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Abstract

We prove that for sufficiently large K, it is NP-hard to color K-colorable graphs

with less than 2Ω(K1/3) colors. This improves the previous result of K versus

K
1
25

log K in Khot [21].

1 Introduction

A vertex coloring of a graph G(V,E) is an assignment of colors to its vertices such that no
two adjacent vertices receive the same color. The minimum number of colors needed for
such a coloring is called the chromatic number of G, denoted by χ(G). As a classical com-
binatorial optimization problem, graph coloring is closely related to other problems such
as finding maximum independent sets and probabilistically checkable proofs (PCPs) with
certain special properties. In addition to being an important theoretical challenge, graph
coloring also has a number of applications such as scheduling and register allocation.

It is known that determining the chromatic number of a graph exactly is NP-hard
[13]. However, in many applications, it suffices to find a good enough approximation.
In other words, given a K-colorable graph, we would like to color it with as few color
as possible. Wigderson [27] gave an algorithm using O(n1−1/(K−1)) colors. This was
improved by Berger and Rompel [5] to O

(
(n/log n)1−1/(K−1)

)
colors. Karger, Motwani

and Sudan [19] used semi-definite programming to achieve Õ(n1−3/(K+1)), which was
adapted in Blum and Karger [6] to an algorithm that colors a 3-colorable graph with
Õ(n3/14) colors. For 3-colorable graphs, the best known algorithm is by Kawarabayashi
and Thorup [18] which uses O(n0.2038) colors, based on results by Arora, Chlamtac and
Charikar [2] and Chlamtac [8].

There have been many works on the hardness side as well. It is known that coloring
3-colorable graph with 4 colors is NP-hard, and for general K-colorable graph it is NP-
hard to color with K + 2bK3 c − 1 colors [20, 14]. For sufficiently large K, the best
known gap is by Khot [21] which proved that it is NP-hard to color a K-colorable graph

with K
1
25 logK colors. Assuming a variant of Khot’s 2-to-1 Conjecture, Dinur, Mossel and

Regev [11] proved that it is NP-hard to K ′-color a K-colorable graph for any 3 ≤ K < K ′.
Guruswami and Sinop [15] proved that assuming the 2-to-1 Conjecture, it is NP-hard to
find an independent set with more than O

(
n

∆1−c/(k−1)

)
vertices in a k-colorable graph of

maximum degree ∆ for some absolute constant c ≤ 4.
Khot’s hardness result [21] can be derived either using PCPs from H̊astad and Khot

[17] or Samorodnitsky and Trevisan [24]. We can view the results in both works as
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showing approximation resistance for a family of Boolean predicates that has very few
accepting inputs — it is NP-hard to approximate Max CSP with those predicates bet-
ter than just picking random assignments. For each integer k > 0, the approximation
resistant predicates we get from [17] and [24] has k variables (and thus 2k possible as-

signments) but only has 2O(
√
k) accepting assignments. The predicate from H̊astad and

Khot [17] is approximation resistant even on satisfiable instances — or have perfect com-
pleteness in PCP language — while the predicate from Samorodnitsky and Trevisan [24]
is not. It is noted in Khot [21] that having perfect completeness is not necessary but
makes the reduction for coloring easier.

In a recent breakthrough, Chan [7] proved approximation resistance for a family of
predicates on k variables but only has k + 1 accepting assignments whenever k is of the
form k = 2r−1. Previously, approximation resistance of those predicates are only known
assuming the Unique Games Conjecture, proved by Samorodnitsky and Trevisan [25].
Hast [16] proved that predicates on k variables having at most 2bk/2c + 1 (= k in the
current setting) accepting inputs are not approximation resistant, thus these results are
almost tight.

In [7], Chan also showed that for any K ≥ 3, there is ν = o(1) such that given a graph
with an induced K-colorable subgraph of fractional size 1 − ν, it is NP-hard to find an
independent set of fractional size 1/2K/2 +ν. Although this gives a larger gap than Khot
[21], the result lacks “perfect completeness” and thus is not comparable with Khot [21].
We refer to [10, 22, 7] for additional discussions on Almost-Coloring.

