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Abstract

This paper demonstrates a system for the automatic ex-
traction of novelty in images captured from a small video
camera attached to a subject’s chest, replicating his visual
perspective, while performing activities which are repeated
daily. Novelty is detected when a (sub)sequence cannot
be registered to previously stored sequences captured while
performing the same daily activity. Sequence registration is
performed by measuring appearance and geometric simi-
larity of individual frames and exploiting the invariant tem-
poral order of the activity. Experimental results demon-
strate that this is a robust way to detect novelties induced by
variations in the wearer’s ego-motion such as stopping and
talking to a person. This is an essentially new and generic
way of automatically extracting information of interest to
the camera wearer and can be used as input to a system for
life logging or memory support.

1. Introduction
In this paper we address the problem of selecting and

storing relevant parts of the visual input collected from a
continuously worn camera capturing images at video rate.
This problem is partly dictated by applications such as life
logging [3, 9, 1] and memory support systems for the dis-
abled [5]. Especially in the design of efficient memory sup-
port, there is a large potential advantage in the automatic
selection of relevant moments of one’s daily visual experi-
ence.

Memory selection depends on several factors relating to
the complex state of the human observer and these are not
primarily related to vision. Given just the visual input, how-
ever, we can ask ourselves which moments of the input we
would like to capture and store and if there are any rules that
can be formulated for this.

It is generally accepted that novelty is very central in
deciding whether to remember something or not. It is a
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Figure 1: Novelty detection via sequence alignment.

very natural criterion for selection both on pure data storage
grounds as well as for the purely subjective reasons of later
inspection of stored images. Heuristically novelty can be
measured as the deviation from some standard background.
The less variation there is in the background the easier it
will be to detect novelty. One way to ensure that the back-
ground variation is limited is to choose a specific context
within which novelty is selected.

Here we choose the simple context of the daily repeated
activity of going to work. The collected video sequences
from various days therefore contain image frames captured
from approximately the same location. The influence of the
day-to-day variation of these locations can be further re-
duced by aligning corresponding frames from different days
using appearance and geometry information in the image
frames. The content of a recorded sequence depends on
two main factors: 1) the ego motion of the person wearing
the camera and 2) the environment in which the sequence
is captured. If there is a sufficient variation in one of these
factors, this leads to the inability to register some or all of
the sequence to previously stored sequences. This inability
is taken as a measure of novelty. Ideally variations such as
the person deviates from his/her daily path or stops to do
some shopping or a street being shut off should be captured
by our system.

This work extends previous studies based on wearable
cameras in two main ways: 1) We use a very small (4cm
high) camera that captures image at video rate for one hour
and stores it on a memory stick. 2) Video is captured from
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daily repeated activities such as going to work and we de-
velop algorithms for the automatic frame to frame registra-
tion of sequences recorded on different days. 3) We define
novelty based on the absence of a good registration between
a sequence and stored reference sequences.

The rest of paper is organized as follows. We begin by
presenting in section 2 the details of our sequence align-
ment algorithm. This algorithm establishes frame to frame
correspondences between two sequences. Section 3 then
describes how the correspondences between sequences can
be utilized to detect novelties. Afterwards, we present eval-
uation of the components of the proposed algorithm in sec-
tion 4. Section 5 shows the results of the novelty detection
algorithm and finally, section 6 concludes the paper.

2. Sequence alignment
Figure 2 displays 10 sequences from our dataset. Each

row corresponds to one sequence and is of the subject walk-
ing from the a metro station to his work place. All our se-
quences are frames sampled from 25Hz videos at 1Hz. We
wish to put the frames of one sequence s1 in correspon-
dence with another sequence s2. As the sequences we cap-
ture have temporal continuity characteristics and repeated
underlying structures, a natural way to establish correspon-
dences is with Dynamic Time Warping (DTW). This algo-
rithm requires a measure of similarity between each frame
of s1 and each frame of s2 and the rest of this section is
mainly devoted to how we compute this.

2.1. Appearance based cues

The most straightforward approach to define a measure
of similarity between two sequences is to represent each
frame with a fixed length vector and compare the represen-
tative vectors with a kernel such as polynomial or minimum
intersection kernel. In order to represent frames with a fixed
length vector, a common approach is to model the distribu-
tion of some local visual words1 disregarding their spatial
information.

