Program 2.8: Dynamic Programming Maximum Knapsack

input Set X of n items, for each x; € X, values p;, a;, positive integer b;
output Subset ¥ C X such that 3, oy a; < b;
begin
forp := Oto 3/_, p; do
begin
M*(1,p) := undefined;
S(Lp) = 1+ 3,as
end;
M*(1,0) := 0;8*(1,0) := 0;
M*(1,p1) = {x}; $*(1,p1) = an;
fork := 2tondo
forp := Oto 37—, p;do
begin
if (pr < p)y and (M*(k— 1, p — pr) # undefined)
and (8" (k—1,p— px) + ax < 8*(k—1,p))
and (S*(k—1,p— pr) + ax < b) then
begin
M*(k,p) = M*(k_ laP—Pk) U {xk};
S*(k,p) = S*(k_ laP—Pk) +ax
end
else
begin
M*(k,p) = *(k_ lap);
S*(k,p) = S*(k_ lap)
end
end;
p* = maximum p such that M*(n, p) # undefined;
return M*(n, p*)
end.

of {x1,...,x;} that has total profit p must either contain x; or not, one of
these two choices must be the right one.

From the above relationship, it is now possible to derive an algorithm
that, for any instance of MAXIMUM KNAPSACK, computes an optimal
solution: this algorithm is shown in Program 2.8.

Given an instance x of MAXIMUM KNAPSACK with n items, Program 2.8
finds an optimal solution of x in time O(nSi_, p;) where p; denotes the
profit of the i-th item.

The correctness of the algorithm is implied by the principle of optimality
in the case of MAXIMUM KNAPSACK. In order to bound the running time

Section 2.5

DyNAMIC
PROGRAMMING

4 Theorem 2.17

PROOF

71