In this paper, we show improved hardness of approximating chromatic number using
the above results.

Theorem 1. For all sufficiently large K, it is NP-hard to color a K-colorable graph with

2Ω(K1/3) colors. Moreover, this hardness result holds for graphs that have degree bounded

by O(K2K
1/3

).

Stated in terms of degree, Theorem 1 says that there exists some constant c, such
that for all large enough ∆, it is NP-hard to color a (log ∆)3-colorable graph of maximum
degree bounded by ∆ with O (∆c) colors.

2 Preliminaries

In this section we review the basics of Label Cover and PCPs and describe Chan’s im-
proved PCP construction.

Let (U, V,E, L,R,Π) be an instance of Label Cover, where R = dL for some constant
d, the tuple (U, V,E) is a bipartite graph, vertices in U are assigned labels from [L], and
vertices in V are assigned labels from [R]. Each edge e = (u, v) is associated with a
d-to-1 mapping πe : [R] → [L]. Given a labeling A : U → [L], V → [R], we say that the
constraint on e is satisfied if πe(A(v)) = A(u). The value of a labeling is the fraction of
edges that are satisfied, and the value of a Label Cover instance is the maximum value
over all possible labelings of its vertices. The following theorem combines the celebrated
PCP theorem [3, 4] with Raz’s parallel repetition theorem [23] and shows hardness of
Label Cover.

Theorem 2. For any constant 0 < σ < 1, there are d, L ≤ poly(1/σ) such that the
problem of deciding satisfiability of a 3-SAT instance with n variables can be Karp-reduced
in poly(n) time to the problem of deciding whether a Label Cover instance of size poly(n)
has value 1 or at most σ. The graph in Label Cover is a bi-regular bipartite graph with
left- and right-degrees poly(1/σ).
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As is the case with many inapproximability results, the above Label Cover will be
the starting point of our reduction. Formally, let P : {−1, 1}k → {−1, 1} be a Boolean
predicate of arity k, where we follow the convention of having −1 as “True” and 1
as “False”. In a Max-P problem, we are given an instance on n Boolean variables
x1, · · · , xn with m clauses. All clauses have form P (l1, · · · , lk), where each literal li
is either a variable or its negation, and the variable of the literals are distinct. The
goal of the Max-P problem is to find an assignment to x1, · · · , xn that maximizes the
number of clauses satisfied by the assignment. The reduction from Label Cover to Max-P
typically translates labelings for u ∈ U and v ∈ V to 2|L| and 2|R| Boolean variables,
respectively. These variables are viewed as functions fu : {−1, 1}|L| → {−1, 1} and
gv : {−1, 1}|R| → {−1, 1}. We require that these functions are folded, that is, for any

x ∈ {−1, 1}|L|, y ∈ {−1, 1}|R|, fu(−x) = −fu(x) and gv(−y) = −gv(y). For each pair
of queries (x,−x), we select one of them. If x is selected, then when f(−x) is needed we
return −f(x) instead. Hence in the actual reduction we only use 2|L|−1 Boolean variables
for each u ∈ U and 2|R|−1 variables for each v ∈ V . This is also why we need to allow
negated literals in the CSP instances. In a correct proof for a satisfiable Label-Cover
instance, the functions are long codes for the corresponding labelings of u and v, that is,
having fu(x) = xσU (u), and gv(y) = yσV (v).

Now we describe the clauses in Max-P . For an edge (u, v) in the Label-Cover, we
sample queries

(x(1), · · · , x(m), y(m+1), · · · , y(k))

according to some carefully chosen test distribution T . The distribution T has the prop-
erty that for any l ∈ L and r ∈ R such that π(u,v)(r) = l, the predicate P accepts

(fu(x
(1)
l ), · · · , fu(x

(m)
l ), gv(y

(m+1)
r ), · · · , gv(y(m+1)

r )) with probability 1 (or 1−ε for some
constant ε if we are considering non-perfect completeness). One can verify that if the
Label Cover instance has value 1 and the test distribution T satisfies the above prop-
erty, then any correct proof of a correct labeling has the required completeness. In the
soundness analysis, we are given functions fu and gv that achieves non-trivial accep-
tance probability in the above test, and we need to decode those functions and obtain
non-trivial labelings of the original Label Cover instance.

