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ABSTRACT
Motion-capture-based biomechanical simulation is a non-
invasive analysis method that yields a rich description of pos-
ture, joint, and muscle activity in human movement. The
method is presently gaining ground in sports, medicine, and
industrial ergonomics, but it also bears great potential for
studies in HCI where the physical ergonomics of a design
is important. To make the method more broadly accessible,
we study its predictive validity for movements and users typ-
ical to studies in HCI. We discuss the sources of error in
biomechanical simulation and present results from two vali-
dation studies conducted with a state-of-the-art system. Study
I tested aimed movements ranging from multitouch gestures
to dancing, finding out that the critical limiting factor is the
size of movement. Study II compared muscle activation pre-
dictions to surface-EMG recordings in a 3D pointing task.
The data shows medium-to-high validity that is, however,
constrained by some characteristics of the movement and the
user. We draw concrete recommendations to practitioners and
discuss challenges to developing the method further.
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INTRODUCTION
Motion-capture-based biomechanical simulation is a com-
bination of optical motion capture (“mocap”) to record the
3D movements of the human body and the simulation of the
biomechanics involved with those movements. The output of
optical motion capture is the 3D motion of pointlights, from
which performance measures such as speed or accuracy can
be derived. Biomechanical simulation augments this with
a rich description of human movement, including velocities
and angles of limb segments, forces and moments at joints,
and most importantly muscle activations [6]. Recently, the
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method has gained ground in three disciplines: sports [26],
medicine [17], and industrial ergonomics [19]. Mocap-based
biomechanical simulation is becoming an option for HCI lab-
oratories as well. The computational intensity is no longer
a bottleneck and there is biomechanical simulation software
available with human body models.1 Moreover, optical mo-
tion capture equipment2 matured and became affordable in
the recent past. Modern marker-based systems track rigid
points on the body with high precision and sampling rates.

However, to our knowledge, mocap-based biomechanical
simulation is presently not deployed in HCI research. The
method could allow cost-efficient estimation of physical er-
gonomics. In contrast, the standard ergonomics instruments
have turned out to be too expensive, constraining, and spe-
cialized to be routinely used in HCI.3 The mocap-based
method studied in this paper does not restrict natural move-
ment (much). This makes it possible to study full-body inter-
actions where EMG recordings and other measurements are
impractical.

Although work-related injuries and incidents have declined
[2], the method could improve the analysis of user inter-
faces by better taking into account biomechanical stresses and
muscle loads. Designs with cumbersome postures could be
avoided, such as the “gorilla arm” when using vertical touch
screens. Many times in the history of interaction design, this
would have been of benefit. Consider the fate of the light
pen: Touted as the ideal input device for information work-
ers, it foundered as it caused strain in shoulder and arm mus-
cles. We believe that the method bears even more potential
in the design of novel interfaces. While the ergonomics of
desktop-based interfaces have been intensively studied (e.g.,
[3]), interactions “beyond the desktop” need more attention.
For example, tangible computing, tabletops and surfaces, mo-
bile interaction, and various forms of 3D interaction all insist
on novel postures and movement types for input. Such inter-
actions can be too demanding for long-term use, or they can
be too easy as in the case of exergames. Understanding the
physical ergonomics of full-body motion is an important part
of designing such interfaces. Furthermore, the performance
data from the captured movements and the ergonomics data
from the biomechanical simulation can be analyzed in a com-
bined manner to find good trade-offs between them.

1E.g., OpenSim, AnyBody, LifeModeler, and SantosHuman)
2E.g., Vicon, PhaseSpace, OptiTrack
3Examples of physical ergonomics instruments rarely used in HCI
studies are goniometers, videometry, and EMG.
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Figure 1: Steps in motion-capture-based biomechanical simulation [24].

This paper critically examines the validity of the method for
the needs of HCI, which are different from sports, medicine,
and industrial ergonomics. First, in medicine and sports,
biomechanical simulation is mostly used with the purpose
of deeply understanding one particular subject or a special
group. In contrast, HCI research must be able to address
large samples with varying age groups and other character-
istics. Second, typical analyses in sports and medicine fo-
cus on a particular muscle or muscle group, tendon, or joint,
such as the knee moment during jumping or landing. In con-
trast, HCI research is hardly interested in anatomical details,
but in the effects of motion: uncomfortable postures, stress,
load, and fatigue. It is clear that muscles have special impor-
tance in HCI. Third, movements in sports and medicine are
often gross and, in the case of athletes, very fast. In contrast,
HCI focuses on middle- and small-range movements, such as
those involving the hand when using input devices. Fourth,
sports and medicine are often interested in the lower limbs
and analyze gait. In contrast, both industrial ergonomics and
HCI tend to have more emphasis on upper extremities. Fifth,
industrial ergonomics and HCI have interest in aimed move-
ments to external targets. However, whereas industrial er-
gonomics has looked at movements to physical objects [18],
setups in HCI often involve dynamic displays and dynamic
contact forces on surfaces. Such forces are not directly ob-
servable using motion capture, but must be recorded with ex-
ternal instruments and integrated into the simulation.

