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Abstract

Intrinsic shape matching has become the standard ap-
proach for pose invariant correspondence estimation
among deformable shapes. Most existing approaches as-
sume global consistency. While global isometric match-
ing is well understood, only a few heuristic solutions are
known for partial matching. Partial matching is particu-
larly important for robustness to topological noise, which
is a common problem in real-world scanner data. We
introduce a new approach to partial isometric matching
based on the observation that isometries are fully deter-
mined by local information: a map of a single point and its
tangent space fixes an isometry. We develop a new repre-
sentation for partial isometric maps based on equivalence
classes of correspondences between pairs of points and
their tangent-spaces. We apply our approach to register
partial point clouds and compare it to the state-of-the-art
methods, where we obtain significant improvements over
global methods for real-world data and stronger guaran-
tees than previous partial matching algorithms.

1 Introduction

Modern computer graphics has experienced a paradigm
shift: Traditional manual modeling is increasingly com-
plemented by data-driven techniques where measured
data, such as 3D scans, are used as a basis for building
3D models. An important data source are 3D scans of
deformable models, such as humans or animals in vary-
ing poses. Today, there exist sophisticated scanning se-
tups for acquiring moving geometry in real-time [1–4]
and there are even consumer devices on the market such
as the Microsoft KinectTM. This leads to new applica-
tions such as virtual cinematography [5], or the creation
of data-driven generative shape models of deformable ob-
jects [6–9]. Finding correspondences among such data is a
fundamental problem for all of these applications: Almost
any further processing, such as the registration of partial
scans into a complete shape, editing of sequences, or sta-
tistical analysis, requires dense correspondences between
surface points.

Matching deformable shapes is in many cases a difficult
problem: If we permit rather general deformations this
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might require many parameters that have to be explored
during matching. The size of this search space is expo-
nential with respect to the available degrees of freedom.
However, for the important special case of a single object
in different poses, we can often assume that the deforma-
tion is approximately isometric, i.e., preserving the intrin-
sic metric structure. Concretely, the distances along sur-
faces of objects such as humans, animals, plants, or cloths
do not change a lot without serious injury or damage. This
restriction leads to a strongly constrained search space.
Lipman et al. [10] argue that isometries between topo-
logical disks are a special case of conformal mappings,
thereby limiting the degrees of freedom to six (three point-
to-point correspondences are sufficient). Ovsjanikov et
al. [11] show that a single point correspondence is suf-
ficient for a special class of shapes where the spectrum
of the Laplace-Beltrami operator is not degenerate, thus
showing that there are only two degrees of freedom in this
special case. Additional cues, such as carefully selected
constellations of local features [12], can even reduce the
complexity for many shapes to the point of leaving a triv-
ial search space, eliminating all degrees of freedom. As
approximate isometry makes the correspondence problem
feasible while still permitting significant pose changes,
many of the recent shape matching algorithms are based
on this assumption [10–19].

However, the isometric matching problem is not yet
solved: Because of the intrinsic view of the geometry, it is
naturally sensitive to topological noise. In case of holes,
missing data, or contacts, intrinsic distances become dis-
torted and thus no longer constitute invariants that can be
exploited for matching. One solution is to replace the
notion of distance. For example, by using diffusion dis-
tances, or variants thereof, one can reduce the sensitiv-
ity to topological artifacts [17, 20, 21] when the pieces of
geometry that cause the problem are small in relation to
the overall shape. Nonetheless, these invariants still break
down in case of large artifacts (wide contacts, large holes,
as shown for example in Section 5 of this paper). Un-
fortunately, real-world 3D scanner data, one of the main
practical application areas, is almost universally troubled
by substantial artifacts of this kind.

Formulated more generally, we have to address the prob-
lem of partial matching, where not the whole manifold
can be brought into correspondence by a (near-) isomet-
ric mapping but only an excerpt of the surface can be
matched. In this case, typical invariants (geodesic paths,
Laplacian eigenfunctions) become unreliable because they
utilize global information. Importantly, the excerpts of the
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surfaces that can be matched are not known a priori (oth-
erwise, we could just restrict a traditional method accord-
ingly) but need to be determined along with the matching.
This seems to re-introduce prohibitive complexity as we
now have to choose from an exponential number of such
subsets [22]. The most important contribution of this pa-
per is to show that with an appropriate matching model
this is not the case. The search space is not much larger
than in the global problem and we give an efficient algo-
rithm for computing such matches.

The core of our method is based on the observation from
differential geometry that an isometric map can be fully
specified by using local information up to first order only:
An isometry between Riemannian manifolds is fixed by a
single point correspondence and an orthogonal map of the
tangent spaces (see for example [23, p. 201]). In the case
of surfaces, this means that the map of a point and a local
direction (plus orientation, in case of unoriented surfaces)
is sufficient to determine an isometry. We will sketch a
constructive proof in Section 3 that directly yields a prop-
agation algorithm for computing matches: Starting with a
single oriented point match, correspondence information
is incrementally propagated to the neighborhood, thereby
flood-filling a partially consistent region of isometric ge-
ometry. Being local in nature, the method handles partial
matches naturally and is robust to topological noise, which
is reported naturally as boundary of partiality.

From a structural point of view, we can understand partial
isometries among smooth, connected manifolds as equiv-
alence classes of mappings of a pair of points and their
tangent spaces on the two surfaces involved. In the case
of oriented 2-manifolds, each such object has six degrees
of freedom (a point and an angle around the surface nor-
mal for each for source and target surface, respectively).
The mapping is captured by a equivalence class of such 6-
tuples. This set is redundant in that one degree of freedom
(the sum of the angles) can be chosen arbitrarily and two
further parameters (either the starting or the end point) are
only needed to select the partial region to be mapped. This
leaves three degrees of freedom that need to be actually
explored densely, with false starting points being rejected
in O(1) time.

