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Figure 1: Our approach uses
biomechanical simulation to
augment captured performance
data with an index of fatigue. We
exploit the power of commodity
motion capture hardware and
circumvent difficult and expensive
measurements e.g. EMG, while
still being able to jointly analyze
performance and fatigue
characteristics of movements.
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Abstract
For efficient design of gestural user interfaces both
performance and fatigue characteristics of movements
must be understood. We are developing a novel method
that allows for biomechanical analysis in conjunction with
performance analysis. We capture motion data using
optical tracking from which we can compute performance
measures such as speed and accuracy. The measured
motion data also serves as input for a biomechanical
simulation using inverse dynamics and static optimization
on a full-body skeletal model. The simulation augments
the data by biomechanical quantities from which we
derive an index of fatigue. We are working on an
interactive analysis tool that allows practitioners to
identify and compare movements with desirable
performance and fatigue properties. We show the
applicability of our methodology using a case study of
rapid aimed movements to targets covering the 3D
movement space uniformly.
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Introduction
This paper describes ongoing work contributing to the
analysis of user interfaces based on aimed movements,
such as many gestural interfaces. We address the
following design problem: human movement can be
mapped to virtual movement in multiple ways and each
mapping has unique effects on performance and fatigue.
Some applications require fast and accurate responses,
whereas others demand stable performance over longer
time periods. In drawing, action gaming, and text entry,
for example, fatigue may limit use. In exergames, on the
other hand, fatigue is desirable, but if it overly
compromises performance, gamer experience suffers.

Full-body motion capture 

Aimed movements in 3D space 

Preprocessing 

Analysis and planning tool 

Biomechanical 
simulation 

Performance 
analysis 

Motor equivalence clustering 

Continuous movement modeling 

Figure 2: Method overview. The
gray boxes denote our ongoing
work.

We present a novel method that integrates biomechanical
simulation into the standard analysis of user performance
in pointing. Data is captured in a task where users
perform aimed movements at physical targets in 3D space
in an optical tracking laboratory (Figure 1). Movement
trajectories are captured with optical motion tracking and
analyzed for speed and accuracy. However, biomechanical
aspects of the movements, in particular fatigue of specific
muscles, are difficult to obtain in a lab experiment.

Figure 3: Setup of targets in our
case study. They are uniformly
covering the movement space.

The novel aspect of our methodology is the inclusion of
biomechanical simulation to obtain the biomechanical
aspects of the movements. To do so, we apply inverse
dynamics and static optimization in a biomechanical
simulator with an anatomically accurate model of bones,
joints and muscles (Figure 1). This allows estimating
moments and forces at joints, muscle activations, and the
total energy consumption of muscles during a movement.
These can be used as indices of fatigue.

Our ongoing work will contribute to efforts at
understanding aimed movements in HCI by: 1) allowing
the analysis of both fatigue and performance from data

collected in a single experiment, 2) informing interface
design by charting the upper limits in “pure” movement
performance that assumes no external forces nor latencies
caused by an intermediary like an input device, and
3) offering an analysis and planning tool that allows
exploring the performance–fatigue space with
designer-relevant constraints. Previous studies of aimed
movements in HCI have looked at limited movement
ranges and user performance has been constrained by the
input device (e.g., [8]). Studies of 3D pointing have
examined only parts of the movement space and assumed
uniform performance that is independent of the movement
location relative to human(e.g., [4]). Human factors
studies have looked at fatigue during work with
self-reports and biomechanical analysis of postures [3]. To
the best of our knowledge, the presented method is the
first combining biomechanical simulation with
performance analysis to inform design.

After describing our approach, we present a case study
exemplifying the applicability of our method. The goal of
the case study is to understand the upper limits of user
performance in 3D gestural input scenarios. An athlete
(Figure 1) carried out 72,000 reciprocal aiming
movements covering the whole reachable space of his
dominant arm. We will report on our first results that we
obtained using our method and discuss future work.