Local features are fixed length description of some lo-
cal interest regions localized in different areas of an input
image. SIFT [7] and its variations are one of the most com-
monly used region descriptors. Various methods detect in-
terest regions based on different criteria such as the determi-
nant of the Hessian or the Harris tensor. A thorough study
of region descriptors and interest region detectors is per-
formed in [12]. Alternatively, it is possible to densely sam-
ple the SIFT features on multiple scales from a spatial grid
over the image.

The local features are afterwards aggregated in a fixed
length vector representing the entire image. The Bag of Fea-
tures(BoF), inspired by text processing techniques, clusters

1We use the terms visual words and features interchangeably in this
article.

features from many images to C clusters and models the
frequency of assignments of the features in each image to
one of cluster centers. This gives rise to a sparse C dimen-
sional vector for each image regardless of the dimensional-
ity of the features themselves. Recently, the Vector of Lo-
cally Aggregated Descriptors (VLAD) [6] was introduced
that aggregates all the feature vectors assigned to the same
cluster center to reach a vector of the same dimension as the
visual words and performs the same for all cluster centers.
This leads to a dense dC dimensional feature vector where
d is the dimension of the local features.

We use the fast and efficient fixed length representation
of the image to find the nearest neighbors of each frame of
a query sequence in reference sequences. We will compare
the performance of the VLAD and BoF aggregation meth-
ods on interest region based and dense sampling of SIFT
features in our dataset in section 4.1.

2.2. Geometric similarity

The appearance features, described in the previous sub-
section, highlight pairs of frames which contain the same
local structures. However, they do not guarantee that the
matched local structures occur in a geometrically consistent
way. The features can be considered as geometrically con-
sistent if there is a global transformation or there are certain
constraints are fulfilled between the matched features’ lo-
cations encoding the relative position and orientation of the
camera viewpoints. The tried and tested way to check this,
especially when one may encounter large displacements and
rotations between the views, is via epipolar geometry and
estimation of the Fundamental matrix [8].

Thus we estimate the epipolar geometry between two
views. Our measure of similarity is then defined as the per-
centage of inliers, with respect to the estimated fundamen-
tal matrix, in an initial set of putative matches. It should be
noted we use this measure of similarity between two frames
as an absolute score in [0, 1], not a means for re-ranking
[10], which is independent of the other images.

Estimating epipolar geometry robustly and efficiently

The images we capture are of dynamic environments and
from a moving, twisting platform. Therefore we frequently
have to match views with significant amounts of occlusion
and significantly different viewpoints. We thus estimate the
fundamental matrix from a sparse set of noisy correspon-
dences and robust estimation via a RANSAC variant.

Unfortunately RANSAC based methods require an expo-
nential number of trials in the minimum number of points
required to fit the model and worse than exponential trials
in the ratio of outliers to inliers. Given the large amount of
data we have to process, a careful implementation w.r.t. the
computational demands is required. Therefore we
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Figure 2: Each above row shows a highly temporally sub-sampled sequence from our dataset. Each sequence corresponds to a different
day and captures what the subject experienced visually on his way to work.

• use Prosac [2] as it provides a significant speed up on
RANSAC in the presence of a large number of outliers
but where some inliers can be readily identified,

• reduce the minimum number of correspondences re-
quired to estimate the fundamental matrix from the
standard 7 [4] to 5 by using the method suggested in
[11] (though it does give up to 10 solutions),

• reduce the number of false correspondences in the
initial putative set by choosing distinctive correspon-
dences. As suggested in [7], we compute for each fea-
ture in one view the ratio of the Euclidean distance to
its nearest neighbor and second nearest neighbor in the
other view. These scores are sorted into ascending or-
der and the first 250 features and its nearest neighbor
match, w.r.t. this ordering, make up the putative set.

Another issue which has to be addressed is that the epipolar
constraint is relatively weak (it maps a point in one view
to a line in the other). To accurately judge the correctness
of a hypothesized fundamental matrix in the presence of
many incorrect correspondences additional constraints are
needed. To this end we enforce that inliers must also be
consistent with a homography mapping the local feature lo-
cations from one frame to the other. This homography con-
sistency constraint is only weakly enforced and is achieved
by using Prosac with a loose definition of inlier to robustly
estimate a homography. Then only the matches which are
consistent with this estimated homography are maintained
and used for the fundamental matrix estimation. Algorithm
1 summarizes the complete implementation and the second
row of figure 3 depicts the stages of the fundamental matrix
estimation.

Algorithm 1 Computation of geometric similarity.