In [7], Chan developed a new way of constructing efficient PCPs and proved that the
following Hadamard predicate HK : {−1, 1}K → {−1, 1} is approximation resistant. For
K = 2r − 1, the predicate HK is on variables {xS}∅6=S⊆[r], defined as

HK(x) =

{
−1 ∀S ⊆ [k], |S| > 1, xS =

∏
i∈S x{i}

1 otherwise.

This predicate has K+1 accepting assignments. Samorodnitsky and Trevisan [25] showed
that HK is approximation resistance assuming the Unique Games Conjecture — a conjec-
ture stating that finding an approximately optimal solution for a certain special kind of
Label Cover is NP-hard. Using his new technique, Chan proved that this is true assuming
only P 6= NP .

The main idea in Chan’s reduction is to consider a direct sum of PCPs. We now
sample K edges and run K independent copies of the above test. In the i-th PCP, the
i-th query is a uniform random string from {−1, 1}|L| and all other queries are sampled
from {−1, 1}|R| as described below. In a correct proof, the strategies are expected to be
products of long codes encoding the labeling of the vertices.

We now formally define the PCP and how queries are sampled. In the following
description, we identify integers from [K] and non-empty subsets of [r] in some canonical
way. First we describe the test distribution for a single PCP, indexed by non-empty sets
∅ 6= S ⊆ [r].
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Definition 3. Let eS be an edge and π be the constraint on e. Denote the set of possible
queries to the T -th position by QT , where

QT =

{
{−1, 1}|L| T = S
{−1, 1}|R| T 6= S.

The test distribution TS,eS is a distribution on
∏
T⊆[r]QT . To sample query (qT )T⊆[r]

from TS,eS , first sample qS from {−1, 1}|L| uniformly at random. Then, for each i ∈ [R],
let {qT,i}T 6=S be a uniformly random accepting assignment of HK , conditioned on the S-th
bit being equal to qS,π(i). Finally, independently for each bit, we add noise by resampling
from the uniform distribution on {−1, 1} with probability η.

The final test distribution in the PCP is a product of the above distribution.

Definition 4. Let (U, V,E, L,R,Π) be a label cover instance. Define Vi = V i−1 × U ×
V K−i for i ∈ [K]. For each v ∈ Vi, the proof contains function fv :

(
{−1, 1}R

)i−1 ×
{−1, 1}L ×

(
{−1, 1}R

)K−i → {−1, 1}. The verifier checks the proof as follows:

1. Sample independently K = 2r − 1 uniformly random edges {eS}∅6=S⊆[r]. Denote
eS = (uS , vS).

2. Sample queries {qi}Ki=1 from distribution
∏
∅6=T⊆[r] TT,eT .

3. Let vi = (v1, · · · , vi−1, ui, vi+1, · · · , vK). Accept if HK(fv1
(q1), · · · , fvK

(qK)) =
−1.

In a correct proof, the function fv is the product of long codes encoding the labeling
of each vertex in v.

Remark. As in the ordinary case, we require that the functions fv are folded in the
following sense — for any j ∈ [K], query {qj,i}i∈[K] and i0 ∈ [K] we have

fv(qj,1, · · · ,−qj,i0 , · · · ,qj,K)

= − fv(qj,1, · · · ,qj,i0 , · · · ,qj,K).

Theorem E.1 along with Theorem A.1, 6.9 and C.2 of Chan [7] shows completeness
and soundness of the above reduction and we summarize in the following theorem.

