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Abstract

The Bloch-Torrey partial differential equation can be used to describe the
evolution of the transverse magnetization of the imaged sample under the influ-
ence of diffusion-encoding magnetic field gradients inside the MRI scanner. The
integral of the magnetization inside a voxel gives the simulated diffusion MRI
signal. This paper proposes a finite element discretization on manifolds in order
to simulate the diffusion MRI signal in domains that have a thin layer or a thin
tube geometrical structure. Suppose that the three-dimensional domain has a
thin layer structure: points in the domain can be obtained by starting on the
two-dimensional manifold and moving along a depth (thickness) function. For
this type of domains, we propose a finite element discretization formulated on
a surface triangulation of the manifold. The variable thickness of the domain is
included in the weak formulation on the surface triangular elements. A simple
modification extends the approach to ‘thin tube’ domains where a manifold in
one dimension and a two-dimensional variable cross-section describe the points
in the domain. We conducted a numerical study of the proposed approach by
simulating the diffusion MRI signals from the extracellular space (a thin layer
medium) and from neurons (a thin tube medium), comparing the results with
the reference signals obtained using a standard three-dimensional finite element
discretization. We show good agreement between the simulated signals using
our proposed method and the reference signals. The approximation becomes
better as the diffusion time increases. The method helps to significantly reduce
the required simulation time, computational memory, and difficulties associated
with mesh generation, thus opening the possibilities to simulating complicated
structures at low cost for a better understanding of diffusion MRI in the brain.
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FEniCS, thin layer, thin tube.

1. Introduction

Diffusion magnetic resonance imaging (dMRI) is a non-invasive technique
that makes use of the diffusional process of water molecules to probe the micro-
structure of biological tissues. In the brain, the micro-structure is extraordinar-
ily complicated: cells such as neurons and glials cells crowd together, leaving a5

tortuous extracellular space (ECS). Neurons are made of a central body (soma)
to which are attached long protrusions called neurites (axons and dendrites),
the axons being long cylinders and the dendrites having a tree structure. In a
neuron, the diameter of the soma is on the order of 10µm, the diameter of the
dendrite segments can range from a few µm to less than half a µm, and the10

total length of all the dendrite segments is on the order of several millimeters
[1, 2]. Fig. 1a shows the morphology of dendritic trees reproduced from [3].
The neuron on the top left from the drosophila melanogaster has 123 dendrite
branches with the average diameter of 1µm. The human neuron on the right
has 585 dendrite branches and the average diameter of 0.3µm. The two neurons15

have soma surface areas of 3.14µm2 and 693.5µm2, respectively.
The ECS is the space outside of the cells (such as neurons and glial cells)

that has a complicated geometrical structure because the cells are irregularly
shaped and packed tightly together. A recent study indicates that the average
thickness of the ECS in the in-vivo rat cortex is between 38 and 64 nm (see the20

review [4] and citations therein). In Fig. 1b we show the extracellular space
(marked in red) of a small region of the rat cortex [4, 5, 6].

drosophila melanogaster

human

(a) Neurons (b) ECS

;

Figure 1: (a) Morphology of dendritic trees reproduced from [3]. The neuron on the left from
the drosophila melanogaster has 123 dendrite branches and the average diameter of 1µm. The
human neuron on the right has 585 dendrite branches and the average diameter of 0.3µm.
The two neurons have soma surface areas of 3.14µm2 and 693.5µm2, respectively. (b) The
extracellular space (marked in red) of a small region of the rat cortex with the scale bar of
1µm. The image was reprinted from [5] with permission from Elsevier and Prof. Eva Syková.
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The extraction of quantitative micro-structure information from dMRI mea-
surements has sustained a vast amount of research. By simulating individual
structures such as neurons and the extra-cellular space, one hopes to build up25

a model of the dMRI signal at the voxel or the region-of-interest level that
combines these individual structures. Water exchange between the structures
through cell membranes can be added to the basic model later. The predominant
approach up to now has been building the dMRI signal from simple geometri-
cal components and models: 1) analytical diffusion models in cylinders, spheres,30

etc.; 2) Gaussian diffusion tensor in extra-cellular space; and then extracting the
model parameters: volume fraction and size distribution of cylinder and sphere
components, intrinsic and effective diffusion coefficients and tensors [7, 8, 9].

More recently, complicated components have been used for diffusion-weighted
MR spectroscopy (using several metabolites), with neurons and astrocytes be-35

ing represented by one-dimensional tree structures [10]. The model parameters
in this case were the mean values and the standard deviations of branch lengths
and branch numbers, as well as the intrinsic diffusion coefficient. The use of one-
dimensional components in that study was justified by the long diffusion times
(from 52 ms up to 2002 ms). In [11, 12], numerical simulations of the dMRI40

signal from neuronal dendrite trees were conducted by solving the Bloch-Torrey
equation on one-dimensional tree structures. The extraction of morphological
properties of two different types of neurons was preliminarily evoked in [13].
Similarly, studying the diffusion characteristics of the extracellular space can
reveal information about its structure, and models are emerging based on MRI45

[14, 5].
Numerical simulations can help to deepen the understanding of the relation-

ship between cellular structure and the dMRI signal and lead to the formulation
of appropriate models. In the same vein, improving the efficiency of dMRI sim-
ulations can accelerate the computational procedure in the estimation of model50

parameters and allows the use of more complicated geometrical components such
as trees structures. Numerical simulations also provide a cheap and powerful
tool to investigate the effect of different pulse sequences and tissue features on
the measured signal which can be used for development, testing, and optimiza-
tion of novel MRI pulse sequences [15, 16].55

