Incremental Learning-Based
Testing for Reactive Systems

Karl Meinke, Muddassar Sindhu
Royal Institute of Technology (KTH)

Stockholm

0. Overview of Talk

1. Specification Based Black-box Testing

2. Learning Based Testing paradigm (LBT)

connections between learning and testing
testing as a search problem

testing as an identification problem
testing as a parameter inference problem

3. Chosen Framework: reactive systems
4. Results
5. Conclusions

1. Specification Based

Black-Box Testing
1. System requirement (Sys-Req)
2. System under Test (SUT)
3. Test verdict pass/fail (Oracle step)

Sys-Req pass/fail
v

Constraint solver Language runtime Constraint
checker

1.1. Procedural System Example:

Newton s Square Root Algorithm
Postcondition

precondition x > 0.0 | y*y —xl<e

TCG SUT | Oracle

Constraint solver Newton Code Constraint checker

l

x=4.0 satisfies x > 0.0 Verdict
x=4.0, y=2.0 satisfies

| y*y —xl<¢

1.4. Reactive System Example:
Coffee Machine

Sys-Req: always(in=$1 implies after(10, out=coffee)) pass/fail

&

-

out,, = coffee

in,=51, out,,= coffee Satisfies
always(in=1S implies after(10, out=coffee))

1.2. Key Problem: Feedback

Problem: How to modify this architecture to..

1.Improve next test case using previous test
outcomes

2.Execute a large number of good quality tests?
3.0btain good coverage?
4.Find bugs quickly?

2. Learning-Based Testing

Sys-Req pass/fail

% Sys-Model

Learner

Verdict

“Model based testing without a model”

2.1. Basic Idea ...

LBT is a search heuristic that:

ncrementally learns an SUT model
.Uses generalisation to predict bugs
.Uses best prediction as next test case

> W N -

.Refines model according to test outcome

2.2. Abstract LBT Algorithm

Use (i,, 0,), ..., li;, 0,) to learn model M,
Model check M, against Sys-Req
Choose “best counterexample” i,,, from step 2
Execute j,,, on SUT to produce o, ,,
Check if (i.,,, 0.,,) satisfies Sys-Req
a) Yes:terminate with /.., as a bug
b) No:gotostep 1

Feameath a2

Difficulties lie in the technical details ...

2.3. General Problems

Difficulty is to find combinations of

models, requirements languages and Sat algorithms
(M, L, A)

so that ...

1. models M are:

expressive,

compact,

partial and/or local (an abstraction method)
easy to manipulate and learn

2. M and L are feasible to model check with A

A

3. Chosen Framework for Study:

SUT = reactive system

Model = deterministic Kripke structure
Sys-Req Lang = linear temporal logic (LTL)
Learning = IKL incremental learning algorithm
Model Checker = NuSMV

LBT Architecture

LTL

requirement
b

Random i ¢ input ; SUT
Input
Generator observed output 0
~No @
Yes
NuSMV Hypothesis
Model Automata predicted Oracle = _
Checker > M. output p p=o fail,warning
i /stop
Hypothesis pass/(i ,0)
Automata M_
?Equivalence Hypothesis
~ Checker Automata M_ IKL
- SUT=M Algorithm
! n
[[, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

true/stop

A

A Case Study: Elevator Model

/
3 tick | C3 tick | CZ{ 8
K 1
Ti 1]
!
w2, I, W, Jcl w2l w2,
C1 1
W1, Stop, @1, |@2, !@3'
w2,
Cll 3
C2
tick,

IWR,cl, IStop, @1, |@2, !

W2, dl,!

ck \c31C2

c1ic3

Wicl, ISto

W2, Stop, |@1/@2, |@3

c1l
op, 1@1, @2, ! W3, dlIstop, |@1, @2, |@3 216
i
tick
Coc3
ci] =
=
2143 =) o
™, w3 El,'WZ ok
tick
s o, @1 3% @3
C3 5y 1tick] |C3 AlCL!§31tick
fle c: c
c J b
| 1]
c 1 =
wa w3 [1,IW1, 1o W W WL W, [w,iwz) 1w, wi] [rowswa] | [ewa, wi]
—
c1 = cf[ca] |c21ti c1] |2/ feaitick] Aciicaitick
| ti

@1, 1@2,1@3

1c2ic3

c3

W1, IW;

&

c3

W1, W

cLic

. W2,cl, IStop, !@1, |@2, |@.

c2

clic3

2|

o W2, cl, Stop, @1, 1@2, 1@3

Elevator Results

Req 1 1301.3 1.9 1574 729570

Req 2 0.49 1146 3.9 99.6 2350 238311 2.9 98.6
Req 3 0.94 525 1.6 21.7 6475 172861 5.7 70.4
Req 4 0.052 1458 1.0 90.3 15 450233 0.0 91
Req 5 77.48 2275 1.2 78.3 79769 368721 20.5 100.3

Req 6 90.6 1301 2.0 60.9 129384 422462 26.1 85.4

5. Conclusions

A promising approach ...

Flexible general heuristic,

* many models and requirement languages seem
possible

Many SUT types might be testable
* procedural, reactive, real-time etc.

Open Questions
Benchmarking?
Scalability? (abstraction, infinite state?)
Efficiency? (model checking and learning?)

