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Abstract

This paper addresses the problem of human pose estimation, given images taken
from multiple dynamic but calibrated cameras. We consider solving this task using a
part-based model and focus on the part appearance component of such a model. We
use a random forest classifier to capture the variation in appearance of body parts in
2D images. The result of these 2D part detectors are then aggregated across views to
produce consistent 3D hypotheses for parts. We solve correspondences across views for
mirror symmetric parts by introducing a latent variable. We evaluate our part detectors
qualitatively and quantitatively on a dataset gathered from a professional football game.

1 Introduction
In this paper we address the problem of automatically estimating the 3D pose of a person seen
from multiple calibrated cameras outside a studio environment [14]. Our particular focus
is the estimation of the 3D pose of football players during a professional game. Football
footage have several key characteristics some of which are shared between different sports.
Most notably the images are commonly disturbed by motion blur because of the fast moving
players and cameras. There is also a large variation in the players’ 3D pose. On the other
hand the variation in the players’ clothing is limited and background clutter is not as severe
as in less structured environments. Yet, low quality images and fast motion make it hard to
perform background subtraction reliably.

Currently, the most successful solutions to 2D pose estimation are discriminatively trained
part-based models [1, 8, 12, 16, 21]. This class of methods are attractive as they enable ef-
ficient inference by reducing the conditional dependencies between parts, and demand less
labeled training data as they can generate new poses at test time. Part-based models have also
been used for 3D pose estimation [2, 4, 13, 17, 19], but to our knowledge good performance
has only been reported in studio environments. In this paper we focus on computing efficient
and accurate 3D part appearance likelihoods that can be plugged into any 3D part-based
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model. We show that these 3D part appearance likelihoods allow for 3D pose estimation
outside of the studio without imposing a strong pose prior.

To discriminatively learn the 3D part likelihoods directly for the individual parts would
require labeled 3D data and the associated calibrated views. We want to avoid this poten-
tially expensive and non-trivial labeling task. Therefore, in this paper we discriminatively
learn 2D part likelihoods for each part and aggregate the likelihoods from the different views
to obtain the 3D part likelihoods. This means that we only need labelled 2D images from
uncalibrated cameras. However, to get good performance this requires solving a part corre-
spondence problem across views during the aggregation phase. We return to this issue later
in the introduction, but now we turn to the issue of how to learn and compute the 2D part
likelihoods.

State of the art 2D part based models for human pose estimation rely on SVM classifiers
applied to a HOG descriptor of an image patch [21]. However we opt to use a more efficient
random forest approach for estimating the part likelihoods. We take our inspiration from the
recent success of the Kinect system. Shotton et al. [18] use a random forest to estimate a
person’s 3D pose from a depth image. They divide the human body into a set of parts and a
random forest is used to estimate the probability of each pixel belonging to each part. From
these probabilities the 3D location of the skeletal joints are then independently estimated.
Their work clearly demonstrates that given sufficiently diverse training data, one can learn a
compact random forest classifier which at test time efficiently recognizes parts across a very
varied set of 3D poses. In this paper we consider ordinary visual images, as opposed to depth
images, but similarly use a random forest to assign to every pixel a probability of being a
particular part or background. These probabilities form the basis for our part likelihood
scores in 2D and 3D.

We create 3D part appearance likelihoods by aggregating the 2D likelihoods across all
camera views. Care must then be taken regarding the correspondence of joints across the
views. Because of the similar appearance of mirror symmetric parts, such as left and right
arms and legs, and also the local nature of our part detectors, we can not directly distinguish
the correct correspondences for each part. In this paper this issue is handled by introducing
a latent variable into our model which represents the correspondence. At inference time we
optimize for both the best pose and the best values of our latent variable. We show that this
approach is both feasible and effective (fig. 2).

We now summarize the contributions of this paper.

1. We introduce a new dataset, KTH Multiview Football Dataset, of annotated football
images consisting of 5900 images with 2D annotations and 1167 with 3D annotations
and calibrated multi-view camera parameters.

2. We benchmark the performance of a 2D part-based model, which uses our random
forest based 2D part appearance likelihoods. We show that given sufficient labelled
training data our method outperforms the state-of-the-art methods for 2D pose estima-
tion on football footage.

