grid Ω =
(G, F , π) is a tuple, where G = (V,E) is a graph, and π labels each v ∈ V with
a function fv ∈ F . We consider all edge assignments (in this paper 0-1 assign-
ments). An assignment σ for every e ∈ E gives an evaluation

∏
v∈V fv(σ |E(v)),

where E(v) denotes the incident edges of v, and σ |E(v) denotes the restriction
of σ to E(v). The counting problem on the instance Ω is to compute

HolantΩ =
∑

σ

∏
v∈V

fv(σ |E(v)).

For example, consider the Perfect Matching problem on G. This problem
corresponds to attaching the Exact-One function at every vertex of G, and
then consider all 0-1 edge assignments. In this case, HolantΩ counts the number
of perfect matchings. If we use the At-Most-One function at every vertex, then
we count all (not necessarily perfect) matchings. We use the notation Holant(F )
to denote the class of Holant problems where all functions are given by F .

To see that Holant is a more expressive framework, we show that #CSP can
be simulated by Holant. Represent an instance of a #CSP problem by a bipar-
tite graph where left hand side (LHS) are labeled by variables and right hand
side (RHS) are labeled by constraint functions. Now the signature grid Ω on
this bipartite graph is as follows: Every variable node on LHS is labeled with
an Equality function, every constraint node on RHS is labeled with the given
constraint. Then HolantΩ is exactly the answer to the counting CSP problem.
In effect, the Equality function on a node in LHS forces the incident edges
to take the same value; this effectively reduces to a vertex assignment on LHS
as in #CSP. We can show that #CSP is equivalent to Holant problems where
Equality functions of k variables, for arbitrary k (denoted by =k), are freely
and implicitly available as constraints. However, this process cannot be reversed
in general. While #CSP is the same as adding all =k to Holant, the effect of
4 The term Holant was first used by Valiant in [25]. It denotes a sum which is a special

case (corresponding to Perfect Matching) of HolantΩ in the definition here [8,
10]. The term Holant emphasizes its relationship with holographic transformations.
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making them freely available is non-trivial. From the lens of holographic trans-
formations, =3 is a full-fledged non-degenerate symmetric function of arity 3.

Starting from the Holant framework, rather than assuming Equality func-
tions are free, one can consider new classes of counting problems which are diffi-
cult to express as #CSP problems. One such class, called Holant∗ Problems [10],
is the class of Holant Problems where all unary functions are freely available. If
we allow only two special unary functions 0 and 1 as freely available, then we
obtain the family of counting problems called Holantc Problems, which is even
more appealing. This is the class of all Holant Problems (on Boolean variables)
where one can set any particular edge (variable) to 0 or 1 in an input graph.

Previously a dichotomy theorem was proved for Holant∗(F ), where F is any
set of complex-valued symmetric functions [10]. It was used to prove a dichotomy
theorem for #CSP in [10]. For Holantc(F ) we were able to prove a dichotomy
theorem valid only real-valued functions [10]. In this paper we manage to traverse
in the other direction, going from #CSP to Holant Problems. First we establish
a dichotomy theorem for a special Holant class. Second we prove a more gen-
eral dichotomy for bipartite Holant Problems. Finally by going through #CSP,
we prove a dichotomy theorem for complex-valued Holantc Problems. Now we
describe our results in more detail.

A symmetric function f : {0, 1}k → C will be written as [f0, f1, . . . , fk],
where fj is the value of f on inputs of Hamming weight j. Our first main re-
sult (in Section 3) is a dichotomy theorem for Holant(F ), where F contains a
single ternary function [x0, x1, x2, x3]. More generally, we can apply holographic
reductions to prove a dichotomy theorem for Holant([y0, y1, y2]|[x0, x1, x2, x3])
defined on 2-3 regular bipartite graphs. Here the notation indicates that every
vertex of degree 2 on LHS has label [y0, y1, y2] and every vertex of degree 3 on
RHS has label [x0, x1, x2, x3]. This is the foundation of the remaining two di-
chotomy results in this paper. Previously we proved a dichotomy theorem for
Holant([y0, y1, y2]|[x0, x1, x2, x3]), when all xi, yj take values in {0, 1} [8]. Kowal-
czyk extended this to {−1, 0, 1} in [21]. In [9], we gave a dichotomy theorem for
Holant([y0, y1, y2]|[1, 0, 0, 1]), where y0, y1, y3 take arbitrary real values. Finally
this last result was extended to arbitrary complex numbers [22]. Our result here
is built upon these results, especially [22].