Due to the novelty of mocap-based biomechanical simula-
tion, it has not yet been extensively validated. Validity here
refers to the accuracy of the biomechanical simulation results
when compared to ground truth. Because the other outcomes
of biomechanical simulation are better known, we focus on
the validity of muscle-related predictions in user groups and
movements that are characteristic to HCI. As we will show,
every step of the method pipeline (Figure 1) has different
sources of error, which can accumulate. It is not known from
previous work whether these errors pose severe problems for
HCI studies. What is known from previous work is that the
current biomechanical models cannot be considered as “valid
in general,” but they have to be validated for each applica-
tion or task [16]. These concerns call for rigorous research to
assess validity in HCI tasks.

In our view, the method should be developed for HCI as
a generic method, which shall be available without strong
assumptions about specific equipment or movement ranges.
In contrast, previous work outside HCI has developed task-
specific simulations, such as a model of workers in reach-
ing and assembly tasks [18], or simulations of prostheses in
medicine [17]. Moreover, when mocap-based biomechanical

simulation is used in medicine and sports, the parameters of
the human body model are often fine-tuned to each partic-
ipant using EMG, isokinetic dynamometers and other mea-
surements besides motion capture. Such instrumentations can
restrict the natural movement, narrow the scope too much,
and are generally too time-consuming for regular HCI stud-
ies. For HCI, we insist that the method should be usable with-
out extensive manual modeling, and the scope of biomechan-
ical simulation should be decidable a posteriori.

The contribution of this paper is two-fold. First,this is the first
work applying and validating a state-of-the-art biomechanical
model with muscles for HCI tasks. Second, in broader con-
text, this is the first validation of muscle activation predictions
of a state-of-the-art model for whole-arm movements in all
directions. Two studies are presented that assess the method
both technically and against ground truth measurements in
typical HCI tasks. As it is impossible to cover all HCI tasks,
we carefully selected a broad yet representative set with di-
verse requirements. Study I assesses technical feasibility in
five scenarios: a full-body dance game, full-body flight simu-
lator controls, mouse pointing, multitouch gestures, and typ-
ing on a keyboard. Our focus is on the technical feasibility,
that is, whether the simulation can yield reliable outcomes
for such diverse tasks. Moreover, the inspection of mouse
and keyboard allows us to compare our predictions to previ-
ous work where EMG was used. Study II presents a 3D in-
air pointing task with 16 subjects and directly compares the
muscle activation predictions from the biomechanical simu-
lation against measured ground truth data obtained using sur-
face EMG. Our focus is on the predictive value of muscle
activation predictions. The experimental design allows us to
gauge inter-subject differences, differences between muscles,
as well as to compare against self-reports of fatigue.

BACKGROUND AND RELATED WORK
Biomechanical simulation “reverse engineers” observed mo-
tion to explain it in terms of anatomical events. Its input is
the movement of pointlights in 3D space. When accompa-
nied by information on how the pointlights map to the human
anatomy (mapping and scaling), motion is first explained as
rotations of joints (inverse kinematics). Then, given mass dis-
tribution of the body, required forces at joints are estimated
(inverse dynamics). Finally, given muscle anatomy, plausible
muscle activations are estimated (static optimization).

We here compare the outputs to existing measurements in
physical ergonomics. We then review previous work in vali-
dating the outputs against ground truth.

Outputs: Comparison to Traditional Measurements
Motion capture and biomechanical simulation create a
high-dimensional description of a user’s movement. The out-
put variables are best understood as descriptors of physical
ergonomics costs, the anatomical and physiological costs of
movement [23, 30]. Within this scope, mocap-based biome-
chanical simulation can estimate six out of eight measures
that would normally require specialized measurement instru-
ments (Table 1).
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Table 1: Comparison of biomechanical simulation against traditional
instruments for physical ergonomics costs.

Joint angles are indicators of movement constraints and
extreme postures and often measured by labor-intensive
videometry, or goniometer measurement, which is limited to
a few joints at a time and can perturb the movement. Posture
is the state of the whole kinematic tree. It predicts overload-
ing and musculoskeletal stress. In mocap-based biomechani-
cal simulation, inverse kinematics yields angles and posture.

Kinematics describes angles and the distribution of loads
and mass during movement and predicts overloading and
repetitive-strain injuries. Force plates, on-limb accelerom-
eters and on-joint friction/bending sensors can be used, but
these have limited coverage, are cumbersome to apply, and
can influence movements. Moments and forces at joints can
estimate the overall energy expenditure [14] and also point to
arthrokinetic strain and stress. Moments at joints are the sum
of muscle forces multiplied by moment arms. Dynamometers
are used in sports sciences but are limited to static setups and
cover one movement type at a time. Mocap-based biome-
chanical simulation estimates moments and forces based on
the outputs of inverse kinematics and full mass of the partici-
pant, assuming standard mass distribution.