3. We show how multi-view 3D appearance likelihoods can be computed from 2D likeli-
hoods. We solve correspondences across different views for mirror symmetric parts by
introducing a latent variable. We demonstrate how our 3D likelihoods can be plugged
into a 3D part-based model and used to estimate 3D poses outside a studio environ-
ment without imposing a strong pose prior.
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Figure 1: A general overview of our multi-view pose estimation framework. A random forest is first
used to classify each pixel in each image as belonging to a part or the background. The results are
then back-projected to a 3D volume. We find corresponding mirror symmetric parts across views by
introducing a latent variable. Finally, a part-based model is used to estimate the 3D pose.

2 Method
Given a set of calibrated cameras viewing a person, our goal is to estimate the location of
body joints in 3D. Figure 1 shows a general overview of our framework. First a random
forest is used to classify each pixel in each image as a part or the background, as described
in section 2.1. We then discuss how the resulting 2D part appearance likelihoods can be used
for 2D pose estimation in section 2.2. This process is performed so that we can compare 2D
part detectors to previous work for 2D pose estimation. The results from section 2.2 are not
used for performing 3D inference. For 3D part appearance likelihoods we back-project the
result of the random forest pixel classification to a 3D volume, as described in section 2.3.
We then discuss how our 3D part appearance likelihoods can be plugged into any multi-view
part-based model in section 2.4. The problem of mirror ambiguity for symmetric parts is
addressed in section 2.5.

2.1 Appearance likelihoods in 2D using random forests
We use a random forest of classification trees to estimate the probability that a pixel v belongs
to a skeletal joint or the background class. The split decisions made in each tree are based
on thresholding a dimension of the UoC-TTI HOG descriptor [9] of the image window. This
dimension is defined by three numbers as follows. First there is a 2D offset vector u. It is
computed within which cell of the HOG descriptor the point u+ v falls. The final number
defines the dimension of (u+ v)’s cell descriptor to be accessed. It is this entry which is
thresholded in the split decision. The offsets considered are constrained to be within a certain
distance of v.

We have training images that have the position of the 2D skeleton joints labelled. From
these labelled images we generate a new labelled dataset {(hk,yk)}K

k=1 where hk is the HOG
descriptor of an image centered at a pixel having a class label yk ∈ {0,1, . . . ,N}. The label 0
corresponds to the background class and the other numbers to the skeletal joints. This is the
labelled data we use to train the random forest. We use the standard procedure for training
random forests similar to [5, 18].

When we apply a learnt decision tree to a test image i and a pixel location v in an image
with HOG descriptor h we will reach a leaf node m. The posterior probability of pixel v
having label y is equal to the proportion of the training samples that reach node m and have
label y. The output of our random forest is the average of the probabilities returned by the
trees in the forest. After the random forest is run on all pixels in the image we separately
smooth the posterior probability maps obtained for each part. The final response image for
each part n is denoted by fn(i,v).
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2.2 Inferring the 2D pose
We first formulate the pose estimation problem in 2D. This is done so we can introduce
our notation for part-based models and can compare the random forest results to previous
work for 2D pose estimation. However, the results from this sub-section are not used when
performing the multi-view 3D inference.

Let Vn be a random variable representing the 2D position of part n. The 2D pose of the
person is then V = (V1, . . . ,VN). Let I be a random variable representing the image evidence.
We consider part-based models that assume there is some image evidence for each part In
and that these are conditionally independent given the position of the parts

PI|V (i | v) = ∏
n

PIn|V (in | v) (1)

where lower cases are used for outcomes of the random variables. We use the response from
the random forest as the 2D part appearance likelihoods

PIn|Vn(in | vn) ∝ fn(i,vn) (2)

We infer the pose by finding the most probable state of V given the measurement data

max
v

PV |I(v | i) = max
v

[
lnPV (v)+∑

n
lnPIn|Vn(in | vn)

]
(3)

where PV (v) describes an arbitrary 2D pose prior. This optimization can be solved in different
ways, depending on the form of the 2D pose prior PV (v). In our implementation we first
find the modes of the part appearance likelihoods PIn|Vn(in | vn). To make the process more
efficient we first sample pixels with high probabilities to find a small set of modes. In practice
we use the meanshift algorithm for this. In many cases, taking the mode with the highest
probability for each joint independently leads to a valid configuration. (This corresponds
to the pose prior PV (v) = ∏n PVn(vn) where each PVn(vn) is uniform and the same for all
n.) This is because the random forest is able to aggregate information from a relatively
large neighbourhood around each joint and produce confident joint hypotheses. There are,
however, some cases where this approach fails. To find the estimated joints which have
both a spatial configuration consistent with a valid 2D pose and high appearance scores,
we search for the optimal combination of body joints from a small set of highly probable
modes. This is done efficiently by using dynamic programming to minimize a cost function
that incorporates a simplified shape prior. Specifically, we assume that PV (v) is factorized
over a tree graph and use a mixture of Gaussians prior for the relative location of joints with
respect to their parents [21]. The parameters of this prior are calculated separately based on
the statistics of the training data annotations.