Our second result (Section 4) is a dichotomy theorem, under a mild condi-
tion, for bipartite Holant problems Holant(F1|F2) (see Sec. 2 for definitions).
Under this mild condition, we first use holographic reductions to transform it to
Holant(F ′

1|F ′
2), where we transform some non-degenerate function [x0, x1, x2, x3]

∈ F2 to the Equality function (=3) = [1, 0, 0, 1] ∈ F ′
2. Then we prove that we

can “realize” the binary Equality function (=2) = [1, 0, 1] in the left side and
reduce the problem to #CSP(F ′

1 ∪ F ′
2). This is a new proof approach. Previ-

ously in [10], we reduced a #CSP problem to a Holant problem and obtained
results for #CSP. Here, we go the opposite way, using results for #CSP to prove
dichotomy theorems for Holant problems. This is made possible by our complete
dichotomy theorem for Boolean complex weighted #CSP [10]. We note that
proving this over C is crucial, as holographic reductions naturally go beyond R.
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We also note that our dichotomy theorem here does not require the functions in
F1 or F2 to be symmetric. This will be useful in the future.

Our third and main result, also the initial motivation of this work, is a di-
chotomy theorem for symmetric complex Holantc problems. This improves our
previous result in [10]. We made a conjecture in [10] about the dichotomy theo-
rem of Holantc for symmetric complex functions. It turns out that this conjecture
is not correct as stated. For example, Holantc([1, 0, i, 0]) is tractable (according to
our new theorem), but not included in the tractable cases by the conjecture. After
isolating these new tractable cases we prove everything else is #P-hard. Gener-
ally speaking, non-trivial and previously unknown tractable cases are what make
dichotomy theorems particularly interesting, but at the same time make them
more difficult to prove (especially for hardness proofs, which must “carve out”
exactly what’s left). The proof approach here is also different from that of [10].
In [10], the idea is to interpolate all unary functions and then use the results for
Holant∗ Problems. Here we first prove that we can realize some non-degenerate
ternary function, for which we can use the result of our first dichotomy theorem.
Then we use our second dichotomy theorem to further reduce the problem to
#CSP and obtain a dichotomy theorem for Holantc.

The study of Holant Problems is strongly influenced by the development of
holographic algorithms [25, 26, 7, 8]. Holographic reduction is a primary tech-
nique in the proof of these dichotomies, for both the tractability part and
the hardness part. More than that—and this seems to be the first instance—
holographic reduction even provides the correct language for the statements of
these dichotomies. Without using holographic reductions, it is not easy to even
fully describe what are the tractable cases in the dichotomy theorem. Another
interesting observation is that by employing holographic reductions, complex
numbers appear naturally and in an essential way. Even if one is only interested
in integer or real valued counting problems, in the complex domain C the picture
becomes whole. “It has been written that the shortest and best way between two
truths of the real domain often passes through the imaginary one.” —Jacques
Hadamard.

2 Preliminaries

Our functions take values in C by default. Strictly speaking complexity results
should be restricted to computable numbers in the Turing model; but it is more
convenient to express this over C. We say a problem is tractable if it is com-
putable in P. The framework of Holant Problems is defined for functions mapping
any [q]k → C for a finite q. Our results in this paper are for the Boolean case
q = 2.