Muscular load is the force produced by a muscle for a move-
ment. Direct measurement of muscular forces is intrusive,
but surface EMG [5] (sEMG) can be used to estimate it if
parameters such as cross-sectional area are known. Muscle
activation refers to the recruitment of muscle fibers by ac-
tion potential induced by motor units. sEMG can be used
for measurements, but it is limited to preselected muscles. In
mocap-based biomechanical simulation, these two are given
by static optimization.

Fatigue is the state of a muscle when it cannot produce its
maximum force. It is reflected in the sEMG signal. Muscular
fatigue can be described by total mechanical energy expen-
diture of muscle, which can be calculated from muscle acti-
vations integrated over time, estimated by static optimization.
Presently, the best way to measure muscular fatigue is to infer
it from the EMG signal and to use self-reports.

Self-reports are verbal reports of effort, fatigue, and stress;
they are typically measured via questionnaires administered
after a task. A workload questionnaire widely used in HCI is
NASA-TLX that taps to some of these aspects.

Biomechanical Simulation in Human Factors and HCI
To our knowledge, there is no previous research applying
or validating biomechanical simulation with muscles to core
HCI tasks. However, biomechanical simulation has been
combined with motion capture in a few earlier tools for er-
gonomics, and applied to cases in office safety assessment
[11] and automobile assembly analysis [7]. These implemen-
tations included simplified models that lack muscles or ne-
cessitate external EMG recordings [7].

Previous Validation Studies
Although mocap-based biomechanical simulation has gained
ground only recently, some steps of the simulation have been
known for decades and are more thoroughly understood [30]
than muscle activation models.

Error in joint angle prediction has been estimated to be within
1 degree for flexion–extension and abduction–adduction, and
within 3 degrees for axial rotation [15]. Mean joint dislo-
cations were smaller than 0.5cm, which should be accurate
enough for HCI. Forces and moments have been validated
in a study that compared the output of inverse dynamics to
joint moments calculated with a machine learning algorithm
from an EMG signal for the knee [14]. Model fit was high:
R2 = 0.91± 0.04.

The only studies looking at the validity of muscle activation
predictions of real movement of whole limbs involve lower
extremities and consider gait or running [8, 25]. They com-
pare predicted muscle activations against sEMG. Although
there are a few validation studies of simulations related to up-
per extremities, all of them are constrained and simulate only
one-dimensional movements of a single joint. The previous
validations of lower extremities or separate joints of upper
extremities do not generalize to the upper extremity model
and cannot be considered as “valid” for HCI tasks [16]. The
only study with a comprehensive upper extremity model re-
ported, qualitatively, a lack of agreement in a comparison of
predicted muscle activations and recorded EMG of 3 muscles
for single specific reaching movement [4]. Please see the Aux-
iliary materials for a summary of previous validation studies.
Study II is the first exhaustive validation of upper extremity
models for whole-arm aimed movements in all directions and
locations.

SOURCES OF ERROR IN BIOMECHANICAL SIMULATION
To motivate the need for a validation study, here we outline
the most significant sources of error in the method (Figure 1).

Generally speaking, the estimations of joint and muscle ac-
tivities should be treated as hypotheses made possible by a
strong prior: an anatomically correct but generalized full-
body model. The two most important sources of error are,
first, the precision of motion capture that affects all compu-
tations “downstream.” State-of-the-art marker-based tracking
is accurate to the millimeter level. For example, we used the



PhaseSpace system in the studies which allows 1/5 mm ac-
curacy at 480 Hz. Second, every subsequent step in the sim-
ulation pipeline introduces unique sources of error, some of
which are accentuated in HCI studies:

1. Marker Placement and Mapping
Biomechanical simulation depends on a reliable mapping be-
tween the body model and pointlights in the 3D mocap data.
There are guidelines for marker placements that increase re-
liability by identifying anatomical landmarks that are more
matchable (e.g., acromion, elbow) [13]. The mapping, called
the virtual marker set, is manually defined after the data col-
lection by the experimenter using a GUI.
Sources of error: First, typical optical tracking allows only
a limited number of markers on the body (e.g., our system
has 38). The experimenter must define which limbs to track
and which to leave out. For example, tracking the articulation
of hands is limited, if the rest of the upper torso should be
tracked as well. Second, the placement of virtual markers on
the model can never be perfect, since the virtual body model
does not have the exact same geometry, and because markers
are placed with an offset from the bones that mark the land-
marks. Third, mapping is less accurate in segments that are
farther away from anatomical landmarks.