Two main groups of approaches to the numerical simulation of dMRI are 1)
using random walkers to mimic the diffusion process in a geometrical domain;
2) solving the Bloch-Torrey partial differential equation (PDE), which describes
the evolution of the transverse water proton magnetization under the influence
of diffusion-encoding magnetic field gradients pulses. The first group is referred60

to as Monte-Carlo simulations in the literature and previous works include [17,
18, 19, 10]. A GPU-based acceleration of Monte-Carlo simulation was proposed
in [20]. The second group of simulations rely on solving the Bloch-Torrey PDE
in a geometrical domain, either using finite difference methods (FDM) [21, 22,
23, 24], typically on a Cartesian grid, or finite element methods (FEM), typically65

on a tetrahedral grid. For previous work on FEM, it is recommended to refer
to [25] for the short gradient pulse limit of some simple geometries, to [26]
for the multi-compartment Bloch-Torrey equation with general gradient pulses,
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and to [27] with the flow and relaxation terms added. A high performance FEM
computing framework was proposed in [28, 29] for large-scale dMRI simulations70

on supercomputers.
A comparison of the Monte-Carlo approach with the FEM approach is be-

yond the scope of this paper. Such a comparison for the short pulse limit was
done in [25], where FEM simulations were evaluated to be much more accurate
and faster than the equivalent modeling with Monte-Carlo simulations.75

The focus of this paper is the simulation of dMRI signals in thin structures,
which is usually memory-demanding and time-consuming. For Monte-Carlo
approaches, if the reflection condition is applied, the particle undergoes multiple
reflections until no further surface intersections are detected [19, 20], and if the
rejection method [30] is applied, the time step sizes need to be small to be80

accurate. This process becomes extremely time-consuming if the layer is thin.
Similarly for FEM and FDM, because of the thin geometrical structures of the
neurons and the ECS, it requires tiny elements or grid sizes to describe the
geometry correctly and at the same time maintain the mesh quality. A naive
mesh generator would generate an excessively large number of elements. The85

time step sizes also need to be small to ensure the accuracy and stability of the
methods.

Based on the fact that the radius of the dendrites and the thickness of the
ECS are much smaller than the diffusion displacement of interest, it is commonly
accepted that the diffusion in the ‘thin’ direction quickly reaches steady-state,90

whereas the interesting physics occurs in a lower dimensional manifold per-
pendicular to the ‘thin’ direction. Therefore, the topological dimension of the
computational domain can be reduced to make MRI simulations more efficient.
The work in this paper is related to an approach developed in [12] to model
dendrite trees as one-dimensional linked segments, where the neurite thickness95

is assumed to be constant in the entire tree. The interaction of the one dimen-
sional tree structure with the three-dimensional soma was included in [11], and
a study of the diffusion MRI signal for such domains was made.

In this paper, variable segment diameters are included into the formulation
for dendrite trees, and this approach is extended to the ECS of variable thick-100

ness. An underlying lower dimensional manifold is assumed in one dimension
for the dendrite tree and in two dimensions for the ECS. These manifolds are
approximated by a surface triangulation (union of straight segments for dendrite
trees and union of flat panels for the ECS). The discretization is formulated on
the surface triangulation nodes. The Cartesian Laplacian operator is projected105

onto the surface triangulation, and the unknown magnetization is multiplied by
a factor that is the layer thickness for the ECS and the cross section area for the
dendrite tree. A numerical study is conducted to compare the simulated diffu-
sion MRI signals using the proposed method with reference signals computed
using standard three-dimensional volume finite elements.110

The proposed method was implemented with the open source software FEn-
iCS [31, 32], which was started in 2003 to realize the vision of efficiently solving
PDEs by FEM with a high-level mathematical notation. Formulating FEM on
lower-dimensional manifolds is today possible in FEniCS either through a direct
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extension of the framework to manifolds [33], or by a CutFEM approach [34].115

The direct approach is chosen since the generality of CutFEM is not needed.
The FEniCS framework today allows for the automated solution of many classes
of PDEs of key societal and academic importance. FEniCS opens the way for
an automated approach since it provides rapid development and efficient imple-
mentation, as well as a framework for reliable control of errors in the solution.120

The reliability is especially critical in medical applications.
The paper is organized as follows. First, in Section 2 we present the Bloch-

Torrey PDE and propose a numerical solution that consists of a space discretiza-
tion on a surface triangulation and the θ−method as the time discretization. We
describe the implementation of the proposed method on the FEniCS platform in125

Section 3 where the equation is decomposed into two sub-equations, for the real
part and imaginary part. Then we give details about the numerical simulations
in Section 4, including information about the meshes and the dMRI parameters.
In Section 5, we present numerical results, showing the reliability of the numer-
ical solutions as well as good agreements between the proposed approach and130

reference solutions. In Section 6 we discuss the fact that the proposed method is
a very good approximation of the reference solution as diffusion time increases,
resulting in a drastic reduction in the computational time. Finally, in Section
7, we given conclusions and propose future developments.