2.3 Appearance likelihoods in 3D
Let the 3D position of joint n be the random variable Xn and the 3D pose X = (X1, . . . ,XN).
The image evidence from view c for joint n is represented by the random variable Ic,n and
the evidence of all joints for a single view is Ic = (Ic,1, . . . , Ic,N). Let Vc,n be the 2D position
of joint n in view c. Let Tc be the projective transformation of camera c. We assume the 2D
position vc,n of joint n in view c is deterministically determined as vc,n = Tc(xn). The part
appearance likelihood for view c is computed by projecting Xn to that view

PIc,n|Xn(ic,n | xn) = PIc,n|Vn(ic,n | Tc(xn)) ∝ fn(ic,Tc(xn)) (4)
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Figure 2: Overcoming ambiguities introduced by symmetric appearances. The left image shows the
3D appearance likelihoods computed from part detectors that ignore the left and right label of the parts.
The right image shows the result of finding corresponding parts across views by maximizing a latent
variable. The ground truth pose is shown in black.

We assume the image evidence across views is conditionally independent given xn and thus
compute the multi-view 3D appearance likelihood (see figures 1 and 2) as

PI1,n,...,IC,n|Xn(i1,n, . . . , iC,n | xn) = ∏
c

PIc,n|Xn(ic,n | xn) (5)

2.4 Inferring the 3D pose
Similar to 2D we estimate the pose by computing the most probable state of X given the
measurement data. This equates to finding the maximum of the posterior distribution

max
x

PX |I1,...,IC(x | i1, . . . , iC) = max
x

[
lnPX (x)+∑

n
∑
c

lnPIc,n|Vc,n(ic,n | Tc(xn))

]
(6)

where PX (x) describes an arbitrary 3D pose prior. This optimization can be solved in differ-
ent ways, depending on the choice of the state space for X and the form of the 3D pose prior
PX (x). Depending on whether we have a continuous or discrete state space a solution can be
found using either stochastic optimization [19] or dynamic programming [2, 4, 17].

Our 3D appearance likelihoods can be used by any multi-view part-based model. To
demonstrate the performance of a full system we follow the approach of [4] and discretize
the state space. We refer to [4] for an analysis of the tractability of this approach. We assume
the person is within a bounding cube and create a uniform grid covering this cube. The
appearance likelihoods are then evaluated for all grid points. We consider two different pose
priors PX (x). The first is PX (x) = ∏n PXn(xn) with PXn(xn) uniform over its state space. Then
the global optimum can be found by optimizing equation (5) for each joint independently.
The second pose prior imposes limb length and intersection constraints as in [4].

2.5 Overcoming ambiguities introduced by symmetric appearances
In equation (4) we have assumed that the mapping between the labels for the 2D joints and
the 3D joint labels is consistent across views and that it is one-to-one. However, this is not
necessarily the case especially for the mirror symmetric joints, i.e. joints associated with the
right and left legs (arms). For such joints, the classifier can either be trained to

• just detect the joints and ignore their label as left or right or

• recognize the left and right label of the image
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In the latter scenario we do not know if the joints labelled as left in two views correspond to
the same physical 3D joints. Therefore to match the left and right legs of an image with the
left and right of the person we have two choices. If we also try to match the arms we have a
total of 22 = 4 choices per image. Considering all C views gives a total of 22C choices.

To handle this mirror ambiguity we introduce a discrete latent random variable Mc =
(Mc,1, . . . ,Mc,N) which represents the mapping of the labels from the 3D joint labels to the
2D joint labels in view c. We assume Mc is uniformly distributed over its 4 states. For
non-limb joints the mapping is considered unambiguous. Instead of using (4) we thus let the
image evidence of each joint depend on Mc,n as follows

PIc,n|Mc,n,Xn(ic,n | mc,n,xn) = PIc,n|Mc,n,Vn(ic,n | mc,n,Tc(xn)) ∝ fmc,n(ic,Tc(xn)) (7)

Then the optimum of the full posterior distribution for X and M = (M1, . . . ,MC) assuming a
uniform prior over M is given by

max
x,m

PX ,M|I1,...IC(x,m | i1, . . . , iC) = max
m

max
x

[
lnPX (x)+∑

n
∑
c

lnPIc,n|Mc,n,Vc,n(ic,n | mc,n,Tc(xn))

]
(8)

and this becomes the optimization problem we solve at inference time as opposed to (6). See
figure 2. We perform the outer optimization over m by exhaustive search, independently of
the method used for the inner optimization over x. This approach can therefore be applied to
any part-based model. When we solve this optimization problem the joints across the views
will be in correspondence, but there may still be an unresolved front/back ambiguity in 3D.