2. Scaling
Every user needs to be scaled to match the anatomy of the
generalized human model. A measurement set is a set of
marker pairs and body parts that are scaled according to
the ratio of distances between virtual and physical markers.
The model size and weight are adjusted on the basis of the
measurement set or from manual measurements. Automatic
Marker Adjustment is then done based on data from a cali-
bration pose of the user. It adjusts marker positions by means
of inverse kinematics, which minimizes the errors between
virtual and physical marker positions.
Sources of error: First, scaling assumes that the distribution
of mass in a body is a linear function of the model’s distri-
bution. Second, automatic marker adjustment can err due to
improper weight distribution, causing correctly placed mark-
ers to be misplaced.

3. Inverse Kinematics (IK)
IK calculates generalized coordinates that describe a skele-
tal movement in terms of angles between bones at joints,
and translations and rotations of the human model relative to
ground. It minimizes the weighted least-squares distance be-
tween physical markers and corresponding virtual markers.
Sources of error: First, markers can drift during movement
due to non-rigid skin movement. Second, joints are modeled
as simple “hinges” and omit for example translation at joints
[23].

4. Inverse Dynamics (ID)
ID calculates forces and moments at joints produced by a
movement given as a generalized-coordinate sequence. Ex-
ternal forces can be added to the simulation at this step —
for example, if recorded by force plate, force transducers, or
dynamometers.

Sources of error: First, measurements of external forces can
be imprecise or temporally or spatially out of synch with the
pointlights. Second, mass distribution and anatomy of a given
user may differ from that of the model, causing inaccuracies.

5. Static Optimization (SO)
SO resolves the required activations of muscles by minimiz-
ing total muscle activation as its objective function. It uses
two muscle models as constraints: ideal force generators and
muscles constrained by force–length–velocity properties.
Sources of error: First, SO assumes that people move “opti-
mally” in terms of minimizing total activation, which cannot
be assumed in many HCI tasks. Second, muscle anatomy and
strength may differ between the user and the model. Third,
movement speed may be an issue: For slow movements, ac-
tivation patterns could be identified incorrectly, because hu-
mans can use a different activation strategy, or use smaller
musculature to move.

GENERAL SETUP
The two studies presented in this paper examine HCI-relevant
motor control tasks in 3D space. The system we utilize in
the studies represents the state-of-the-art. Our recordings are
done with high-end, commodity motion capture equipment:
the PhaseSpace system with Impulse cameras tracks a full-
body suit and gloves with flexibly attachable marker posi-
tions. For simulation, we use OpenSim [6], the only com-
prehensive open source simulator. It supports editing of the
musculoskeletal model, scripting, and visual investigation of
the results in a GUI. We use the SIMM Full Body Model,
which combines measurements from several anatomical stud-
ies [10] best representing an average adult male. It contains
models of 118 bones, 86 joints, and 285 muscles.

In the validation studies, the following practices were fol-
lowed:

• Marker placement guidelines were followed [13]. Some
trackers, like ours, come with a marker suit that has
some pre-positioned markers, and not all guidelines can
be strictly followed. For studies of aimed movements, it is
necessary to add further markers on the end-effectors (e.g.,
index finger).

• Force sensors were used when external forces are involved
— for example, ground reaction force if a user is jump-
ing — or any other force is exerted on a physical object.
We used Micro Load Cell (0–20 kg) with PhidgetBridge
mounted under surfaces to-be-touched.

• Artifact removal: For preprocessing, we first clean the data
from marker occlusions and artifacts. These may arise
from shifts in the set of cameras observing a particular
marker and are typical when the user moves around or
the scene is crowded. Both issues manifest themselves as
“jumps” in motion paths that can be reliably identified from
the second derivative of coordinate values that are further
than 2 SD from the mean. To fill gaps in the remaining
data, we have experimented with several interpolations and
found linear interpolation to yield sufficient quality.

• Smoothing of motion trajectories is necessary for ID and
SO to compute on smaller-scale movements. We have tried



standard methods, such as Butterworth, but found Kalman
smoothing [21] to produce the best results.

• Calibration for target registration is necessary when the
study involves physical targets, such as in Study II. We
have done calibration by asking users to touch the center
of each target with an end-effector equipped with a marker.
We perform calibration for every session to avoid the ef-
fects of between-session changes in the coordinate system
of the mocap sessions.

• Additional reserve actuators can be added to the muscles in
the model to ensure the existence of a solution in SO [24].
Generally this should be avoided, but it is necessary if
the model contains muscles too weak to explain observed
movements. We report when this was done.

In all other aspects, we follow the manual of OpenSim [24].
For examples of the setup and outputs, we refer the reader to
the supplementary video.

STUDY I: FEASIBILITY IN FIVE HCI TASKS
The first study addresses technical feasibility in five HCI tasks
carried out by a subject. The goal in selecting the tasks was
to cover a wide range of movements with different veloci-
ties and varying number of contributing limbs and muscle
groups. We consider mocap-based biomechanical simulation
to be feasible for a specific task if all computational steps
can be completed without errors. Typical error conditions are
abrupt points appearing in the IK output, muscle activations
approaching maximum, or large reserve activations appear-
ing in SO. Furthermore, we compare our results against the
existing literature on EMG measurements, where available.