Let F be a set of such functions. A signature grid Ω = (G, F , π) is a
tuple, where G = (V,E) is a graph, and π : V → F labels each v ∈ V
with a function fv ∈ F . The Holant problem on instance Ω is to compute
HolantΩ =

∑
σ:E→{0,1}

∏
v∈V fv(σ |E(v)), a sum over all 0-1 edge assignments, of

the products of the function evaluations at each vertex. Here fv(σ |E(v)) denotes
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the value of fv evaluated using the restriction of σ to the incident edges E(v) of
v. A function fv can be represented as a truth table. It will be more convenient
to denote it as a vector in C2deg(v)

, or a tensor in (C2)⊗ deg(v), when we perform
holographic tranformations. We also call it a signature. We denote by =k the
Equality signature of arity k. A symmetric function f on k Boolean variables
can be expressed by [f0, f1, . . . , fk], where fj is the value of f on inputs of Ham-
ming weight j. Thus, for example, 0 = [1, 0], 1 = [0, 1] and (=k) = [1, 0, . . . , 0, 1]
(with (k − 1) 0’s).

Definition 1. Given a set of signatures F , we define Holant(F ):
Input: A signature grid Ω = (G, F , π);
Output: HolantΩ.

We would like to characterize the complexity of Holant problems in terms of
its signature set F . Some special families of Holant problems have already been
widely studied. For example, if F contains all Equality signatures
{=1,=2,=3, . . .}, then this is exactly the weighted #CSP problem. In [10], we
also introduced the following two special families of Holant problems by assuming
some signatures are freely available.

Definition 2. Let U denote the set of all unary signatures. Then Holant∗(F ) =
Holant(F ∪U ).

Definition 3. For any set of signatures F , Holantc(F ) = Holant(F ∪{0,1}).

Replacing a signature f ∈ F by a constant multiple cf , where c 6= 0, does not
change the complexity of Holant(F ). It introduces a global factor to HolantΩ .

An important property of a signature is whether it is degenerate.

Definition 4. A signature is degenerate iff it is a tensor product of unary sig-
natures. In particular, a symmetric signature in F is degenerate iff it can be
expressed as λ[x, y]⊗k.

We use A to denote the set of functions which has the form χ[AX=0] ·
i
Pn

j=1〈αj ,X〉, where i =
√
−1, X = (x1, x2, . . . , xk, 1), A is matrix over F2, αj

is a vector over F2, and χ is a 0-1 indicator function such that χ[AX=0] is 1 iff
AX = 0.

We use P to denote the set of functions which can be expressed as a product
of unary functions, binary equality functions ([1, 0, 1]) and binary disequality
functions ([0, 1, 0]).

Theorem 1. [10] Suppose F is a set of functions mapping Boolean inputs to
complex numbers. If F ⊆ A or F ⊆ P, then #CSP(F ) is computable in
polynomial time. Otherwise, #CSP(F ) is #P-hard.

To introduce the idea of holographic reductions, it is convenient to consider
bipartite graphs. This is without loss of generality. For any general graph, we
can make it bipartite by adding an additional vertex on each edge, and giving
each new vertex the Equality function =2 on 2 inputs.
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We use Holant(G |R) to denote all counting problems, expressed as Holant
problems on bipartite graphs H = (U, V,E), where each signature for a vertex in
U or V is from G or R, respectively. An input instance for the bipartite Holant
problem is a bipartite signature grid and is denoted as Ω = (H,G |R, π). Signa-
tures in G are denoted by column vectors (or contravariant tensors); signatures
in R are denoted by row vectors (or covariant tensors).

One can perform (contravariant and covariant) tensor transformations on the
signatures. We will define a simple version of holographic reductions, which are
invertible. Suppose Holant(G |R) and Holant(G ′|R′) are two Holant problems
defined for the same family of graphs, and T ∈ GL2(C). We say that there
is an (invertible) holographic reduction from Holant(G |R) to Holant(G ′|R′), if
the contravariant transformation G′ = T⊗gG and the covariant transformation
R = R′T⊗r map G ∈ G to G′ ∈ G ′ and R ∈ R to R′ ∈ R′, and vice versa, where
G and R have arity g and r respectively. (Notice the reversal of directions when
the transformation T⊗n is applied. This is the meaning of contravariance and
covariance.) Suppose there is a holographic reduction from #G |R to #G ′|R′

mapping signature grid Ω to Ω′, then HolantΩ = HolantΩ′ . In particular, for
invertible holographic reductions from Holant(G |R) to Holant(G ′|R′), one prob-
lem is in P iff the other one is in P, and similarly one problem is #P-hard iff the
other one is also #P-hard.