2. Theory135

2.1. The Bloch-Torrey equation

The complex transverse water proton magnetization u in a three-dimensional
domain Ω can be modeled by the Bloch-Torrey PDE [35]:

∂u(x, t)

∂t
+ i γ G(x)f(t)u(x, t)−∇ ·

(
D∇u(x, t)

)
= 0, x ∈ Ω (1)

where i is the imaginary unit (i2 = −1), D is the intrinsic diffusion coefficient,
G(x) = g ·x, g contains the amplitude and direction information of the applied
diffusion-encoding magnetic field gradient, γ = 2.67513×108 rad s−1T−1 denotes
the gyro-magnetic ratio of the water proton, and f(t) indicates the time profile140

of the diffusion-encoding magnetic field gradient sequence.
The most commonly used time profiles f(t) to encode the diffusion include

the pulsed-gradient spin echo sequence (PGSE) sequence [36] and the oscillating
gradient spin echo (OGSE) sequence [37].

• PGSE consists of two rectangular pulses of duration δ, separated by a
time interval ∆− δ (Fig. 2a):

f(t) =


1, 0 ≤ t ≤ δ,
−1, ∆ < t ≤ ∆ + δ,

0, otherwise.

(2)
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• OGSE consists of two oscillating pulses of duration σ, each containing n
periods, separated by a time interval τ − σ (Fig. 2b). For a cosine OGSE
[38, 37], the profile f(t) is

f(t) =


cos (n 2π

σ t), 0 < t ≤ σ,
− cos (n 2π

σ (t− τ)), τ < t ≤ τ + σ,

0, otherwise.

(3)

(a) (b)

Figure 2: A PGSE sequence (a) and a cos-OGSE sequence (b).

In this paper, the water exchange between compartments is neglected, yield-
ing the homogeneous Neumann boundary condition:

D∇u(x, t) · n = 0, x ∈ ∂Ω. (4)

where n is the unitary normal vector pointing outward the boundary.145

Assuming a uniform excitation of the magnetization in the imaging voxel,
the initial condition is:

u(x, 0) = 1. (5)

The signal is measured at the echo time, TE, with TE > δ + ∆ for the
PGSE and TE > σ + τ for the OGSE. The diffusion MRI signal is the total
magnetization averaged over the computational domain Ω:

S(g) =
1

|Ω|

∫
Ω

u(x, TE) dx. (6)

The signal is usually plotted against a quantity called the b−value. For the
PGSE, the b-value is [36]:

b(g, δ,∆) = γ2‖g‖2δ2

(
∆− δ

3

)
. (7)
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For the cosine OGSE with the number of periods n in each of the two durations
σ, the corresponding b-value is [22]:

b(g, σ) = γ2‖g‖2 σ3

4n2π2
. (8)

It is commonly agreed that a reasonable choice for the effective diffusion time,
tD, of the PGSE sequence is:

tD = ∆− δ

3
,

and for cosine OGSE it is [37]:

tD =
σ

4n
.

The unhindered mean squared displacement in three-dimensions is

MSD =
√

6D tD.

In the next section, a finite element discretization on manifolds is derived
in order to simulate the diffusion MRI signal in a thin layer or in a thin tube
structure.

2.2. FEM formulation: from volumes to manifolds150

The three-dimensional domain of simulation, Ω ⊂ R3, is assumed to be
described by a lower dimensional manifold Γ (of dimension two in the case of
the ECS, of dimension one in the case of the dendrite tree) and a variable cross
section V, in other words :

Ω = {(x̃ + x̂) , x̃ ∈ Γ, x̂ ∈ V(x̃)}.

In the case of ECS,
Γ ⊂ R2,V(x̃) ⊂ R1

whereas in the case of dendrite trees,

Γ ⊂ R1,V(x̃) ⊂ R2.

Let Q = H1(Ω) be a Sobolev space, i.e.

H1(Ω) =

{
v : Ω→ C

∣∣∣∣∣
∫
Ω

v2 + |∇v|2 dx <∞

}
.

To construct the weak form of Eq. (1) we multiply both sides with a test
function v ∈ Q and integrate over Ω, we then have∫

Ω

u̇ v dΩ = −
∫
Ω

i γf(t)G(x)u v dΩ +

∫
Ω

∇ ·
(
D∇u

)
v dΩ.
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Apply the Green’s first identity to the diffusion term, we obtain∫
Ω

u̇ v dΩ = −
∫
Ω

i γf(t)G(x)u v dΩ +

∫
∂Ω

D∇u · n v ds−
∫
Ω

D∇u · ∇v dΩ.

The homogeneous Neumann boundary conditions (Eq. 4) on ∂Ω cancel out the
boundary term and give∫

Ω

u̇ v dΩ = −
∫
Ω

i γf(t)G(x)u v dΩ−
∫
Ω

D∇u · ∇v dΩ. (9)

We denote the surface triangulation of Γ by T =
⋃
iEi. Assume we have

available the cross-section V(x̃) at each node x̃ of T . For simplicity, the volume
domain Ω will be idealized as:

Ω = {(x̃ + x̂) , x̃ ∈ Γ, x̂ ∈ V(x̃)},

without worrying about the difference between T and Γ.
Specifically, for the ECS, let x̃1, x̃2, x̃3 be the three nodes of the triangle Ei,

then the six points:{
x̃1 + α1n(x̃1), x̃2 + α2n(x̃2), x̃3 + α3n(x̃3)

}
where n(x̃j), j = 1, 2, 3 is perpendicular to Γ at x̃j , and

α1 ∈ [a1, b1], α2 ∈ [a2, b2], α3 ∈ [a3, b3], [ak, bk] ⊂ R

make up the volume element Ei. In Fig. 3 we show the typical finite element
for the ECS (Fig. 3b) and the dendrite tree (Fig. 3a).