3 Experiments
To benchmark the performance of our approach in a realistic outdoor scenario we have cre-
ated the publicly available KTH Multiview Football Dataset from a professional football
game. The dataset consists of about 7000 images of two different players of the same team.
We first annotated the 2D pose of the players for 5907 images. We used 3900 of these to
train the random forest and the rest for testing the 2D pose estimation performance.

We additionally annotated two sequences where the player was captured by three moving
cameras. The first sequence consists of 214×3 images and the second sequence of 175×3
images, recorded at a frame-rate of 25Hz. We used the 2D annotation to synchronize and
calibrate the cameras and the human pose is reconstructed in 3D using the affine factorization
algorithm [3, 10, 15, 20]. We used the 3D reconstruction of the first sequence as the ground
truth for testing the 3D pose estimation performance.

3.1 Scoring and inference in 2D
What follows contains an analysis of the effect of different parameters on the performance
of the random forest, as well as a comparison with the state of the art Flexible Mixture of
Parts (FMP) model [21] trained and tested on our football dataset.

Number of trees: It is well known that decision trees are prone to overfitting and com-
bining multiple trees can significantly help in regularizing their outcome [11]. However, we
observe that in our case the improvement with more than two trees is not drastic, see figures
3(a) and 4(a) In our experiments we fixed the number of trees to 5.
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Figure 3: Left: The effect of the number of trees in the random forest on performance. The increase
in performance is minimal with the addition of more trees to the forest after the first two. Right: How
the depth of the tree affects the output of the random forest.
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Figure 4: (a) The effect of the number of trees on the PCP score with three different matching methods.
These are taking the modes with maximum probability (blue curve), using dynamic programming with
a simple shape prior (red curve), and an oracle matching method on the highest (5-10) probability
modes (green curve). (b) The change in performance as a result of increasing tree depth. (c) The 2D
histogram of the offsets selected at the decision tree splits at different depth levels. The initial splits
use information from wider neighbourhoods.

Depth of trees: Figures 3(b) and 4(b) show how the depth of the trees affects the per-
formance of random forest. It can be observed that with a random forest of depth 5, we
can already correctly classify pixels belonging to easy to detect parts like head, hips, and
knees. The depth of each tree was set to 20 in our experiments. It is worth mentioning that
the resulting decision trees are not balanced. The decision trees trained on our dataset have
around 10% of the nodes of a balanced tree with equal depth.

Feature pool: Decisions at each node are made by thresholding HOG [6, 9] dimensions
in a neighbourhood of each pixel. To increase randomization, at each node a pool of features
is created by selecting a random subset of all the available features. The optimal feature and
threshold are then chosen from this pool. We set the feature pool size to 25000. Figure 4(c)
shows the distribution of the offsets chosen at different depths levels of the random forest.
The results show that at the earlier levels of the tree a wide exploration of the surrounding
area is performed, but as we move down to the bottom of the tree most of the selected features
are centered at the probe pixel. In our experiments we allow for offsets up to 50 pixels. The
height of the person is about 180 pixels.

Comparison of our 2D pose estimation method to state-of-the-art: We compare our
results to Flexible Mixture of Parts(FMP) [21] which achieves state of the art performance
on general 2D human pose estimation tasks. We have trained and tested their method using
the original code provided by authors on our football dataset.

Table 1 shows a summary of results on our football dataset. The results show that our
method based on random forest (RF) outperforms FMP [21] on this dataset. It is also worth
mentioning that our simple random forest is at least an order of magnitude faster than FMP,
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Figure 5: A qualitative comparison of random forests with a state of the art pose estimation method
on our dataset. The top row shows the modes of probabilities output from the random forest. A point’s
size indicates its certainty level. The second row is the result of inferring the configuration by imposing
2D pose priors. The last row is the result of FMP [21].

since we do not need to convolve the HOG-image with several filters for each part. Figure
5 shows some qualitative results comparing to the predictions of FMP model. The major
problems seem to be caused by unseen poses, lack of strong features for parts such as lower
arms, and the absence of contextual support, e.g. for outstretched limbs. The latter can be
potentially solved by using higher offsets (as described in section 2.1).