Theorem 5. Fix some small η, δ > 0. Let σ be the soundness of Label Cover, satisfying
δ = poly(K/η) · σΩ(1). Given a Label Cover instance LCL,dL, we have the following:

1. If LCL,dL has value 1, the above verifier accepts a correct proof with probability at
least 1−K2η.

2. If LCL,dL has value at most σ, then given any proof the verifier accepts with prob-
ability at most (K + 1)/2K + 2δ.

Let ε > 0 be some small constant. In the rest of the paper, let δ = ε · 2−K , and
η = ε/K2. By Theorem 5 of Chan, we require the soundness of Label Cover to be
σ = (δ/poly(K/η))O(1) = 2−Ω(K). This means that the size of the label L = poly(1/σ) =
exp(Θ(K)).
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3 Hardness of Approximating Chromatic Number

In this section, we prove Theorem 1 — for sufficiently large K, it is NP-hard to color a

K-colorable graph with less than 2Ω(K1/3) colors. For convenience of notation, we in fact
prove a gap of O(K3) versus 2Ω(K).

The overall idea is similar to that in Khot [21]. We start by describing the FGLSS
graph [12] of the PCP as described in Definition 4. The vertices in the FGLSS graph are
function queries and corresponding accepting configurations, denoted as (fv,q, z). The
weight of the vertex is the probability that query (fv,q) is picked. The total weight of
the graph is therefore K + 1, the number of accepting assignments of HK . Two vertices
are connected if they are clearly inconsistent (returning different answers for the same
query to the same function). An independent set in the graph corresponds to a strategy
/ set of functions, and its weight is the acceptance probability of such strategy. Note
that if the maximum weight independent set of the FGLSS graph has weight w, then we
need at least (K + 1)/w colors to color the whole graph since vertices having the same
color must form an independent set.

To use the FGLSS graph for coloring results, we also need to show that if a PCP
has acceptance probability 1− ε, we can color the FGLSS graph with a small number of
colors. Note that in this case, we know that there is an independent set of weight 1− ε
in the FGLSS graph, corresponding to a correct proof. Khot’s idea in [21] is to modify
the definition of the PCP so that the correct proofs are parameterized by some global
parameter α ∈ {0, 1}t. This gives us 2t different correct proofs and thus 2t independent
sets of weight 1− ε, and by choosing the right t, we expect those independent sets cover
most of the FGLSS graph of the modified PCP and thus gives a coloring of at most 2t

colors.
Formally, we modify Definition 4 so that the functions in the proof become fvi :(
{−1, 1}R·2t

)i−1

× {−1, 1}L·2t ×
(
{−1, 1}R·2t

)K−i
→ {−1, 1}. Alternatively, we can

think of this as modifying Label Cover by appending a t-bit binary string to all the labels
and defining the new projection in the Label Cover instance as π′e(r ◦ α) = πe(r) ◦ α for
r ∈ R and α ∈ {0, 1}t, where “◦” denotes string concatenation. The value of this new
Label Cover instance is exactly the same as the original setting. Consider the FGLSS
graph in this new setting. Soundness is straightforward. If the new proof makes the
verifier accept with probability at least (K + 1)/2K + 2δ, then by Theorem 5, the value
of the new Label Cover is at least σ and hence the original instance also has value at
least σ.

Now let us consider the case of completeness. If the original Label Cover instance has
value 1, then extending a valid labeling with any α ∈ {0, 1}t gives us a valid labeling for
the modified instance, which corresponds to an independent set of weight at least 1−ε in
the modified FGLSS graph. We need to show that the 2t independent sets corresponding
to different α ∈ {0, 1}t cover almost all of the FGLSS graph of the modified PCP. In fact,
we can efficiently identify a small fraction of the vertices that contain all vertices that
are not covered by any independent sets of the above form and remove them from the
FGLSS graph.

To this end, we follow Khot’s notation and introduce the following definition charac-
terizing whether we can cover certain vertex with independent sets.

Definition 6. Consider any K tuples of labelings l = {(li, ri)}Ki=1, where li ∈ [L], ri ∈ [R]
for all i ∈ [K]. Define the i-th mixed labeling mi(l) = (r1, · · · , ri−1, li, ri+1, · · · , rK).
Let fi,l be the product of long codes encoding the labelings in mi. Denote by lα :=
{(li ◦ α, ri ◦ α)}Ki=1 the labelings extended by α. Define fαi,l similarly.