Data Collection
A 36-year-old subject (male, 178-cm, 78 kg) volunteered for
the study. The subject is right-handed and has no perceptual,
neurological, or cognitive deficits. The PhaseSpace motion
capture system with 12 Impulse cameras at 480 fps was used
to record the movement of 43 active markers. In tasks 3, 4,
and 5, a force plate of our own construction measured external
forces. Interactive software was used in tasks 1, 3, and 5.
The tasks were performed in a single three-hour session. This
allowed us to use a single calibration and scaling. Details of
the tasks follow:

1. Full-body dance game involves configural movements of
the full human body. It was performed to a song from Just
Dance 2 on the Nintendo Wii.

2. Plane control involves steering a plane through continuous
aimed movements of the upper part of the human body.
Three control schemes were used: The first used a “bird
paradigm,” the second a steering-wheel paradigm. In the
third, the arm was lowered and flexed. The subject had
to mimic the motions of a person “flying” in a video as
accurately as possible.

3. Mouse pointing involves fine-grained movements that de-
ploy muscles from the shoulder down. It consisted of lat-
eral reciprocal aiming movements performed with a com-
modity mouse. Control-to-display ratio was varied in three
conditions: a ratio of 4, 10, and 18 (scale: 1–20). Four

Task IK ID SO
Dance game
Flight
Mouse
Typing
Multitouch gestures

full success partial success failure

Table 2: Completion of simulation steps for five HCI tasks in Study I.
See text for details.

target sizes and four distances were used, yielding 1280
selections in all.

4. Multitouch gestures on a surface involve fine-grained
movements that employ the small muscles of the hand and
the arm. We followed an existing gesture set [31]: rota-
tion (45 deg, 90 deg, and 180 deg), pinch with two fingers
(4 cm and 10 cm), pull with 2 fingers (4 cm and 10 cm),
pinch with all fingers (10 cm), pull with all fingers (10 cm),
drag with index finger (horizontal 4 cm and 10 cm, and
vertical 4 cm and 10 cm), drag with four fingers (horizon-
tal and vertical 10 cm), and tap with index finger. Each
condition was repeated 50 times.

5. Typing involves fast simultaneous movements of multiple
end-effectors and recruits small muscles. The participant
typed his name as quickly and precisely as possible 50
times on a regular physical Qwerty keyboard.

In all tasks, the subject was trained prior to motion capture to
reach a level of performance we considered representative for
that task. Sufficient rest was provided throughout.

Results
Table 2 summarizes the success or failure of the biomechani-
cal computations for the specific HCI tasks. Three out of five
tasks were completely successful. For these tasks, the method
is discriminative and the outputs are sensible as highlighted in
Figure 2 using representative muscle activation patterns. In
particular, Figure 2a shows a clear activation of upper back,
shoulder and biceps muscles, when the dancer moves his arm
up, and lower back, shoulder and triceps muscles when he
moves his arm down. For the mouse pointing task (Figure
2b), different shoulder muscles (deltoideus anterior and pec-
toralis major vs. deltoideus posterior and medius) are acti-
vated for movements from left to right and vice versa. When
typing (Figure 2c), the subject mainly used his middle fin-
ger, which is reflected in a higher proportion of activation of
muscles controlling that finger.

To follow, we discuss our detailed observations during this
study, in particular regarding the cases where the biomechan-
ical simulation could not be applied (cf. Table 2):

Inverse Kinematics
Data from all tasks except multitouch gestures could be pro-
cessed for IK. IK requires keeping RMS (root mean square)
error within 2 cm and largest marker error less than 4 cm. Al-
though such errors are considered to be normal for full-body
simulation, they were too large for multitouch gestures where
the movement size falls within this range. This manifested in



(a) Full-body motion (b) Mouse pointing (c) Typing

Figure 2: Selected muscle activation predictions for three HCI tasks in Study I. (a) Arm and shoulder muscle activations when moving arm up in a
dance game. (b) Shoulder activations for mouse pointing: Activation marked in blue is for movement to left and red for to right. (c) Muscle activations
in hand and arm muscles for typing two letters with the middle finger.

fingers being “stuck” in the same pose during the simulation.
The other borderline case is typing: in our particular case
IK was successful, because the participant used only 3-4 fin-
gers with pronounced up/down movements when typing. Had
the participant used the ten finger touch-typing technique, IK
would have failed.

Inverse Dynamics
Task that are successful in the IK stage can proceed to ID. The
only problem we encountered in this step were tasks where
large external forces were applied. For dance, where the user
stepped up and down, because we did not have force plates
on the ground, we manually estimated ground reaction forces
based on observation of movements. This approach improved
the validity of full-body results, but the results are not reliable
for the lower extremities.