INPUT: Features F1,F2 extracted from images I1, I2
OUTPUT: Similarity measure FGV (I1, I2) ∈ [0, 1]
P ← N best putative matches between F1 and F2

HL ← PROSAC 4 points loose Homography(P )
PH ← inliers of P to HL

E ← PROSAC 5 point Essential Matrix(PH )
PHE ← inliers of PH to E
FGV (I1, I2)← fs(PHE , P )

The final geometric similarity measure

Once the fundamental matrix has been estimated and used
to define a set of final point correspondences between the
two views, we can calculate the geometric similarity score.
In this work we define this as

fs = min

(
1, αmax

(
0,
|PHE |
|P |

− β
))

(1)

where |P | is the number of correspondences in the initial
putative set and |PHE | is the number of final inliers found.
The α and β are non-negative scalars which are learnt from
training data. The role of β is to force the average matching
score towards 0 for images which contain no overlap, while
α scales the score with the aim that when images of the
same scene are matched they achieve a score of around 1.

2.3. Dynamic time warping

Once one can measure similarity between two frames,
using our geometric similarity measure, the temporal align-
ment of sequences is straightforward. There are just a cou-

3299



5 nearest neighborsQuery frame

best 250 putative matches inliers w.r.t. estimated homography inliers w.r.t. epipolar geometry
Figure 3: The top row shows the 5 nearest neighbors in a reference sequence to the query frame. While the bottom row shows the stages
taken to establishing epipolar geometry between a query frame and a nearest neighbor. The initial correspondences are successively filtered
by a robustly estimated homography and then the estimated epipolar geometry.

ple of steps involved. First the similarity matrix contain-
ing the similarity between any pairwise frames is formed
and turned into a cost matrix by mapping the similarities
to costs using a zero-mean Gaussian with standard devia-
tion σc. Then temporal alignment is calculated via dynamic
time warping on the cost matrix. Computing alignment
in this fashion though straightforward is extremely slow as
evaluating each entry in the cost matrix requires calculating
the computationally expensive geometric similarity score.
Clearly, it is not necessary to compute every entry, we just
need to compute those which will have low costs.

These low cost entries can be easily identified, similar
to [10], by utilizing the fast and efficient nearest neigh-
bor search using the previously described appearance based
fixed length representation, of the frames to find the k near-
est neighbors in s2 of each frame in s1. Evaluation of the
geometric similarity is then limited to k evaluations for each
frame in s1. As the same local features are used in the fixed
length representation and in the geometric similarity evalua-
tion, we expect the relevant low cost entries to be computed
while ignoring the high cost entries. Figure 4 shows for one
particular alignment example what proportion of geometric
scores from the full matrix are actually computed and how
the entries on the ground truth alignment path have been
identified by the k nearest neighbor search.

The minimum cost path connecting the first and last en-
try of the cost matrix is denoted by a set of ordered pairs
δs1,s2 = {(i1, j1), . . . , (iL, jL)} with i1 ≤ i2 ≤ · · · ≤ iL
and similarly for the j’s. We then define the match cost of a
frame i in sequence s1 to sequence s2 as

λ(i, δs1,s2) =


Cik,jk if ∃ (ik, jk) ∈ δs1,s2 s.t. i == ik,

ik − ik−1 = 1 and jk − jk−1 = 1

1 otherwise
(2)

where Cik,jk is the value of the cost matrix at entry (ik, jk).

(a) (b) (c)

(d) (e) (f)

Figure 4: The similarity matrices calculated affect the ability to
successfully align a sequence s1 with another sequence s2. Top
row: (a) The full appearance similarity matrix and the ground truth
registration between the two sequences is overlayed in red. (b)
Sparse sampling of the appearance similarity matrix, using the 5
nearest neighbor per query frame (c) Sparse geometric similarity
matrix, the geometric similarity is computed at non-zero entries of
the b) matrix. Bottom row: The results of DTW applied to (d)
dense appearance based cost matrix, (e) sparse appearance based
cost matrix (f) sparse geometric similarity based cost matrix. Note
how the final registration is closest to the ground truth.

Note the defined match term is unique for each frame due
to the form of the path returned by dynamic time warping.

3. Novelty Detection

Once sequences can be aligned and correspondences can
be established between their frames, then the quality of the
alignments can be used for novelty detection. The crucial
point is that novelties induce poor quality alignments. We
therefore align a query sequence with the training sequences
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and search for frames within the test sequence which do
not have good correspondences in any or very few other
sequences. Figure 1 illustrates such a situation.