A set of queries q = (q1, · · · , qK) is good if for any K tuples of labelings l and any
accepting assignment z = (z1, · · · , zK) of the Hadamard predicate, there exists a global
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extension α, such that fαi,l(qi) = zi for all i ∈ [K].

To verify if a set of queries is good, we only need to check all K tuples of labelings
and all accepting assignments of the Hadamard predicate HK . Those are all constants
depending only on K (and ε). The following lemma shows that the fraction of bad queries
is small.

Lemma 7. Let t be such that 2t = C ·K3 for some large constant C. For large enough
K, at most a weighted fraction of exp(−O(K)) of the queries is not good.

Before proving the lemma, let us see how it leads to our main theorem.
Remove the vertices in the FGLSS graph that correspond to queries that are not good.

By Lemma 7, the fraction of vertices removed is bounded by exp(−O(K)). In the sound-
ness case coloring the FGLSS graph still needs at least (K+1)(1− exp(−O(K)))/2−K =
2Ω(K) colors. In the completeness case, the Label Cover instance has value 1. Fix a
labeling that satisfies all the edges. For a vertex (fv,q,x) in the modified FGLSS graph,
let lv be the set of K tuples of labelings of the sampled vertices. Each α ∈ {0, 1}t is
associated with an independent set consisting of vertices of the form (fv,q, z), where
zi = fαi,lv(qi) for all i ∈ [K].

Consider any vertex (fv,q,x) in the modified FGLSS graph. We know that q is good
so by definition there exists α0 ∈ {0, 1}t such that fα0

i,lv
(qi) = xi for all i ∈ [K]. Hence,

it is covered by the independent set associated with α0. Therefore the modified FGLSS
graph can be colored with 2t = O(K3) colors.

Proof of Lemma 7. For query q, let Q(q) be the event that q is not good in the sense of
Definition 6: there exists some labeling l and some accepting assignment z, such that for
any α, there exists i ∈ [K], fαi,l(qi) 6= zi. It suffices to bound Prq [Q(q)].

Fix some K tuples of labeling l of the label cover instance and some accepting assign-
ment z. Consider α ∈ {0, 1}t. Over the queries sampled, the probability that fαi,l(qi) = zi
for all i ∈ [K] is 1/(K + 1) before adding noise. To estimate the affect of noise, note
that there are K functions, each being a product of K long codes, therefore the answers
{fαi,l(qi)}i∈[K] depends on K2 bits. If none of these K2 bits are corrupted, then the answer

is exactly z. This gives an overall probability of Θ(1/K · (1 − η)K
2

) = Θ(e−ηK
2

/K) =
Θ(1/K). The contribution of probability from other sources is negligible.

Note that for different extension α, the bits that fαi,l reads from q are completely
independent, so we have

Pr
q

[
∀α,∃i, fαi,l(qi) 6= zi

]
= (1−Θ(1/K))2t

= exp(−O(2t/K)).

Picking large enough constant C and taking union bound over all possible labelings
and accepting configurations, we get that the weighted fraction of q that are bad is

Pr
q

[Q(q)] ≤ RK−1 · L · (K + 1) exp(−O(2t/K)) = exp(−O(K)).

Now let us consider the degree of the graph produced by the above reduction. Consider
a vertex (fv,q, z). Fix some i ∈ [K]. Let z′ be some accepting assignment of HK with
z′i 6= zi. We first estimate the number of queries q′ with q′i = qi. Let us consider the
i-th test distribution Ti,ei , where ei is the edge sampled for the i-th test, and denote
the constraint on ei by π. Recall that for each l ∈ [L] and r ∈ π−1(l) ⊆ [R], the bits
{q′j,r}j 6=i are sampled by uniformly picking an accepting assignment x of HK conditioned

on xi = q′i,l. Thus there are at least ((K + 1)/2)
|R|

= 2exp(Ω(K)) possible choices of q′.
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Note that for any such q′, there is an edge between (fv,q
′, z′) and (fv,q, z). Therefore

the degree of the graph produced by the above reduction is at least double exponential
in K. We now use the approach in Clementi and Trevisan [9] and Trevisan [26] to reduce
the degree to O(K32K).