Static Optimization
Our analysis here is limited to selected shorter segments (<
2,000 ms) of the full recordings, because of computational
intensity. Computing just 50 frames of SO for the dance task
took 15 hours on a desktop computer.

One observed limitation is due to movements that are pro-
duced by muscles that are stronger than the corresponding
ones of the generalized model. Another was that of motions
where limbs are overextended or produce very fast abrupt
movements. A successful simulation of the “bird” controller
in the flight task required adding reserve actuators at the
shoulder joints. This issue can be partially addressed by ad-
justing the muscle parameters of the general full-body model
to the individual participant. Similarly to ID, SO needs cor-
rect external forces, so only part of the outputs from dance
can be considered valid.

Agreement with literature
Muscle activation predictions of two cases—mouse pointing
and typing—could be checked against an earlier report using
EMG to compare the two input devices. Overall, muscle ac-
tivation predictions agree with previous findings. While we

cannot compare absolute values, relative activations agree:
Trapezius descendens is 1.8 times more activated and deltoids
are 1.3 times more activated when working with the mouse
than when working with a keyboard [3].

Summary
We conclude that movement size was the determining fac-
tor for technical feasibility. Movements with smaller than 4
cm radius were not feasible with current marker setup, how-
ever they may be successful with a more complicated setup
involving multiple markers on hand [29]. Moreover, abrupt
and overextended movements posed a challenge. We also
learned that including data from a force sensor (under surface,
mousepad, and keyboard) observably improved the realism of
ID and SO predictions, even for small-range movements and
small external forces.

STUDY II: VALIDATION OF MUSCLE ACTIVATION PREDIC-
TIONS
Study II addresses the predictive validity of muscle activa-
tions in HCI-relevant motions. Informed by Study I, we de-
cided to focus on gross movements instead of small move-
ments, and chose mid-air pointing gestures as the topic. This
topic is relevant for research on interfaces that use computer
vision and accelerometers for control.

Surface-EMG was measured for eight muscles of sixteen sub-
jects while performing a 3D pointing task. The participants
carried out in-air reciprocal pointing movements among tar-
gets in the reachable space of their arms (Figure 3). The ex-
perimental design covered the whole reachable space of the
arm and allowed us to vary target size and amplitude of move-
ments. Moreover, we had 16 users with varying demograph-
ics, which allowed us to learn about potential inter-subject
differences and differences between muscles.

EMG was chosen as “ground truth” following existing rec-
ommendations [16] in studies of lower limbs [8]. We use
EMG amplitude as ground truth. This can be justified because
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ical targets is scaled to the reachable area of a user’s arm. End effector
and physical targets are tracked in addition to the pointlights of the mo-
tion tracking suit. Right: Electrode placement for a validation study.

for a particular muscle larger EMG amplitude corresponds to
larger muscle activation if 1) an EMG segment is recorded
during con- or eccentric movement but not both, 2) cross-talk
is minimized by precise electrode placement on larger mus-
cles, 3) electrode displacement is minimal (here: for 5 out
of 8 muscles), 4) no between-muscle or between-movement
comparison is carried out for EMG amplitudes, and 5) the ab-
solute value of EMG is ignored (we use Pearson correlation
as the metric).

Method
Sixteen subjects (9 males and 7 females) with ages ranging
from 21 to 36 (M = 25.9), height from 162 to 178 cm (M =
170), and weight from 61 to 79 kg (M = 70) were recruited.
No subject had musculoskeletal or neural disorders, and every
subject took part in some regular physical exercise.

Five targets from a total of 25 physical targets (see Figure 3)
were selected for each subject by stratified sampling from five
segments of the reachable space of the dominant arm: left up-
per outer, left lower outer, right upper outer, right lower outer,
and central inner. There are three target sizes (20, 40, 80 mm).
We recorded three trials for every pairwise combination of the
five targets — in total, 30 trials per subject. The order of trials
was randomized.

In addition to motion capture, surface EMG was recorded
with a Myon 320 [22] and self-adhesive electrodes (Ambu
Neuroline 720 00 S/25 with Ag/AgCI and conductive gel)
at a sampling rate of 2000 Hz. All subjects confirmed that
the EMG electrodes did not restrict their movements. Elec-
trodes were placed on eight muscles: the pectoralis major,
deltoideus anterior, deltoideus medius, deltoideus posterior,
trapezius descendens, trapezius transversalis, biceps, and tri-
ceps (see Figure 3). The skin was prepared for electrode
placement following recommendations (SENIAM [9]).

Retrospective self-reports were measured by a questionnaire.
Subjects were asked to rate task difficulty and also the
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Figure 4: Examples of EMG vs. predicted muscle activation with high
(left) and low (right) correlations.

stress/tension in the muscles of the arm, shoulder, back, and
chest with a seven-point Likert scale [1].

Preprocessing and Analysis
All motion capture data was processed through IK and SO.
Because of the computational cost of SO, we selected repre-
sentative movements by choosing a movement for each trial
with a movement time closest to the mean and which ended
within the effective target.