Biomechanics in Aimed Movements Analysis
Our goal is to inform the design of gestural interfaces by
allowing biomechanical analysis of aimed movements in
3D space. Figure 2 shows a high-level overview of our
method. We introduce a novel combination of
performance measurements and biomechanical
simulations to create a high-dimensional data set
describing aimed movements for a specific task. We



analyze this data using interactive visualization methods
and statistics. The gray boxes in Figure 2 represent
ongoing work for expanding the analysis opportunities by
modeling and inference from the discrete model. In the
following, we will describe the individual steps.

Motion Capture and Data Preprocessing

length of movement

velocity

Figure 4: Motion data from our
case study. (top) Motion
trajectories for selected targets.
(bottom) The velocity profiles of
the selected movements confirm
differences in peak velocity for
longer movements. Color coding
here refers to temporal velocity.

We apply optical motion tracking to record the actual
movements of a human body (or parts thereof). From
this data we can easily derive performance data such as
speed and accuracy, but the same data serves as input for
biomechanical analysis. Optical measurement using
markers has a high accuracy and resolution (in our case
1/5mm accuracy at 480 samples per second). In fact,
optical tracking is well developed, relatively inexpensive,
and in the process of becoming a widely available tool.
We collect the motion data by tracking markers which are
rigidly attached to the human body (see Figure 1).
Subjects are asked to perform repeated aimed movements
to targets in the 3D space. The motion capture data is
cleaned and smoothed using common preprocessing
methods (e.g. Kalman smoothing, interpolation to fill
gaps) in order to remove artifacts and noise. Other
preprocessing steps could be necessary depending on data
peculiarities and the used motion capture system. Figure
4 shows selected examples of motion data in 3D space
and their corresponding velocity profiles.

Biomechanical Simulation
Using simulation we augment our data by variables which
will be too difficult to measure in a lab. This includes
muscle activations, moments and forces at joints, and
forces at tendons, from which we can derive an index of
fatigue, or muscle synergies for clustering.

We use the SIMM Full Body Musculoskeletal model and
the OpenSim biomechanical simulation software [2, 5],

which represent the state of the art in modeling anatomy
and dynamics of the human body. Musculoskeletal model
is based on previous studies of separate body segments
and combines multiple earlier models of skeleton, joints
and muscles. It represents average adult male and for
better performance can be tuned to parameters of a
particular subject.

In order to derive an index of fatigue we compute the
following steps using OpenSim:

1. First, we scale the musculoskeletal model to the
dimensions and weight of the subject.

2. Inverse kinematics gives the generalized positions of
all joints for all time steps, from which we can infer
angular velocities and accelerations at these joints.

3. Inverse dynamics is used to derive total moments at
joints from accelerations and inertial properties of
body segments.

4. Using the total moments at joints, static
optimization solves for the moments produced by
particular muscles as well as forces and activations
of those muscles. The method relies on the
assumption that opposite muscles are not activated
simultaneously (otherwise causing cancellation of
moments), and that human motor control is optimal
in terms of total muscle activation.

We derive an index of fatigue by integrating the muscle
activations over a complete movement and normalizing by
movement amplitude. This correlates with the total
energy expenditure of unit movement [6]. We are still in
the process of fully validating this measure against
electromyography (EMG). We also compute total
moments by integration of moments at joints over
complete movement and normalizing them over



amplitude. Total moments have correlation with the
energy expenditure and joint stress.

Interactive Analysis and Planning Tool

Study variables: 25 target IDs and 3 tar-
get sizes (mm).

Performance variables: speed (m/s),
duration (ms) and offset (mm).

Biomechanical variables: a moment
(with 1 to 3 degrees of freedom) for 22
joints (163 total variables). A force and
an activation for 51 muscles (102 total
variables).

Table 1: Variables in our data.