For ease of presentation, we look at the argument on the original FGLSS graph with-
out removing bad queries. The same argument applies to the graph with bad queries
removed because removing vertices from the graph does not increase the maximum de-
gree, and, as argued above, does not significantly affect the soundness and completeness
of the reduction.

Denote the FGLSS graph corresponding to the PCP in Theorem 5 as G. We first
turn G into an unweighted graph. Let wmin be the minimum weight of vertices in G, and
λ be the ratio between the minimum and maximum weight of vertices in G. Note that
λ depends only on K. Let ξ be some granularity parameter. We obtain an unweighted
version G′ of G by duplicating vertices — we make bw/wmin · 1/ξc ≤ 1/λξ vertices for a
vertex of weight w, and connect the duplicated vertices with all the neighbors. This step
blows up the size of the graph by O(1/λ2ξ2), and the fractional size of the maximum
independent set in G′ is within a multiplicative factor of O(ξ) from that of G due to error
introduced by b·c when duplicating vertices.

As observed in [26], the graph G′ is a union of bipartite complete subgraphs. More
precisely, for every index i and i-th query (fvi

,qi), there is a complete bipartite graph
between configurations that answer zero for query (fvi

,qi) — denoted as Zfvi
,qi

— and
configurations that answer one for the same query — denoted as Ofvi

,qi
. Let l be the

maximum size of such sets. We claim that l depends only on K, λ and ξ. To estimate l,
consider how many tuples (fv,q, z) can include (fvi ,qi) on the i-th position. By Theorem
2, the degree of the Label Cover graph is poly(1/σ) = exp(Θ(K)), thus the fvi

coordinate
has at most exp(Θ(K2)) neighbors. For qi, consider an edge e the bits in qi that are
mapped to the same label l ∈ [L] according to mapping πe (or a single bit if e is the
i-th edge). There are exactly (K + 1)/2 possible queries. Enumerating over all labels
and sampled edges, this gives an upper-bound of 2exp(Θ(K)). Since each of them can be
duplicated by at most 1/λξ times, we have l = 2exp(Θ(K))/λξ. Also since for each input
bit to the predicate HK , exactly half of the accepting assignments of HK set that bit to
1 and exactly half to −1 — a property also known as HK being balanced — we have
|Zfvi

,qi
| = |Ofvi

,qi
|.

We now replace the above bipartite complete graphs in G′ with the following con-
struction on the same set of vertices Zffi ,qi and Offi ,qi .

Proposition 8 ([26]). For every ζ > 0 and b ≥ 1, there is a bipartite graph ([b], [b], E)
of degree at most d = 3ζ−1 log(ζ−1) such that for any A,B ⊆ [b], |A| ≥ bζbc, |B| ≥ bζbc,
we have (A×B) ∩ E 6= ∅.

Trevisan [26] called such graphs (b, ζ)-dispersers, and he used a probabilistic argument
to prove the above proposition. As argued above, l is a constant depending only on K,
thus we can find the desired disperser by exhaustive search. An important property of
bipartite dispersers is that given an independent set I of a (b, ζ)-disperser, we have that
either |I ∩A| ≤ ζb or |I ∩B| ≤ ζb.

Denote the replaced graph by G′′. To understand how much the above replacement
step increases the size of the maximum independent set, note that for any independent
set in a disperser, we can get an independent set in the complete bipartite graph by
discarding all vertices on one side, which is at most a ζ fraction if we choose the smaller
side. Also, each vertex in the FGLSS graph is involved in at most K complete bipartite
graphs of this kind, thus the size of the independent set in the new graph is at most Kζ
larger than G′. By choosing ζ = O(2−K/K), ξ = O(2−K), we have that in the soundness
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case the maximum independent set G′ has size O(2−K). The maximum degree of G′′ is
bounded by K · 3ζ−1 log(ζ−1) = O(K32K).