Following the recommendation of the manufacturer, the DC
offset was removed from the EMG data and frequencies be-
low 20 Hz, above 500 Hz, and between 49 and 51 Hz (power-
line interference) were filtered. The signal was then full-wave
rectified and normalized according to maximum voluntary
contraction. Then both EMG and the activations calculated
via static optimization were low-pass filtered at a frequency
of 4 Hz to create a linear envelope of the signals.

Results
For each movement (n = 960), we computed the Pearson
correlation coefficients between the time series of the EMG
signals and the corresponding SO activations of the studied
muscles. The full distribution of the correlation coefficients
can be observed in Figure 5a. The median of the correlation
coefficients over the full dataset is r = 0.48. Examples of
high and low correlations are given in Figure 4.

We also segmented the distribution based on different inde-
pendent variables (i.e. muscle, participant, target size or lo-
cation) and analyzed distributions within segments. Several
observations were made:

• SO predicts better for larger muscles: deltoideus (r = 0.64)
and trapezius (r = 0.67). For smaller and less-recruited
muscles, correlations are small or negligible: biceps (r =
0.27), triceps (r = 0.04), pectoralis major (r = 0.04).

• SO better predicts gross movements, i.e. movements to-
ward large targets (8 cm radius; r = 0.59) than toward
small targets (2 cm radius; r = 0.37). Perhaps the recruit-
ment of smaller musculature in the finer control of motion
is well captured by neither sEMG nor SO.

• Correlations differ significantly among subjects (range:
0.33 < r < 0.62), with the strongest correlations recorded
for the oldest subject (36 years old, male). This is under-
standable given that the musculature in the model (SIMM-
FBM) is based on measurements from adult males.
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tive measures (right)

• Correlations increase in the course of a session (average
slope=0.11%, in total 3.14% over 30 trials), perhaps be-
cause muscles are getting fatigued, so that muscle param-
eters of partially fatigued young people are closer to the
muscles of an average adult in the body model.

• Self-reports of stress/tension have only a weak correlation
(0.1 < r < 0.2) with both recorded and simulated vari-
ables (Figure 5).

We did not find effects for the location of movement in the
3D space.

Conclusion
We conclude that the predictions of static optimization were
poorer for small and non-contributing muscles, but adequate
for the largest muscles and gross movements. In ideal con-
ditions, predictive validity was high: If we consider only
the larger muscles of participants whose anatomical param-
eters are close to the full-body model, and movements be-
tween large targets, then the median correlation is 0.81. Gen-
erally, middle-aged subjects were better predicted. Finally,
self-reporting of fatigue was not predicted by the method.

SUMMARY AND RECOMMENDATIONS
Mocap-based biomechanical simulation consists of many
steps and it was previously unclear how sensitive the method
is to the accumulation of errors. The general thrust of the
findings is that, presently, mocap-based biomechanical simu-
lation is valid for some but not all HCI tasks. In the following,
we summarize the lessons learned.

Table 3 provides a list of recommended best practices. Study
I (Feasibility) found that movements of less than 4 cm am-
plitude are presently impossible to process by the standard
simulation. The noise level is too high for such signals, even
with state-of-the-art tracking equipment and careful marker
placement. Very fast and overextended motions are problem-
atic as well and require a temporary increase of the muscle
strength during the simulation (reserve actuators). These re-
sults imply that movements involving small interactive sur-
faces or abrupt movements with large forces, as in exergames,
are difficult. However, many improvements are possible (see
Future Work).

The main result of Study II is encouraging, namely that the
correlation of muscle activation predictions with ground truth
data from surface-EMG is as high as r = 0.48 for the 3D
aimed movements of sixteen random subjects. Regarding
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Figure 6: Top: Correlations of muscle activation predictions with EMG
recordings. Breakdown by muscle. Bottom: Breakdown by user.

the design of a suitable HCI task, we observed the following
choices to affect predictive validity:

• Movements to larger targets are better predicted than to
smaller ones.

• Larger movements are better predicted than smaller ones,
unless they become overextended.

• Faster movements are better predicted than slower ones.

The following observations are also important to consider
when assessing the outcomes of biomechanical simulation:

• Activations of larger muscles are better predicted than
smaller ones.

• For young participants correlations increase in the course
of a session as muscles become more tired.

• The highest correlations are found for subjects who match
closely to the full-body model.

For favorably chosen tasks and subjects, correlation against
S-EMG was as high as 0.81. This is the case for middle-
aged adult males that are the best match with the human body
model. But both studies indicate that the highest muscle ac-
tivations are very well predicted. Moreover, the results from
mouse pointing and typing (Study I) are in consensus with
findings of previous studies using EMG.

These results should be taken into account when sampling
users and designing tasks for experiments.