Since our main interest is in performing diffusion simulations where the
diffusion distance is large compared to the size of V, we choose to enforce the
following constraints on the solution:

u (x̃ + x̂) = u (x̃) , x̃ ∈ T , x̃ + x̂ ∈ Ω. (10)

In other words, the solution is constant on V(x̃). Using the above constraint,
we can simply solve for the values of the FEM solution at x̃ ∈ T .155

We choose a continuous Galerkin discretization Qh and use standard basis
functions {ϕk} for T to give rise to the following representations:

uh =

N∑
k=1

Ukϕk, Gh uh =

N∑
k=1

GkUkϕk. (11)

On each element E ∈ Ωh, Eq. (9) becomes∫
E

u̇h vh dE = −
∫
E

i γf(t)Gh uh vh dE+

∫
∂E\∂Ω

D∇uh·n vh ds−
∫
E

D∇uh·∇vh dE.

(12)
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(a) (b)

Figure 3: In case the element is a tapered cylinder, the basis functions are defined on the edge
Ē connecting two center points of circular bases (a). In case the element is a triangle prism,
the basis functions are defined on the triangle Ē formed by midpoints of edges perpendicular
to the middle surface (b).

Note that the boundary term is automatically canceled due to the flux conser-
vation ∑

E′

∫
∂E′\∂Ω

D∇uh · n vh ds = 0, (13)

here E′ indicates the elements sharing the same boundary ∂E.
Choose vh = ϕj , j = 1 . . . N and substitute Eq. (11) to Eq. (12), we obtain

the following discrete equation

N∑
k=1

(
U̇k

∫
E

ϕk ϕj dE + i γ f(t)Gk Uk

∫
E

ϕk ϕj dE +DUk

∫
E

∇ϕk · ∇ϕj dE

)
= 0.

(14)
Since {ϕk} is defined on T , the integral on E is decomposed and Eq. (14)

becomes

N∑
k=1

(
U̇k

∫
Ē

ϕk ϕj ηk dĒ + i γ f(t)Gk Uk

∫
Ē

ϕk ϕj ηk dĒ

+DUk

∫
Ē

∇Ēϕk · ∇Ēϕj ηk dĒ

)
= 0 (15)

where ηk is the cross-section area ηk = |V(xk)| and ∇Ē denotes the projection
of the gradient operator on Ē. For simplicity, from now on we use ∇ to denote
∇Ē .

Let η(x) = |V(x)| be the continuous function of the thickness, the flux
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conservation Eq. (13) becomes∑
Ē′

∫
∂Ē′

D∇uh · n v η ds = 0 (16)

which is implicitly imposed through the implementation of Eq. (15). Here Ē′160

indicates the elements sharing the same boundary ∂Ē.
We also note that Eq. (15) allows solving the equation on surface meshes

and the thickness is added to the equation analytically.
Eq. (6) now becomes

Sm(g) =

(∫
Γ

η(x) dΓ

)−1∫
Γ

uh(TE) η(x) dΓ. (17)

In case η is constant, Eq. (17) is simplified to [12]

Sm(g) =
1

|Γ|

∫
Γ

uh(TE) dΓ. (18)

The space-time discretization of Eq. (15) with the θ−method (used also in
[27, 29]) reads

N∑
k=1

(
Un+1
k − Unk

∆t

∫
Ē

ϕk ϕj ηk dĒ + i γ Gk F(Un+θ
k )

∫
Ē

ϕk ϕj ηk dĒ

+DUn+θ
k

∫
Ē

∇ϕk · ∇ϕj ηk dĒ

)
= 0 (19)

where θ ∈ [0, 1],∆t = tn+1 − tn, and

Un+θ
k = θ Un+1

k + (1− θ)Unk ,

F(Un+θ
k ) = θ f(tn+1)Un+1

k + (1− θ) f(tn)Unk .

The explicit Forward Euler and implicit Backward Euler methods correspond
to θ = 0 and θ = 1. Here, we use θ = 1

2 to have an implicit, unconditionally165

stable, and second-order method referred to as a Crank-Nicolson method.

3. Implementation

FEniCS does not officially support complex-valued PDEs although this prob-
lem is under development [39]. So, to implement the proposed method in the
current versions of FEniCS, we need to first decompose Eq. (19) into two equa-
tions for the real part and imaginary part. Then, we couple the two equations
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again into the linear and bilinear forms. For simplicity, we can write Eq. (19)
as the following∫
Ē

un+1
h − unh

∆t
v η dĒ+i γ

∫
Ē

GF(un+θ
h ) v η dĒ+D

∫
Ē

∇un+θ
h ·∇v η dĒ = 0. (20)

Since unh is complex-valued, we can write unh = un,rh + i un,ih and decompose Eq.
(20) into two equations∫

Ē

un+1,r
h − un,rh

∆t
vr η dĒ − γ

∫
Ē

GF(un+θ,i
h ) vr η dĒ

+D

∫
Ē

∇un+θ,r
h · ∇vr η dĒ = 0,

∫
Ē

un+1,i
h − un,ih

∆t
vi η dĒ + γ

∫
Ē

GF(un+θ,r
h ) vi η dĒ

+D

∫
Ē

∇un+θ,i
h · ∇vi η dĒ = 0.