Motion capture and biomechanical simulation create a
high-dimensional data set (see Table 1) describing
complex interrelations between performance, fatigue,
spatial locations, and other variables. We are developing
an analysis tool for this kind of data that serves three
main purposes: validation, exploration and planning. The
validity of the data can be checked in all stages of the
pipeline, particularly during motion capture to detect

Figure 5: Our analysis tool features several interactive visualization methods that are linked with
each other such that a selection in one window shows up in all other windows. In this example, the
selection from the scatter plot is also shown as red lines in the parallel coordinates plot.

learning effects, outliers in the measurement, or tiredness
of the performer. One example is given in Figure 4: the
bell-shaped velocity curves match the expected shape of
aimed movements in motor control literature. We want to
explore the high-dimensional data set to get a better
understanding of three-dimensional movements in general.
Designers can plan new gestural user interfaces by
defining constraints regarding e.g. performance or fatigue
to narrow the huge design space of gestures.

Our tool (Figure 5) goes beyond classic statistical analysis
by incorporating interactive visualization methods. This
includes scatter plots, histograms, parallel coordinates as
well as representations of the aiming targets and the
muscles and joints. All visualizations are linked with each
other – in the sense that a user selection in one of them is
reflected in all other visualizations. This well-established
approach in visualization called Linking & Brushing [1]
deals effectively with high-dimensional data.

Ongoing Work
We are presently working on two data modeling tasks.
First, in what we call motor equivalence clustering, we
cluster movements to equivalence classes based on the
involved muscle groups. According to previous literature,
this can be done using factor analysis or principal
component analysis. However, according to the kinematic
theory [7], the muscular synergy pattern of a movement
also defines its performance parameters. Thus, if the
clustering is reliable, it can be used as a compact
representation of whole performance+fatigue data.
Second, we are working on continuous movement
modeling, where we interpolate Fitts’ law models to areas
in the 3D space uncovered by the targets in the data
collection phase. We will examine if a Fitts’ law model
can be inferred for arbitrary points in space based on the



known similar Fitts’ law models derived from the data.
This is necessary to work with movements with arbitrary
origin and target in the space.

Case Study: Pointing with the Arm
We are studying the applicability of the method through a
case study of rapid aimed movements with the arm. We
cover the whole reachable space of the arm in a reciprocal
tapping task [8] with physical targets in 3D space.

Data Collection using Motion Capture and Preprocessing

Participant: The subject is a 27 years
old male (right-handed, 180 cm, 72.5
kg) with no known disorders. He placed
1st in the French and three times 2nd in
the French and German amateur kick-
boxing competitions, respectively.

Movement targets: Figure 3 shows the
3D coordinates of aiming targets. The
reachable space is a half-sphere with ra-
dius equal to the subject’s arm length
and centered at the right shoulder’s
pivot point. Aims were created from
round cartons of 3 colors: yellow, or-
ange, and red, that correspond to three
target width conditions with radii of 8
cm, 4 cm, and 2 cm, respectively.These
were attached to the ends of aluminium
pipes. To ensure that the shoulder stays
at the center of the sphere, we prevented
leaning with a horizontal obstacle placed
about 2 cm in front of the chest.

Experimental design: The experiment
consists of 80-85 aiming movements car-
ried for all pairs of the 25 targets, each
with three target width conditions (2, 4,
and 8 cm). This yields a total of 72,000
pointing acts. The order of trials was
randomized in the experiment.

Procedure: Thirty sessions of 90-120
minutes were carried out. Study leader
tells subject IDs and size of next target
pair, and when to start and when to stop
movements. The subject stands in a po-
sition marked on the floor and repeti-
tively moves between two given targets
as accurately and quickly as possible.
Ends of single aimed movement are de-
rived in postprocessing using local min-
ima of absolute velocity. Before each
target-pair, the subject can find the best
manner to aim at the targets. Timing
starts with index finger on a target. Af-
ter a trial, if self-reported fatigue level
is high, five minutes of rest are required.
In this study, all movements were done
with the subject’s dominant hand. We
imposed a minimum recovery interval of
6 hours between sessions to allow fast
twitch muscle fibers to restore their po-
tential energy.

Apparatus: The PhaseSpace motion
capture system with 12 Impulse cameras
at 480 fps was used to record the move-
ment of 38 active markers (Figure 1b).
Marker placement was done with care to
minimize drift during a session. Track-
ing accuracy is approx. 1/5mm.