4 Discussions

In this paper, we proved a gap of K3 vs. 2Ω(K) for approximating chromatic number. Let
us take a closer look at how we get to the power 3 inK3. The soundness of the Label Cover
problem has to be at most 2−Ω(K), which means that the size of the labels are exp(Θ(K)).
Definition 6 involves all possible labelings and accepting assignments of K. The reduction
in Definition 4 samples K edges, therefore there would be RK−1·L = exp(Θ(K2)) possible
labelings and a union bound results in a factor of exp(Θ(K2)) in the probability of a query
being bad. The other factor of K is due to the fact that the Hadamard predicate HK

has K + 1 accepting assignments and they are sampled uniformly.
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[6] A. Blum and D. R. Karger. An Õ(n3/14)-coloring algorithm for 3-colorable graphs.
Inf. Process. Lett., 61(1):49–53, 1997.

[7] S. O. Chan. Approximation resistance from pairwise independent subgroups. Elec-
tronic Colloquium on Computational Complexity (ECCC), 19:110, 2012.

[8] E. Chlamtac. Approximation algorithms using hierarchies of semidefinite program-
ming relaxations. In FOCS, pages 691–701. IEEE Computer Society, 2007.

[9] A. E. F. Clementi and L. Trevisan. Improved non-approximability results for mini-
mum vertex cover with density constraints. Theor. Comput. Sci., 225(1-2):113–128,
1999.

8



[10] I. Dinur, S. Khot, W. Perkins, and M. Safra. Hardness of finding independent sets in
almost 3-colorable graphs. In FOCS, pages 212–221. IEEE Computer Society, 2010.

[11] I. Dinur, E. Mossel, and O. Regev. Conditional hardness for approximate coloring.
SIAM J. Comput., 39(3):843–873, 2009.

[12] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. Approximating clique
is almost NP-complete (preliminary version). In FOCS, pages 2–12. IEEE Computer
Society, 1991.

[13] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

[14] V. Guruswami and S. Khanna. On the hardness of 4-coloring a 3-colorable graph.
SIAM J. Discrete Math., 18(1):30–40, 2004.

[15] V. Guruswami and A. K. Sinop. The complexity of finding independent sets in
bounded degree (hyper)graphs of low chromatic number. In D. Randall, editor,
SODA, pages 1615–1626. SIAM, 2011.

[16] G. Hast. Beating a random assignment. PhD Thesis, 2005.

[17] J. H̊astad and S. Khot. Query efficient PCPs with perfect completeness. Theory of
Computing, 1(1):119–148, 2005.

[18] K. ichi Kawarabayashi and M. Thorup. Combinatorial coloring of 3-colorable graphs.
In FOCS [1], pages 68–75.

[19] D. R. Karger, R. Motwani, and M. Sudan. Approximate graph coloring by semidef-
inite programming. J. ACM, 45(2):246–265, 1998.

[20] S. Khanna, N. Linial, and S. Safra. On the hardness of approximating the chromatic
number. Combinatorica, 20(3):393–415, 2000.

[21] S. Khot. Improved inaproximability results for maxclique, chromatic number and
approximate graph coloring. In FOCS, pages 600–609. IEEE Computer Society,
2001.

[22] S. Khot and R. Saket. Hardness of finding independent sets in almost q-colorable
graphs. In FOCS [1], pages 380–389.

[23] R. Raz. A parallel repetition theorem. SIAM J. Comput., 27(3):763–803, 1998.

[24] A. Samorodnitsky and L. Trevisan. A PCP characterization of NP with optimal
amortized query complexity. In F. F. Yao and E. M. Luks, editors, STOC, pages
191–199. ACM, 2000.

[25] A. Samorodnitsky and L. Trevisan. Gowers uniformity, influence of variables, and
PCPs. SIAM J. Comput., 39(1):323–360, 2009.

[26] L. Trevisan. Non-approximability results for optimization problems on bounded
degree instances. In J. S. Vitter, P. G. Spirakis, and M. Yannakakis, editors, STOC,
pages 453–461. ACM, 2001.

[27] A. Wigderson. A new approximate graph coloring algorithm. In H. R. Lewis, B. B.
Simons, W. A. Burkhard, and L. H. Landweber, editors, STOC, pages 325–329.
ACM, 1982.

9