(21)

We choose to test the first equation with v = vr and the second equation with
v = vi.
The linear and bilinear forms corresponding to Eq. (21) are defined as

a(un+1
h , v) =

1

∆t

(∫
Ē

un+1,r
h vr η dĒ +

∫
Ē

un+1,i
h vi η dĒ

)
−θ F (tn+1, un+1

h ),

L(v) =
1

∆t

(∫
Ē

un,rh vr η dĒ +

∫
Ē

un,ih vi η dĒ

)
+(1− θ)F (tn, unh)

(22)
where

F (tn, unh) = γ f(tn)

∫
Ē

Gun,ih vr η dĒ −D
∫
Ē

∇un,rh · ∇vr η dĒ

− γ f(tn)

∫
Ē

Gun,rh vi η dĒ −D
∫
Ē

∇un,ih · ∇v
i η dĒ.

Eq. (22) was implemented in FEniCS C++ and Python as the following

v = TestFunction(W)170

vr, vi = v[0], v[1]

u = TrialFunction(W);
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ur, ui = u[0], u[1]

175

def FuncF(ft, gnorm, G, ur, ui, vr, vi, D):

Fr = ft*gnorm*G*ui*vr - D*inner(grad(ur), grad(vr))

Fi = - ft*gnorm*G*ur*vi - D*inner(grad(ui), grad(vi))

return Fr + Fi

180

G=Expression("x[0]*g0+x[1]*g1+x[2]*g2", g0=g0, g1=g1,

g2=g2,domain=mesh,degree=1)

a = eta*(ur/dt*vr+ui/dt*vi-theta*FuncF(ft, gnorm, G, ur , ui , vr, vi,

D))*dx185

L = eta*(ur_0/dt*vr+ui_0/dt*vi+(1-theta)*FuncF(ft_prev, gnorm, G, ur_0,

ui_0, vr, vi, D))*dx

where W is a vector function space defined in FEniCS Python as190

V = FunctionSpace(mesh,"CG",porder)

W = MixedFunctionSpace([V, V])

In C++, the definition is different for different topological dimensions. For 2D195

manifolds it is

domain = Cell("triangle", geometric_dimension=3)

V = FiniteElement("CG", domain, 1)

W = MixedElement([V,V])200

and for 1D manifolds, it is

domain = Cell("interval", geometric_dimension=3)

V = FiniteElement("CG", domain, 1)205

W = MixedElement([V,V])

ur_0 and ui_0 indicate the solutions un,rh , un,ih from the previous time step and ur

and ui indicate the unknowns un+1,r
h , un+1,i

h . The initial conditions are ur_0=1

and ui_0=0 at t = 0.210

4. Method

We conduct a numerical study of the proposed approach by simulating the
diffusion MRI signal of thin tube and thin layer domains. The three methods
to be compared are :

1. Reference solution (Method 1), the standard three-dimensional finite ele-215

ment discretization, with tetrahedral elements [29].

2. Proposed method (Method 2), the formulation on manifolds taking into
account variable cross-section, as described in this paper.

12



3. Previous method (Method 3), the formulation on manifolds with a uniform
cross-section [12]. In other words, ηk = η̄,∀k in Eq. (15), where η̄ is the220

averaged value.

4.1. Simulated domains

The simulation geometries are the following:

1. Tree, see Fig 4.
The 3D tree has variable cross-section. Each branch is modeled as a ta-225

pered cylinder with two different radii: r1 and r2. Here r1 = {2, 1, 0.5}µm
and r2 = {1, 0.5, 0.2}µm correspond to three generations of the tree. The
total length is 1211µm.

2. Neuron, see Fig 5a.
The 3D neuron is from the drosophila melanogaster [3, 40], with the aver-230

age dendrite diameter being 1µm, total length being 2462µm. The 1D neu-
ron is manually generated by connecting the centers of the cross-sections
of the dendrite segments of the 3D neuron.

3. Thick Plane, see Fig 5b.
The thickness varies between 0.5µm and 4µm. Analytically, the thickness235

is expressed as η(x, y, z) = 9
4 −

x
10 −

z
50 . The corresponding 2D plane is

ABCD withA(12.5; 0; 25), B(12.5; 0;−25), C(−12.5; 0;−25), D(−12.5; 0; 25).

4. Model ECS (extra-cellular space), see Fig 6.
This is made of random planes whose thickness varies between 0.3µm
and 0.9µm. The thickness function η is shown on the corresponding 2D240

manifold domain in Fig 6b.

(a) (b) (c)

Figure 4: A tree with variable cross-sections (a). Each branch is modeled as a tapered cylinder
with two different radii r1 and r2 (b). Here r1 = {2, 1, 0.5}µm and r2 = {1, 0.5, 0.2}µm
correspond to three generations of the tree. The corresponding 1D tree is shown in (c).
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(a) Neuron (b) A plane with variable thickness

Figure 5: 3D neuron (a). A thick plane with variable thickness η(x, y, z) = 9/4− x/10− z/50
(b).

(a) 3D ECS (b) 2D ECS

Figure 6: An artificial ECS made of random planes whose thickness varies between 0.3µm and
0.9µm (a). The function of thickness η is shown on the corresponding 2D manifold (b).

4.2. Mesh generation

The surface meshes for the above geometries were generated either with
Salome [41] or from a medical segmentation with ANSA [42]. To generate
the volume finite element mesh, we wrapped the STL mesh and generated a245

watertight surface mesh from ANSA. The surface meshes of the Tree, the Thick
Plane and the Model ECS were generated from manually defined geometries
with the help of Boolean Operations in Salome in which we need to remove
some gaps and intersections. For the Neuron, we downloaded the morphology
file fru-M-100383.swc from the website [3, 40]. It was then converted to the STL250

file format.
In Section 2.2, we idealized the thin domains as one layer of special elements
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along a manifold to establish the formulas. However, it is not practical to
generate a volume finite element mesh consisting of one layer of elements, at least
not in a robust way with existing finite element meshing resources. Therefore,255

the standard finite element meshes used to generate reference signals in the
next section have elements that are much smaller than the thickness of the thin
layers.