Table 2: Pointing experiment

We collect extensive data on the movement of the right
arm of a single subject: an amateur kickboxer. Because
kickboxing emphasizes stamina and hand-eye
coordination, this data provides an estimate of the upper
boundary of performance reachable by regular users. A
detailed experiment description is given in Table 2. The
data set contains more than 72,000 individual aimed
movements. One aimed movement is represented in our
data as a 3D trajectory of the tip of the index finger from
one target to another. Preprocessing is done as in the
general case by removing occlusions and outliers,
interpolation to fill gaps and Kalman filtering.

Performance
From the curated motion data, we derive an index of
accuracy, or rather inaccuracy, by defining the offset of
the aimed movement: following the computation of
effective target width [8], we define the offset as the
distance of end-points to their centroid in a trial. The
finger tip was never to touch the target center and using
the center of the physical target would have inflated the
offset. Furthermore, we define an index of speed as
average velocity of aimed movement.

Biomechanical Simulation
Our main goal is to augment the performance data with
an index of fatigue. As described earlier, we perform a
biomechanical simulation using OpenSim, where the
curated motion data serves as input. The computations
are performed on a workstation with 24GB of memory and
10 parallel processes. The inverse kinematics simulation
took 5 days for all data and the inverse dynamics 1 day.
We are currently in the process of implementing and
running the static optimization. It is likely to require
about a week of computation time. Fatigue can then be
computed based on muscle activations as described in the
previous section. However, in our preliminary results we
use total moments at joints as an index of fatigue since
the static optimization is not yet completed.

Preliminary Results
We manually divided the 3D space into segments,
emulating those of an interface tracking the arm. Figure 6
shows a horizontal segmentation (left, center, right) and
associated performance and biomechanics data. Large
differences among segments are visible. First, the
moments for most joints decrease from left to right. Only
for the sternoclavicular joint the situation is the opposite.
Clearly, arm movements in the left part need more force
than those in the right part. Second, the fastest
movements are in the right segment. These movements
also have smaller total moments, than movements in the
central and left segments. Third, accuracy in all segments
is very similar, in the right segment it is 4% higher but in
the left segment only 1% higher than in the central
segment. The conclusion from this analysis is that
movements in the right segment (of a user using the right
hand) are preferable, because they have the highest
performance - yet smallest total moments. The central
segment has only slightly higher moments, but lower



accuracy and speed than the right one. When compared
to left segment the center segment has lower accuracy
and significantly lower moments and higher speed.

Conclusion
Load and fatiguability of the musculoskeletal system
involved in interaction is a major concern for HCI, but
previous methods did not seamlessly incorporate the
empirical analysis of aimed movement performance. We
presented our ongoing efforts to integrate biomechanical
simulation as part of the process. Motion capture
equipment is becoming a commodity, and biomechanical
simulation is reaching maturity. The method allows
collecting data as part of aimed movement studies and
our tool-chain will support all subsequent steps. In
principle, any HCI situation that involves aimed
movements can be incorporated, with limitations posed by
optical tracking and the availability of valid
musculoskeletal models. Our tool will allow practitioners

Figure 6: Performance and
fatigue in segmented movement
space. (top) Vertical movement
space segmentation and legend
for mapping the variables: speed,
accuracy, and moment in four
joints. Image of skeleton from
http://www.zygotebody.com/

with motion capture equipment to identify pointing
movements with needed performance and fatiguability
properties. For example, a painting application should
allow long-term use with high precision and minimum
fatiguability, but puts less emphasis on speed. A golf
game, by contrast, will place directional and positional
constraints on possible movements like swings, and our
analysis tool allows finding which allow highest speed and
precision and make predictions on biomechanical factors
like extraneous loading on muscles or joints.

The case we presented is a proof-of-concept study
showing that optical tracking data can be used for such
purposes, but we are expanding to other domains such as
rotation gestures on surfaces. We are working on our
tool-chain to create templates for validation,
hypothesis-testing, and exploration. Our future work will

seek to rigorously validate the predictions of
biomechanical models with subjective and physiological
measures. We also plan to implement a predictive model
of fatigue that takes into account the duration of
movement and the number of repetition.
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