Having aligned all sequences to a query sequence, for
each frame of the sequence we compute the minimum
match cost for each frame of the query sequence:

E(s
(i)
t ) = min

sr∈S
λ(i, δsq,sr ) (3)

where S represents the set containing the reference se-
quences. If a frame has a good correspondence in at least
one of the reference sequences, the entity E(s

(i)
q ) will have

a small value, otherwise it will have a bigger value close to
1. Therefore, we can directly threshold the minimum match
cost to find novelties. A temporal smoothing of the min-
imum match cost E is applied prior to thresholding to re-
duce the effect to the multifarious sources of noise. We
smooth the E’s with a Gaussian mask with σN = 2 and
then threshold them with θN = e

− 1
23σ2c to detect novelties.

This threshold is chosen as corresponds to a cost associated
with a geometric similarity of 0.5.

4. Evaluation of the similarity matching
In this section we evaluate the quality of the performance

of the constituent parts of the algorithm to compute the sim-
ilarity between frames - the nearest neighbor search based
on matching appearance and the geometric similarity scor-
ing. It is crucial that these attain a certain level of per-
formance to ensure that sequences can be registered in the
presence of non-interesting variations. To help us do this
we have manually annotated all sequences with a total of 9
different labels representing the location each frame of each
sequences belongs to.

4.1. Nearest Neighbor search
The nearest neighbor search based on appearance fea-

tures plays a critical role in creating the appropriate sparse
cost matrix. Therefore we want to optimize its design and
quantify its performance. There are numerous possible
choices for the exact form of the features used and how they
are compared as expounded in section 2.1. We limit, influ-
enced by recent literature, our investigations to

• fixed length vector representations of the image with either
BoF or VLAD descriptors built from SIFT features,

• the standard set of interest region detectors, see figure 5a,
including a dense sampling2.

Similarity between two images is then computed with
the minimum intersection kernel for the BoF vectors and a
polynomial kernel of degree one to compare VLAD vectors.

2We use the implementation of dense SIFT features [13] with 4 scales
and skip parameter of 6 pixels.

When both representations are used, we use linear combi-
nation of the kernels with equal weights.

We then compare the label of a query frame with that of
its K nearest neighbors and compute the proportion of the
retrievals over the data set which return at least one correct
label. Figure 5a shows the results of this experiment as the
number of nearest neighbors returned and the image feature
design varies. It can be observed that the dense sampling
outperforms more specific interest region detection.

Guided by these results, we use the combination of the
BoF and VLAD vectors with the color and gray variation
in the final system. With this method, 88% of the time at
least one of the 5 nearest neighbors to the query frame will
correspond to a high similarity entry in the final cost matrix.

4.2. Geometric Similarity

There are many parameters that affect the performance
of the geometric similarity function such as the number of
fixed initial putative matches N , the thresholds θH and θE
on the reprojection error for the estimated homography and
essential matrix used to define inliers and the number of
PROSAC iterations TH and TE used in estimating the ho-
mography and essential matrices. Although it is possible
to find the configuration of the parameters by exhaustive
search, such an approach would be extremely computation-
ally expensive. Instead, we fixed the parameters and struc-
ture of FGV empirically: we used N = 250, θH = 1,
θE = 0.01, TH = 100 and TE = 25.

We evaluated the performance of the geometric similar-
ity function using the dense sampling of the SIFT features
and interest region detectors and found the dense sampling
approach to perform better in terms of robustness and ac-
curacy. This happens as 1) too many interest regions are
found around the dynamic objects in the scene and these
do not have a correspondence in the other frame and 2) too
few interest regions are found in many regions which do
not contain strong texture/gradients e.g. the the pavement
in a relatively low resolution image. In these cases, it is
no surprise that dense sampling approach can better capture
information from the entire image.

The FGV scores of a frame at a label transition matched
to each frame in a local time window around a label transi-
tion to the same label as our target frame are computed and
recorded. This process is repeated for all such transition
frames and time windows. Figure 5b depicts the average
result of this computation. On average FGV maps the cor-
rect correspondence (the transition point)to a number close
to 1 while its value drops monotonically relatively quickly
with the displacement from the transition point. The ap-
pearance based fixed length representations would have a
much slower drop and would not be able to precisly locate
the label transitions as precisely or unambiguously.
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Figure 5: (a) The accuracy of image matching for differing interest region detectors and numbers of nearest neighbours. Methods (from left
to right): VLAD+HessianAffine, VLAD+MSER, VLAD+HarrisAffine, VLAD+Dense(gray), VLAD+Dense(color), BoF+HessianAffine,
BoF+MSER, BoF+HarrisAffine, BoF+Dense(gray), BoF+Dense(color), VLAD+BoF+Dense(gray+color). (b) The average of 100 FGV

values on local windows around the true correspondences.