Table 1 shows the size of the volume and manifold meshes used for numerical
simulations, corresponding to the above described domains. The thickness of the260

3D tree varies significantly: between 0.2 and 2 µm. This kind of domain needs
to be meshed with a large number of tetrahedra and it is the most expensive.

Sample thickness hmin hmax hmean # vertices # elements

Tree 1D 0.2-2 0.5 0.5 0.5 1216 1215
Tree 3D 0.03 0.5 0.08 761175 3411547

Neuron 1D 1 0.4 1.9 0.9 1335 1342
Neuron 3D 0.03 0.9 0.3 65260 199973
Plane 2D 0.5-4 0.2 0.4 0.3 5869 11436
Plane 3D 0.2 0.8 0.4 24379 103595

Model ECS 2D 0.3-0.9 0.08 0.9 0.6 21986 46336
Model ECS 3D 0.004 6.0 0.4 87580 293792

Table 1: Information about the volume and manifold meshes corresponding to the geometries
on which numerical simulations were performed. The length unit is (µm).

4.3. DMRI parameters

In the following, we will use the following format to describe the dMRI
parameters of the simulations:{

PGSE(δ,∆)

OGSE(σ = τ)
, ug ≡

g

‖g‖
, b,

where for the OGSE sequence, we always use the cosine OGSE with n = 2 and
σ = τ . The time unit is (ms) and the b unit is (s/mm

2
).265

4.3.1. B-value

We simulated b−values between 0 and 4000 s/mm
2

which contain the feasible
range of the vast majority of existing MRI scanners [43, 44, 45].

4.3.2. Diffusion time

The effective diffusion time tD varies for different applications but can be270

between 0.38 and 40 ms for the OGSE (see a review in [46]). For a PGSE, tD
is larger and can be up to ∼ 1 s [10]. In this paper, tD is varied between 5 and
500 ms for the PGSE and between 1.3 ms and 6.3 ms for the OGSE.
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4.3.3. Gradient directions

At the most complicated, the simulations were performed over a set G of275

270 gradients, quasi-uniformly distributed on a sphere (as used in [13]). The

distribution of the three corresponding b−values, 1000, 2000, and 3000 s/mm
2
,

over the 270 gradient directions in that study is shown in Fig. 7. Here φ
represents the horizontal azimuth angle measured on the xy−plane from the
x−axis in the counterclockwise direction, and θ represents the azimuth angle280

measured from the z−axis in the spherical coordinates.

Figure 7: The distribution of b−values over the 270 gradient directions on a sphere, used in
the numerical simulations. Here φ represents the horizontal azimuth angle measured on the
xy−plane from the x−axis in the counterclockwise direction, and θ represents the azimuth
angle measured from the z−axis in the spherical coordinates.

5. Results

The simulations on manifolds and small-scale volumes were performed with
FEniCS 1.8.0 [32, 29] on a stationary desktop (Intel(R) Core(TM) i7-3770
CPU@3.40GHz) equipped with Linux Ubuntu 16.04 LTS, where timing compar-285

isons were carried out. For large-scale volumes, the simulations were performed
with FEniCS-HPC [47, 28, 29] on the KTH Beskow supercomputer [48] with 32
MPI processes for each b−value. A Krylov solver is used with the biconjugate
gradient stabilized method and the block-Jacobi preconditioner from the PETSc
library. The water diffusion coefficient used is D = 3× 10−3mm2/s.290

The accuracy of our manifold model (Eq. (15)), compared to the full 3D
model (Eq. (9)), is measured using the relative difference between the signals,
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computed by Eq. 6 and Eq. (17), i.e.:

R =
|S(g)− Sm(g)|

S(g)
. (23)

Rmax and Rmean are used to indicate the maximum and the mean value of R
over all gradient directions.

Before presenting the results of the simulations using the meshes described
in Table 1, we check that the results are reliable by refining the spatial mesh
and the time step of the Crank-Nicolson method. We generated refined meshes
with a mean element size that is half of the original meshes; two Crank-Nicolson
time steps, ∆t = 0.02 ms and ∆t = 0.04ms, were used. The dMRI parameters
were :

PGSE(10, 10), ug =
[1, 1, 1]√

3
, b = 4000 s/mm

2
.

The computed signals for the Tree, the Neuron, and the Model ECS are shown
in Table 2. The biggest change in the simulated signal is about 1.3% for Model
ECS. Such small changes show that the numerical solution is stable and the295

meshes listed in Table 1 are adequate for comparing the proposed method and
the reference solution. In addition, it can be seen in the table that the compu-
tation times on the manifolds are significantly smaller than on 3D domains. In
particular, the 1D simulations take negligible time.

Original mesh Refined mesh
Sample (∆t = 0.04 ms) (∆t = 0.02 ms)

signal hmean Timing (s) signal hmean

Tree 1D 0.1883 0.50 1.0 0.1893 0.25
Tree 3D 0.2040 0.08 9897.0 0.2042 0.05

Neuron 1D 0.2551 0.90 1.0 0.2566 0.45
Neuron 3D 0.2521 0.30 812.5 0.2540 0.16

Model ECS 2D 0.0375 0.60 79.6 0.0381 0.28
Model ECS 3D 0.0352 0.40 1614.7 0.0357 0.26

Table 2: The mesh sizes and the time-step size are reduced by half to observe the signals
changes for δ = ∆ = 10 ms and b = 4000 s/mm2.