In the study of Holant problems, we will often transfer between bipartite and
non-bipartite settings. When this does not cause confusion, we do not distinguish
signatures between column vectors (or contravariant tensors) and row vectors
(or covariant tensors). Whenever we write a transformation as T⊗nF or TF , we
view the signatures as column vectors (or contravariant tensors); whenever we
write a transformation as FT⊗n or FT , we view the signatures as row vectors
(or covariant tensors).

3 Dichotomy Theorem for Ternary Signatures

In this section, we consider the complexity of Holant([x0, x1, x2, x3]). It is triv-
ially tractable if [x0, x1, x2, x3] is degenerate, so in the following we always as-
sume that it is non-degenerate. Similar to that in [10], we classify the sequence
[x0, x1, x2, x3] into one of the following three categories (with the convention that
α0 = 1, and kαk−1 = 0 if k = 0, even when α = 0): (1) xk = α3−k

1 αk
2 + β3−k

1 βk
2 ,

where det
[

α1 β1
α2 β2

]
6= 0; (2) xk = Akαk−1 + Bαk, where A 6= 0; (3) xk =

A(3 − k)α2−k + Bα3−k, where A 6= 0. We call the first category as the generic
case, the second and third one as the double-root case.

For the generic case, we can apply a holographic reduction using T =[
α1 β1
α2 β2

]
, and have Holant([x0, x1, x2, x3]) ≡T Holant([y0, y1, y2]|[1, 0, 0, 1]), where

[y0, y1, y2] = [1, 0, 1]T⊗2. (We note that [x0, x1, x2, x3] = T⊗3[1, 0, 0, 1].) There-
fore we only need to give a dichotomy for Holant([y0, y1, y2]|[1, 0, 0, 1]), which
has been proved in [22]; we quote the theorem here.
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Theorem 2. ([22]) The problem Holant([y0, y1, y2]|[1, 0, 0, 1]) is #P-hard for all
y0, y1, y2 ∈ C except in the following cases, for which the problem is in P: (1)
y2
1 = y0y2; (2) y12

0 = y12
1 and y0y2 = −y2

1 ( y1 6= 0); (3) y1 = 0; and (4)
y0 = y2 = 0.

For the double-root case, we have the following lemma.

Lemma 1. Let xk = Akαk−1 + Bαk, where A 6= 0 and k = 0, 1, 2, 3. Unless
α2 = −1, Holant([x0, x1, x2, x3]) is #P-hard. On the other hand, if α = ±i, then
the problem is in P.

Proof. If α = ±i, the signature [x0, x1, x2, x3] satisfies the recurrence relation
xk+2 = αxk+1 + xk, where k = 0, 1. This is a generalized Fibonacci signature
(see [8]). Thus it is in P by holographic algorithms [8] using Fibonacci gates.

Now we assume that α 6= ±i. We first apply an orthogonal holographic trans-
formation. The crucial observation is that we can view Holant([x0, x1, x2, x3]) as
the bipartite Holant([1, 0, 1]|[x0, x1, x2, x3]) and an orthogonal transformation
T ∈ O2(C) keeps (=2) = [1, 0, 1] invariant: [1, 0, 1]T⊗2 = [1, 0, 1]. By a suitable
orthogonal transformation T , we can transform [x0, x1, x2, x3] to [v, 1, 0, 0] for
some v ∈ C, up to a scalar. (Details are in the full paper [6].) So the complexity
of Holant([x0, x1, x2, x3]) is the same as Holant([v, 1, 0, 0]).