FUTURE WORK
As there is increasing attention to biomechanical simulation
in various disciplines, the involved technologies are likely to
be improved by future work in different domains. We iden-
tified a number of issues that should be of particular concern
to HCI researchers, as detailed in the following paragraphs.

In order to expand the method to fine motor movements like
multitouch gestures on a surface, the most critical shortcom-
ing to address is the limited movement size. Generally speak-



System Setup
S1. Follow anatomical guidelines for marker placement.
S2. Use additional markers for end effectors.
S3. Use force plates to record contact forces at surfaces.
Data Preprocessing
D1. Use reserve actuators for overextended movements.
D2. Use Kalman smoothing for more robust IK and ID.
Participants
P1. Middle-aged subjects are better predicted than young.
P2. Males are better predicted than females.
Tasks and Procedure
M1. Movements with large amplitudes are better predicted.
M2. Movements to large targets are better predicted.
M3. Fine movements of less than 4 cm of amplitude are not feasible.
M4. Faster movements are better predicted than slow.
M5. Prediction is better for movements recruiting larger muscles.
M6. Prediction improves when the muscle gets more tired over time.
M7. Over-extended motions are poorly predicted.

Table 3: Recommendations for improving accuracy of muscle activation
prediction in HCI studies.

ing, the simulation succeeds if the noise level in its input data
is significantly smaller than the actual movements. On the
positive side, the motion capture system itself introduces rela-
tively small errors. Some of the culprits are hard to avoid. For
example, the locations of anatomical landmarks vary slightly
across users, and therefore also the marker placement relative
to these landmarks. Furthermore, the markers drift slightly
during movements. However, movement size can be partially
addressed by adding more markers per joint and fine-tuning
the body model to the individual subject.

Related to this issue is the fact that the present body models
work best with a middle-aged male. More work is needed in
statistical body modeling that can account for statistical vari-
ation in body shapes and mass distributions. This way, the
method will be applicable to a wider range of subjects. The
model also makes simplifying anatomical assumptions, such
as joints being “hinges,” although for example the thumb has
a saddle joint. Improving the accuracy of the model will im-
prove the permissible size of movements. Moreover, more
studies are needed to understand limitations with different de-
mographics.

Our validation study showed no real relationship between
predicted muscle activations and self-reports of stress and
tension. The experience of the user is obviously important
for HCI researchers, but it is not novel to find a low cor-
relation between objective and subjective measures in HCI
[12]. We suspect that the reason for the low correlation is that
our subjects were not tired enough for stress to emerge. At
present, we advise collecting said data via questionnaires, but
future work should examine whether muscle fatigue can be
estimated when more muscle parameters are known [23].

The standard biomechanical simulation considers movements
“in a vacuum.” We used force sensors to collect ground reac-
tion forces at contact points on surfaces, but our setup is lim-
ited to recordings of a single sensor. For HCI investigators
dealing with interactions that involve multiple objects (e.g.,
tangible computing), it will be important to have a way to
collect and synchronize data from multiple easily attachable
force sensors.

Finally, several practical issues need to be addressed. Al-
though we have shown that data collection and processing is
possible and worthwhile, the process is still unwieldy. Com-
putation times of ID, IK, and SO are extensive: 15, 50, and
1800 seconds, respectively, on a desktop computer for an
movement of the arm (500 ms). As an alternative to SO there
are also two more sophisticated tools in the OpenSim called
Residual Reduction Algorithm (RRA) and Computed Muscle
Control (CMC) [6]. Together they should be able to provide
more accurate results, although their computational cost is
much higher. For application in HCI, RRA and CMC also
need to be assessed and validated. Faster simulation meth-
ods exist [20, 28], but they have not yet been validated for
HCI. But even the fastest simulation software cannot make
up for the time-consuming setup of markers and other man-
ual inspections and interventions that are required in the pre-
processing phase. To support practitioners better, future work
should seek to streamline the method. A promising direc-
tion is markerless motion capture (e.g., [27]). It allows un-
hindered mobility for the subjects, and the setup effort is re-
duced to a minimum. However, markerless motion capture
has lower accuracy. It remains to be examined for which HCI
tasks this lower accuracy is still sufficient.

CONCLUSION
The combination of motion capture and biomechanical sim-
ulation allows measuring both performance and physical er-
gonomics of a user interface within a single session and with
relatively low costs for the setup. The benefit is that it allows
obtaining a rich description of a user’s movement: joint an-
gles and posture, kinematics, forces and moments at joints,
as well as muscular load and activation. Computational and
manual costs are addressable. It is important to try to tap this
rich source of information for HCI. As a first step, we studied
the feasibility and validity of this approach for HCI in aimed
movement tasks. The positive thrust of the present findings
is that the method can already be used for a broad class of
HCI studies. Thus, it is a viable alternative to traditional er-
gonomics instruments. We also identified some limitations.
They can largely be addressed by technical improvements,
which will expand the range of HCI studies that can benefit
from mocap-based biomechanical simulation.
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