From now on, we fix the time step size to be ∆t = 0.04 ms for all simulations in300

the following sections.

5.1. Tree

We first compare the signals of Methods 1, 2, and 3 for four PGSE sequences,
with the following dMRI parameters:

PGSE(1, 5),

PGSE(1, 10),

PGSE(1, 40),

PGSE(1, 200),

,ug ∈ G, b ∈ {1000, 2000, 3000}.
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The corresponding MSDs are 9.2µm, 13.2µm, 26µm and 60µm. The results are
shown in Fig. 8. The proposed method (Method 2) gives a good approximation
to the reference model (Method 1) and the approximation gets better at longer
diffusion times. The relative differences are 12.5%, 6.8%, 4.6% and 3.0%, re-
spectively. The constant cross-section 1D model (Method 3) gives a much worse
approximation in this case with the relative differences being 120%, 100%, 56%
and 37%, respectively.

(a) Rmax verus ∆ (b) Signals for a PGSE with ∆ = 5 ms

Figure 8: A comparison of signals on the tree shown in Fig. 4 for four PGSE sequences
with ∆ = 5 ms, ∆ = 10 ms, ∆ = 40 ms and ∆ = 200 ms (a). The variable cross-section
model gives a good approximation to the 3D model and the approximation gets better at
longer diffusion times. The relative differences are 12.5%, 6.8%, 4.6% and 3.0%, respectively.
The constant cross-section 1D model gives a much worse approximation in this case with the
relative differences being 120%, 100%, 56% and 37%, respectively. Fig. (b) shows the signals
at ∆ = 5 ms for which the relative difference is much smaller for Method 2 than for Method
3.

Now we compare Method 1 and Method 2 for two cosine OGSE sequences (Eq.
3). The following dMRI parameters were used:{

OGSE(20)

OGSE(40)
ug ∈ G, b ∈ {1000, 2000, 3000};

The relative difference is about 15.5% at σ = τ = 20 ms. Similarly, the approx-
imation gets better at longer diffusion time and the relative error is less than
5% at σ = τ = 40 ms (Fig. 9).305

5.2. Neuron

Now we consider the Neuron and compare Method 1 and Method 2 for three
cosine OGSE sequences (Eq. 3). The following dMRI parameters were used:

OGSE(10)

OGSE(30)

OGSE(50)

ug ∈ G, b ∈ {1000, 2000, 3000};
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(a) Signals (b) Relative error

Figure 9: Signals for cosine OGSE sequences in the variable-thickness tree compared to the
reference signals for σ = τ = 20 ms and σ = τ = 40 ms (b). The approximation gets better
at the longer diffusion time. The maximum relative difference is about 5% for σ = τ = 40 ms
(b).

The results are shown in Figs. 10a and 10b in which the relative difference
is less than 17% for all gradient directions and the mean relative difference is
around 4%. Again, the approximation gets better at longer diffusion time and
the maximum of the relative difference drops to 7% for σ = τ = 30 ms.

(a) Signals (b) Relative difference

Figure 10: Signals for 1D and 3D models of the Neuron for a cosine OGSE sequence with
σ = τ = 10 ms and n = 2 versus 270 gradients distributed in a sphere.

Simulations were also performed with the following PGSE sequences:
PGSE(5, 10),

PGSE(20, 80),

PGSE(20, 500),

,ug ∈ G, b ∈ {1000, 2000, 3000};
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The corresponding MSDs are 12µm, 36µm and 94µm respectively. The maxi-
mum relative difference is about 12% for ∆ = 5δ = 5ms and drops to 3% for
∆ = 200δ = 200ms.

5.3. Thick Plane310

Now we compare signals computed by Method 1, 2, and 3 for the Thick
Plane for the following dMRI parameters:{

PGSE(1, 40)

PGSE(1, 200)
,

{
ug = [1, 0, 0]

ug = [1,1,1]√
3

, b = {1000, 2000, 3000, 4000};

The variable cross-section model approximates accurately the full model whereas
the constant cross-section model gives good approximations for ug = [0, 0, 1]

but a less accurate approximation for ug = [1,1,1]√
3

, with around 13% maximum

relative difference (Figs. 11a, 11b).

(a) ∆ = 40 δ = 40 ms (b) ∆ = 200 δ = 200 ms

Figure 11: Computed signals on a thick plane with variable thickness η(x, y, z) = 9/4 −
x/10 − z/50 for ∆ = 40 δ = 40 ms (a), ∆ = 200 δ = 200 ms (b) and two gradient directions

ug = [0, 0, 1], ug =
[1,1,1]√

3
. The variable cross-section 2D model approximates accurately the

full model whereas the constant cross-section model gives a good approximation for ug =

[0, 0, 1] and a less good approximation for ug =
[1,1,1]√

3
with around 13% in maximum relative

difference.