Next we prove that Holant([v, 1, 0, 0]) is #P-hard for all v ∈ C. First, for
v = 0, Holant([0, 1, 0, 0]) is #P-hard, because it is the problem of counting all
perfect matchings on 3-regular graphs [12]. Second, let v 6= 0. We can realize
[v3 +3v, v2 +1, v, 1] by connecting three [v, 1, 0, 0]’s as a triangle, so it is enough
to prove that Holant([v3+3v, v2+1, v, 1]) is #P-hard. In tensor product notation

this signature is 1
2

([
v + 1

1

]⊗3

+
[

v − 1
1

]⊗3
)

. Then

Holant([v3 + 3v, v2 + 1, v, 1]) ≡T Holant([1, 0, 1]|[v3 + 3v, v2 + 1, v, 1])
≡T Holant([v2 + 2v + 2, v2, v2 − 2v + 2]|[1, 0, 0, 1])

where the second step is a holographic reduction using
[

v + 1 v − 1
1 1

]
. We can apply

Theorem 2 to Holant([v2 + 2v + 2, v2, v2 − 2v + 2]|[1, 0, 0, 1]). Checking against
the four exceptions we find that they are all impossible. Therefore Holant([v3 +
3v, v2 + 1, v, 1]) is #P-hard, and so is Holant([v, 1, 0, 0]) for all v ∈ C.

By Theorem 2 and Lemma 1, we have a complete dichotomy theorem for
Holant([x0, x1, x2, x3]) and for bipartite Holant([y0, y1, y2]|[x0, x1, x2, x3]).

Theorem 3. Holant([x0, x1, x2, x3]) is #P-hard unless [x0, x1, x2, x3] satisfies
one of the following conditions, in which case the problem is in P:

1. [x0, x1, x2, x3] is degenerate;
2. There is a 2 × 2 matrix T such that [x0, x1, x2, x3] = T⊗3[1, 0, 0, 1] and

[1, 0, 1]T⊗2 is in A ∪P;
3. For α ∈ {2i,−2i}, x2 + αx1 − x0 = 0 and x3 + αx2 − x1 = 0.
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Theorem 4. Holant([y0, y1, y2]|[x0, x1, x2, x3]) is #P-hard unless [x0, x1, x2, x3]
and [y0, y1, y2] satisfy one of the following conditions, in which case the problem
is in P:

1. [x0, x1, x2, x3] is degenerate;
2. There is a 2 × 2 matrix T such that [x0, x1, x2, x3] = T⊗3[1, 0, 0, 1] and

[y0, y1, y2]T⊗2 is in A ∪P;
3. There is a 2 × 2 matrix T such that [x0, x1, x2, x3] = T⊗3[1, 1, 0, 0] and

[y0, y1, y2]T⊗2 is of form [0, ∗, ∗];
4. There is a 2 × 2 matrix T such that [x0, x1, x2, x3] = T⊗3[0, 0, 1, 1] and

[y0, y1, y2]T⊗2 is of form [∗, ∗, 0].

4 Reductions between Holant and #CSP

In this section, we extend the dichotomies in Section 3 for a single ternary signa-
ture to a set of signatures. We will give a dichotomy for Holant([x0, x1, x2, x3]∪
F ), or more generally for Holant([y0, y1, y2] ∪ G1|[x0, x1, x2, x3] ∪ G2), where
[y0, y1, y2] and [x0, x1, x2, x3] are non-degenerate. In this section, we focus on
the generic case of [x0, x1, x2, x3], and the double root case will be handled in
the next section in Lemma 3. For the generic case, we can apply a holographic re-
duction to transform [x0, x1, x2, x3] to [1, 0, 0, 1]. Therefore we only need to give a
dichotomy for Holant problems of the form Holant([y0, y1, y2]∪G1|[1, 0, 0, 1]∪G2),
where [y0, y1, y2] is non-degenerate. We make one more observation: for any
T ∈ T3 ,

{[
1 0
0 1

]
,
[

1 0
0 ω

]
,
[

1 0
0 ω2

]}
, where ω = ω3 = e2πi/3, we have

Holant([y0, y1, y2]|[1, 0, 0, 1] ∪F ) ≡T Holant([y0, y1, y2]T⊗2|[1, 0, 0, 1] ∪ T−1F ).