5. Results

For the experiments in this paper, we used a data set of
31 sequences of the subject walking from metro station to
work. In addition to the labelings mentioned earlier, we
also manually defined temporal segments of the sequences
in which something happened that either did not happen in
the other sequences or it was infrequent e.g. subject meet-
ing with a friend. The labelings resulted to 4 of the 31 se-
quences containing novel segments. Below, we present the
results of the suggested algorithm trying to detect these 4
temporal segments.

Figure 7 depicts the intermediate and final results of nov-
elty detection for a sequence containing novelty(the subject
meets a friend). Due to limited space, we show the final pic-
ture containing 15 samples of the sequence(Figure 7a) vs 6
reference sequences. It can be observed that the method is
able to detect both segments that were manually labeled as
novel segments in addition to one false detection of a seg-
ment containing 4 frames(Figure 7d). The false detection
is due to a very strong change in the lighting leading to a
few overly bright frames; this inevitably leads to significant
changes in local features which then prevents the algorithm
to establish correct correspondences for those frames. Fig-
ure 8) depicts the results of novelty detection on the remain-
ing 3 sequences that contain novel segments.

The accuracy of the novelty detection on 400 frames(4
sequences sub sampled to contain 100 frames) for which we
had the ground truth manually labeled, are measured and
depicted in figure 6. It can be observed that using dense
the appearance costs leads to better accuracy compared to
its sparse version. The figure also suggests that using the
method with geometric costs outperforms the use of the ap-
pearance based costs with a strong margin. The high aver-
age precision of the results using geometric costs with as

(a) (b) (c)

Figure 6: Precision-recall curves for novelty detection. Each fig-
ure uses a different cost matrix: (a) dense appearance , (b) sparse
appearance, (c) sparse geometric. The red, green and blue curves
show when 1, 6 and 10 reference sequences are used.

few as 6 reference sequences(AP ≥ 0.96)(green and blue
curves in Figure 6c), suggests that the method is accurate
and reliable for the purpose of novelty detection while be-
ing robust to various environmental changes such as view
point and illuminations changes as well as occlusions.

6. Conclusions and Future Work

We have demonstrated a system that is able to automat-
ically extract novel events in the context of video captured
from a camera continuously worn by a person who repeats
a daily activity. The sequences manually annotated con-
tain (subjectively) a total of four different novel events.
All these novelties were automatically detected without any
false positives. As far as we know this is the first systematic
study of novelty detection of this kind where a repeated ac-
tivity is used as background. These results indicate that po-
tentially interesting applications of automatic memory se-
lections should be possible especially in constrained envi-
ronments like the kind considered here.

The frame-to-frame registration of the video captured
from one day to another is possible, just using appearance
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Figure 7: A detected novelty - the subject meets a friend. (a) The query frames without correspondences in the reference set, the black
images below, are detected as novelties. Due to sub sampling only 3 of the 23 detected novelty frames are shown. (b) The match cost (λ)
between each frame of the query sequence and the reference sequences it has been aligned to. Darker values correspond to lower costs. (c)
The minimum match cost (E). (d) The smoothed minimum match cost. The red line shows the automatic threshold θN and the green curve
the ground truth labeling of novelty. The large peak corresponds to the novelty displayed in figure (a).

and geometric cues, as we have constrained the variation
in these sequences to those experienced by human wearer.
This makes it possible to define a background relative to
which novelty is measured.

In the future, we want to consider longer individual se-
quences captured over longer time periods. These will en-
compass many more activities in differing environments
and will undoubtedly require a more complex description
and representation of the captured background. Registration
at a more abstract semantic level as opposed to the appear-
ance/geometric level exploited in this paper will be needed.
Novelty detection at a semantic level will allow disambigua-
tion between false positives generated by changes in appear-
ance and geometry induced by non-relevant variation of the
environment or the ego-motion.

The central problem is the ability to measure similarity
of recorded background with the actual captured video. In
this sense the problem of novelty detection is intimately re-
lated to the general problem of similarity learning and the
structuring of visual manifolds. We believe that the analysis
of video captured from an ego-centric perspective can serve
as an important test case for the study of these problems.
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