5.4. Model ECS315

In the last set of simulations, we compare Method 1 and Method 2 for the
model ECS. The dMRI parameters are:

PGSE(1, 40)

PGSE(1, 200)

PGSE(1, 500)

,ug ∈ G, b ∈ {1000, 2000, 3000};
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Fig. 12a shows the signals in the 2D manifold domain in comparison to the
3D model. The maximum relative difference for ∆ = 40 ms is about 17% and
decreases to 9% for ∆ = 200 ms (Fig. 12b). However, the large errors only
occur for a few gradient directions and the averaged difference over all gradient
directions is about 4% for both cases.

(a) Signals (b) Relative difference

Figure 12: The simulations were performed for the Model ECS (Fig. 6) with two PGSE
sequences ∆ = 40δ = 40 ms and ∆ = 200δ = 200 ms. The signals in the 2D manifold
domain in comparison to the 3D model are shown in (a). The maximum relative difference
for ∆ = 40 ms is about 17% and decreases to 9% for ∆ = 200 ms (b). The large errors only
occur for a few gradient directions and the averaged difference over all gradient directions is
about 4% for both cases.

320

6. Discussion

We proposed an efficient finite element discretization for the diffusion MRI
simulation of thin layer and thin tube domains that works for general pulse
sequences. By transferring the variable thickness to the variational form on a
manifold, our proposed approach (Method 2) approximates the full 3D model325

(Method 1) much better than the previous manifold model [12] with a constant
thickness (Method 3). Fig. 8 shows that in some cases, the improvement can be
large. In fact, it stands to reason that if the thickness is not uniform, Method
3 does not converges to Method 1 as the effective diffusion time tD tends to
infinity.330

Fig. 13 shows the convergence of Method 2 to Method 1 and there is a linear
relationship between R and ηmax/MSD (the fitting line does not cross the origin
exactly due to numerical errors of the finite element solution).

In Table 3 we summarize the accuracy and the computational efficiency of
our proposed method (Method 2) compared to the reference method (Method335

1). It shows that the computational timing on the manifolds is significantly
reduced compared to the full 3D models. The 1D manifolds give the largest
benefit since two topological dimensions were removed and it can run thousands
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Figure 13: The relative error R goes to zero linearly with ηmax/MSD.

of times faster. The improvement of the 2D manifold is less significant but the
computation is still 20 times faster.340

Sample Sequence tD MSD Rmean Rmax Speedup
(thickness η) ms ms µm (%) (%) (times)

Tree PGSE(1, 5) 4.7 9.2 3.8 12.5
(0.2-2µm) PGSE(1, 10) 9.7 13.2 2.5 6.8 > 9000

PGSE(1, 40) 39.7 26.7 1.0 4.5
PGSE(1, 200) 199.7 60 1.0 3.0
OGSE(20) 2.5 6.7 4.7 15.5
OGSE(40) 5 9.5 2.2 5.0

Neuron PGSE(5, 10) 8 12 1.0 4.0 > 800
1µm PGSE(20, 80) 73 36 1.0 3.0

PGSE(20, 500) 493 94 1.0 2.5
OGSE(10) 1.3 4.7 4.1 15.7
OGSE(30) 3.8 8.2 2.3 7.9
OGSE(50) 6.3 10.6 1.9 5.4

ECS PGSE(1, 40) 40 27 4.3 17.2 > 20
(0.3-0.9µm) PGSE(1, 200) 200 60 4.5 9.4

PGSE(1, 500) 499.7 94.8 0.5 2.0

Table 3: The relative error R gets smaller as η/MSD gets smaller and a huge speedup is
obtained by the manifold model over the full 3D model.

As discussed in [25], the FEM approach is much more efficient than the
Monte-Carlo simulations for the short pulse limit. It is expected that the con-
clusions comparing FEM with Monte-Carlo simulations apply to the general
Bloch-Torrey PDE. Thus, the approach we propose here (Method 2) can be345

used to replace the Monte-Carlo simulations in [10], especially since the use of
one-dimensional components in that study was justified by the long diffusion
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times. In addition, our approach can also contribute to the extraction of mor-
phological properties of different types of neurons that was preliminarily evoked
in [13] using HARDI-type acquisitions. Similarly, extracting information about350

the ECS using manifold models is an exciting prospect.
This new approach helps to reduce significantly both the computational cost

of the solver and the complexity of mesh generation for FEM simulations. For a
large number of experiments in this paper, the 3D simulations required the KTH
Beskow supercomputer [48] whereas the simulations of the reduced models were355

still fast on a personal laptop. Interestingly, since the manifold simulations are
less memory-demanding and less time-consuming, we could perform them in a
free cloud machine, Colab notebooks [49], that requires no setup. It would make
the simulation of diffusion MRI very straightforward. This package is available
upon request.360

In the future, unknown fields defined over domains of different topological
dimensions can be coupled as proposed in [50] to simulate more complex geome-
tries.

7. Conclusions

We proposed an efficient finite element discretization for the diffusion MRI365

simulation of thin layer and thin tube domains. The new method works for gen-
eral pulse sequences and we found a linear relationship between the accuracy of
our method and the ratio between the thickness of the ”thin” dimension and the
unhindered diffusion distance. Using our formulation, the full 3D simulations
are reduced to computations either on one-dimensional manifolds for neurites370

or on two-dimensional manifolds for the extra-cellular space while maintaining
computational accuracy. This approach can be used to investigate the morpho-
logical properties of brain cells that are out of reach of existing techniques.

In the future, the proposed discretization can be coupled with full 3D mod-
els as mixed-dimensional partial differential equations defined over domains of375

differing topological dimensions to enable simulations of diffusion MRI on more
complicated geometries. The implementation of the method on supercomputers
is also an interesting direction.
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