As a result, we can normalize [y0, y1, y2] by a holographic reduction with any
T ∈ T3. In particular, we call a symmetric binary signature [y0, y1, y2] normalized
if y0 = 0 or it is not the case that y2 is y0 times a t-th primitive root of unity,
and t = 3t′ where gcd(t′, 3) = 1. We can always normalize [y0, y1, y2] by applying
a transformation

[
1 0

0 ωk

]
∈ T3. So in the following, we only deal with normalized

[y0, y1, y2]. In one case, we also need to normalize a unary signature [x0, x1],
namely x0 = 0 or x1 is not a multiple of x0 by a t-th primitive root of unity,
and t = 3t′ where gcd(t′, 3) = 1. Again we can normalize the unary signature by
a suitable T ∈ T3.

Theorem 5. Let [y0, y1, y2] be a normalized and non-degenerate signature. And
in the case of y0 = y2 = 0, we further assume that G1 contains a unary signature
[a, b], which is normalized and ab 6= 0. Then

Holant([y0, y1, y2] ∪ G1|[1, 0, 0, 1] ∪ G2) ≡T #CSP([y0, y1, y2] ∪ G1 ∪ G2).

Thus, Holant([y0, y1, y2]∪G1|[1, 0, 0, 1]∪G2) is #P-hard unless [y0, y1, y2]∪G1 ∪
G2 ⊆ P or [y0, y1, y2] ∪ G1 ∪ G2 ⊆ A , in which cases the problem is in P.
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This dichotomy is an important reduction step in the proof of our dichotomy
theorem for Holantc. It is also interesting in its own right as a connection between
Holant and #CSP. The assumption on signature normalization in the statement
of the theorem is without loss of generality. For a non-normalized signature,
we can first normalize it and then apply the dichotomy criterion. (Note that
when y0 = y2 = 0 the normalization on [a, b] keeps [y0, y1, y2] normalized.) The
additional assumption of the existence of a unary signature [a, b] with ab 6= 0
circumvents a technical difficulty, and finds a circuitous route to the proof of our
main dichotomy theorem for Holantc. For Holantc, the needed unary signature
will be produced from [1, 0] and [0, 1]. We also note that we do not require the
signatures in G1 and G2 to be symmetric.

One direction in Theorem 5, from Holant to #CSP, is straightforward. Thus
our main claim is a reduction from #CSP to these bipartite Holant problems.
Start with #CSP([y0, y1, y2] ∪ G1 ∪ G2) ≡T Holant([y0, y1, y2] ∪ G1 ∪ G2|{=k:
k ≥ 1}). The approach is to construct the binary equality [1, 0, 1] = (=2) in
LHS in the Holant problem. As soon as we have [1, 0, 1] in LHS, together with
[1, 0, 0, 1] = (=3) in RHS, we get equality gates of all arities (=k) in RHS. Then
with the help of [1, 0, 1] in LHS we can transfer G2 to LHS.

If the problem Holant([y0, y1, y2]|[1, 0, 0, 1]) is already #P-hard, then for
any G1 and G2, it is #P-hard. So we only need to consider the cases, where
Holant([y0, y1, y2]|[1, 0, 0, 1]) is not #P-hard. For this, we again use Theorem 2
from [22]. The first tractable case y2

1 = y0y2 is degenerate, which does not apply
here. The remaining three tractable cases are proved separately and the proofs
can be found in the full paper [6].

5 Dichotomy Theorem for Complex Holantc Problems

In this section, we prove our main result, a dichotomy theorem for Holantc prob-
lems with complex valued symmetric signatures over Boolean variables, which
is stated as Theorem 6. The proof crucially uses the dichotomies proved in the
previous two sections. We first prove in Lemma 2 that we can always realize a
non-degenerate ternary signature except in some trivial cases. With this non-
degenerate ternary signature, we can immediately prove #P-hardness if it is not
of one of the tractable cases in Theorem 3. For tractable ternary signatures, we
use Theorem 5 to extend the dichotomy theorem to the whole signature set. In
Theorem 5, we only considered the generic case of the ternary function. The
double-root case is handled here in Lemma 3.