We also tried our random forest on some standard datasets, which were smaller than
our football dataset and had more background clutter. Under those conditions FMP still
outperforms our random forest. We believe that the difficulty to deal with severe background
clutter is a disadvantage of the current version of our part detectors. However, a recent
work [7] shows state of the arts performance within a very similar random forest framework.
Although, this approach still seems to require considerably more training data than FMP.

Head Torso Upper Arms Lower Arms Upper Legs Lower Legs Average
Flexible Mixture of Parts .97 .99 .92 .66 .94 .80 .86
RF .94 .96 .90 .69 .94 .84 .87
RF + Pose Prior .96 .98 .93 .71 .97 .88 .89
RF + Oracle Matching .97 .99 .94 .82 .98 .97 .94

Table 1: A comparison of PCP scores of different baselines on our football dataset. The rows represent
the results of the following methods. (1) FMP [21] trained and tested on our dataset. (2) Taking the
optimal modes for each joint independently. (3) Taking the modes that maximise a shape prior. (4)
Taking the optimal modes wrt the ground truth. For the last two baselines the matching is performed
only on a few of the most probable modes (5-10).

3.2 Scoring and inference in 3D
To perform 3D pose estimation we follow the approach of [4] and discretize the search
space. We assume that the person is within a bounding cube (fig. 1) and create a 64×64×
64 grid covering this cube. We compute our 3D part appearance likelihoods for all grid
points. We perform inference with and without the pose prior discussed in section 2.4. The
former imposes limb length and intersection constraints. We also perform inference with and
without the latent variable handling the mirror ambiguity as discussed in section 2.5.
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Figure 6: Final 3D poses obtained by taking, for each part independently, its most probable state over
the grid. The mirror ambiguity is solved jointly. Estimation is red and ground truth is blue.

The results are summarized in table 2. The performance is measured using 3D PCP
scores with α = 0.5 [4]. The table shows that introducing the latent variable to deal with the
mirror ambiguity significantly improves the final results. On this dataset it is surprisingly
much more important than the pose prior. Figure 6 shows our estimated 3D poses (red)
compared to the ground truth (blue), for six different frames. For this figure the inference
was performed using the latent mirror variable but without any pose prior (uniform). The
figure shows that our 3D appearance likelihoods accurately detect most of the body parts,
even without imposing any pose prior. If we add the limb length and intersection constraints
we are able to correct for some of the limited double counting that occurs for the lower legs,
which is reflected by numbers in table 2.

Upper Arms Lower Arms Upper Legs Lower Legs Average
RF .02 .03 .86 .57 .37
RF + Pose Prior .16 .07 .91 .87 .50
RF + Mirror Latency .87 .68 1.00 .96 .88
RF + Mirror Latency + Pose Prior .89 .68 1.00 .99 .89

Table 2: An evaluation of our 3D pose estimation results in terms of PCP scores. The rows represent
the results of the following methods. (1) Taking the maximum probability estimates for each part
independently over the 3D grid. (2) Taking the pose priors into account. (3) Handling mirror ambiguity
without pose priors and (4) with pose priors.

4 Conclusion

In this paper we have discussed multi-view human pose estimation using part-based models.
We have focused on the part appearance component of such models. We believe that 2D part
detectors based on random forest classification are simple to implement and efficient at test-
time. We achieve state-of-the-art performance on our new large football dataset. Yet, dealing
with small datasets with severe background clutter can be challenging for our method which
we would like to address in future work.
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When combining the 2D part detectors over multiple views for 3D part detection, the
similar appearance of mirror symmetric body parts is a problem. We have highlighted this
and presented a simple and surprisingly accurate solution based on a latent variable formu-
lation. Our resulting multi-view part detectors can be used by any multi-view part-based
model. We have shown that they allow 3D pose estimation outside the studio, in a pro-
fessional football game, without relying on strong priors for motion or 3D pose. We hope
that our new football dataset will stimulate more research of 3D pose estimation in realistic
outdoor environments.

Acknowledgement This work was supported by the FP7 project "Free-viewpoint Immer-
sive Networked Experience". The authors would like to thank AIK Football Club and Hego
Tracab for help with collecting the football footage.
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