Lemma 2. Given any set of symmetric signatures F which contains [1, 0] and
[0, 1], we can construct a non-degenerate symmetric ternary signature X =
[x0, x1, x2, x3], except in the following two trivial cases:

1. Any non-degenerate signature in F is of arity at most 2;
2. In F , all unary signatures are of form [x, 0] or [0, x]; all binary signatures

are of form [x, 0, y] or [0, x, 0]; and all signatures of arity greater than 2 are
of form [x, 0, . . . , 0, y].
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Proof (Sketch). Suppose Case 1 does not hold, and let X , [x0, x1, . . . , xm] ∈ F
be a non-degenerate signature of arity at least 3. It must be that all ternary sub-
signatures are degenerate, otherwise we are done. Then we can show that X must
be of the form [x0, 0, . . . , 0, xm], where x0xm 6= 0. If we have a unary signature,
or a unary sub-signature of a binary signature, of the form [a, b] (ab 6= 0), we
can connect this signature to m−3 dangling edges of X to get a non-degenerate
ternary signature [x, 0, 0, y], and we are done. Otherwise, we are in Case 2.

We next consider the double root case for a non-degenerate X = [x0, x1, x2, x3].
By Lemma 1, Holant(X) is already #P-hard unless the double eigenvalue is i or
−i. Then, xk+2 + αxk+1 − xk = 0 for k = 0, 1, where α = ±2i.

Lemma 3. Let X = [x0, x1, x2, x3] be a non-degenerate complex signature sat-
isfying xk+2 + αxk+1 − xk = 0 for k = 0, 1, where α = ±2i. Let Y = [y0, y1, y2]
be a non-degenerate binary signature. Then Holant(Y |X) is #P-hard unless
y2 + αy1 − y0 = 0 (in which case Holant({X, Y }) is in P by Fibonacci gates).

Proof (Sketch). We prove this result for α = −2i. The other case is similar.
We have X = T⊗3[1, 1, 0, 0]T, where T =

[
1 B−1

3
i A + B−1

3 i

]
, A 6= 0. By express-

ing
[

y0 y1
y1 y2

]
= T T

0 T0, which is always possible for some non-singular T0 =
[

a c
b d

]
,

we have Y = [1, 0, 1]T⊗2
0 . Thus we apply a holographic reduction and have

Holant(Y |X) ≡T Holant([1, 0, 1]|(T0T )⊗3[1, 1, 0, 0]T). Next, we try to use an or-
thogonal matrix to transform T0T to be upper-triangular. We show that we
can do this, except for the tractable cases. This leads to a reduction from
Holant([v, 1, 0, 0]) to Holant([1, 0, 1]|(T0T )⊗3[1, 1, 0, 0]T) and therefore to
Holant(Y |X), for some v. By Lemma 1, Holant([v, 1, 0, 0]) is #P-hard.

Theorem 6. Let F be a set of complex symmetric signatures. Holantc(F ) is
#P-hard unless F satisfies one of the following conditions, in which case it is
tractable:

1. Holant∗(F ) is tractable (for which we have an effective dichotomy in [10]);
2. There exists a T ∈ T such that F ⊆ TA , where

T , {T | [1, 0, 1]T⊗2, [1, 0]T, [0, 1]T ∈ A }
Proof. First of all, if F is an exceptional case of Lemma 2, we know that
Holant∗(F ) is tractable and we are done. Now we can assume that we can
construct a non-degenerate symmetric ternary signature X = [x0, x1, x2, x3]
and the problem is equivalent to Holantc(F ∪ {X}). As discussed in Section
3, there are three categories for X and we only need to consider the first two:
(1) xk = α3−k

1 αk
2 + β3−k

1 βk
2 ; (2) xk = Akαk−1 + Bαk, where A 6= 0.

Case 1: xk = α3−k
1 αk

2 + β3−k
1 βk

2 . In this case, X = T⊗3[1, 0, 0, 1]T , where
T =

[
α1 β1
α2 β2

]
. (Note that we can replace T by T

[
1 0

0 ωj

]
, 0 ≤ j ≤ 2, and X =

T⊗3[1, 0, 0, 1]T still holds.) So we have the following reduction chain,

Holantc(F ) ≡T Holantc(F ∪ {X}) ≡T Holant(F ∪ {X, [1, 0], [0, 1]})
≡T Holant({[1, 0, 1], [1, 0], [0, 1]}|F ∪ {X})
≡T Holant({[1, 0, 1]T⊗2, [1, 0]T, [0, 1]T}|[1, 0, 0, 1] ∪ T−1F ).
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Since [1, 0, 1]T⊗2 is a non-degenerate binary signature, we can apply Theorem
5. (We replace T by T

[
1 0

0 ωj

]
, 0 ≤ j ≤ 2, to normalize [1, 0, 1]T⊗2, if needed.)

We need to verify is that when [1, 0, 1]T⊗2 = [α2
1 + α2

2, α1β1 + α2β2, β
2
1 + β2

2 ]
is of the form [0, ∗, 0], at least one of [1, 0]T = [α1, β1] or [0, 1]T = [α2, β2]
has both entries non-zero. If not, we would have α1β1 = 0 and α2β2 = 0,
which implies that [1, 0, 1]T⊗2 = [0, 0, 0], a contradiction. (We may again re-
place T by T

[
1 0

0 ωj

]
, 0 ≤ j ≤ 2, to normalize this unary, if needed, which

does not conflict with the normalization of [1, 0, 1]T⊗2.) Therefore, by Theo-
rem 5, we know that the problem is #P-hard unless [1, 0, 1]T⊗2 ∪ T−1F ⊆ P
or {[1, 0, 1]T⊗2, [1, 0]T, [0, 1]T} ∪ T−1F ⊆ A . In the first case, Holant∗(F ) is
tractable; and the second case is equivalent to having T ∈ T satisfying F ⊆ TA .
Case 2: xk = Akαk−1 +Bαk, where A 6= 0. In this case, if α 6= ±i, the problem
is #P-hard by Lemma 1 and we are done. Now we consider the case α = i (the
case α = −i is similar). Consider the following Equation

zk+2 − 2izk+1 − zk = 0. (1)

We note that X = [x0, x1, x2, x3] satisfies this equation for k = 0, 1. If all non-
degenerate signatures Z = [z0, z1, . . . , zm] in F with arity m ≥ 2 fulfill
Condition: Z satisfies Equation (1) for k = 0, 1, . . . ,m− 2
then this is the second tractable case in the Holant∗ dichotomy theorem in [10]
and we are done. So suppose this is not the case, and Z = [z0, z1, . . . , zm] ∈ F , for
some m ≥ 2, is a non-degenerate signature that does not satisfy this Condition.
By Lemma 3, if any non-degenerate sub-signature [zk, zk+1, zk+2] does not satisfy
Equation (1), then, together with X which does satisfy (1), we know that the
problem is #P-hard and we are done. So we assume every non-degenerate sub-
signature [zk, zk+1, zk+2] of Z satisfies (1). In particular m ≥ 3, and there exists
some binary sub-signature of Z that is degenerate and does not satisfy (1).

If all binary sub-signatures of Z are degenerate (but Z itself is not), we
claim that Z has the form [z0, 0, . . . , 0, zm], where z0zm 6= 0. Then we can pro-
duce some [a, 0, 0, b], ab 6= 0, and reduce to Case 1. Otherwise, we can find a
ternary sub-signature [zk, zk+1, zk+2, zk+3] (or its reversal) where [zk, zk+1, zk+2]
is degenerate and [zk+1, zk+2, zk+3] is non-degenerate and thus satisfies −zk+1−
2izk+2 + zk+3 = 0. Then either we have got an instance of Case 1 or we could
prove #P-hardness directly by Lemma 1. (Details are in the full paper [6].)
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