In this view, we can perform a relaxation: In order to
also find approximate isometries, we can cast this problem
as the task of finding approximate equivalence classes.
Kim et al. [18] have used this idea in the context of glob-
ally consistent isometric mappings in order to efficiently
find approximate isometries. In our paper, we demon-
strate how our partial matching framework can be adapted
to perform the same task in a partial matching scenario.
We perform agglomerative clustering [24] in the space of
near-isometric mappings, which are concisely represented
using the tuples introduce above.

We validate our algorithm on standard benchmark data
sets and raw scanner data, and compare the results to pre-
vious work. We show a significant improvement in qual-
ity over global methods in shapes with topological noise.
Our algorithm yields similar or better results as previous
heuristics for partial matching, but with stronger guaran-

tees of discovering existing isometries as outlined above.

In summary, our paper proposes a systematic framework
and new algorithms for extending isometric matching to
the case of partial consistency, thereby making the follow-
ing specific contributions:

• We characterize partial isometries of shapes by
single-point maps up to first order, which yields a
tight bound on the inherent degrees of freedom.

• This leads to a novel matching algorithm that pro-
vides a systematic approach to the general setting of
partial intrinsic matching, where both surfaces may
be incomplete, including robustness to strong topo-
logical noise.

• By interpreting partial matching as a problem of find-
ing approximate equivalent classes in our novel rep-
resentation, we obtain an algorithm for approximate
partial isometric matching.

Our algorithmic pipeline for approximate partial isometric
matching is summarized as follows. We identify distinc-
tive feature points on both surfaces. We compute oriented
point correspondences by matching feature descriptors,
with orientation determined by nearby features. From ori-
ented point matches, we perform local metric propagation,
stopping the propagation when the stretching becomes too
large. This gives us a set of partial isometries, covering
different, but possibly overlapping regions of both sur-
faces. We define a dissimilarity measure between partial
isometries, and use this to cluster the partial matches into
equivalence classes. The cluster (equivalence class) with
the smallest total intra-cluster distance is merged by tak-
ing the geodesic centroid of all candidate correspondences
for each point on the source manifold.

The steps in this pipeline exhibit sensitivity to certain
challenges. Most prominent are the sensitivity of feature
matching to surface noise, missing data and topological
noise, and the sensitivity of the clustering step to under-
sampling of the space of isometric mappings, which can
be exacerbated by problems in the feature matching stage,
in addition to the lack of a proper distance metric between
partial matches. The difficulty of reliable feature match-
ing on real data can be alleviated by the metric propaga-
tion algorithm, which will typically produce smaller par-
tial isometries for incorrect feature matches than for cor-
rect ones since we expect the local metric to be vary sig-
nificantly for different parts of the surface. However, in
the presence of strong continuous intrinsic symmetries this
assumption breaks down. We thoroughly discuss and ex-
plore in which situations and to what extent these chal-
lenges create problems in the final result in Section 5.

2 Complexity of Isometric Shape
Matching

In this section, we discuss different isometric matching
models and their implications on the difficulty for finding
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a globally optimal solution to the matching problem. To
the best of our knowledge, this has not yet been analyzed
explicitly in literature. We do not aim to give an extensive
review of surface registration methods; for this, we refer
the reader to recent surveys such as van Kaick et al. [25]
or Tam et al. [26].

We start by introducing some formal notations.

Manifolds: We consider smooth, orientable 2-manifolds
M ⊂ R3 embedded in three-dimensional space. In order
to represent partial data (such as scans with acquisition
holes), we permit boundaries, denoted by ∂M. The orien-
tation ofM might (optionally) be prescribed by oriented
surface normals n(x), x ∈M, pointing outwards.

Tangent space: We further use TxM to denote the tan-
gent space ofM at point x ∈ M. For its representation,
we choose two arbitrary but fixed orthogonal tangent vec-
tors u(x),v(x), i.e.: TxM = span{u(x),v(x)}.

Distances: We use distM(x,y) for x,y ∈ M to denote
the intrinsic or geodesic distance between the two points
x and y. A geodesic connecting x and y is a curve that has
no geodesic curvature, which means that the derivative of
the curve at a point s projected to TsM is zero. We call the
shortest geodesic connecting x and y a shortest geodesic
path inM.

Mappings and isometries: Consider two manifolds S
and T , and a mapping f : U → T from an open sub-
set U ⊆ S to T . Let fu(x) and fv(x) denote the partial
derivatives of f with respect to the tangent space direc-
tions u and v in R3 of S. The first fundamental form
If (x) of f at point x ∈ U is then given by:

If (x) =

(
fu(x) · fu(x) fu(x) · fv(x)
fv(x) · fu(x) fv(x) · fv(x)

)
.

The function f is an isometry if and only if If (x) = I for
all x ∈ U .

Equipped with this notation, we will now identify and an-
alyze three classes of approaches for finding surface cor-
respondences. The difference is in how the notion of ap-
proximate isometry is handled, leading to different com-
plexity characteristics and algorithms.

2.1 Global Approximate Isometry

The global model assumes that geodesic distances are
global invariants of the shape, being consistent at least
up to an error margin ν > 0 that accounts only for a small
fraction of the object size. This means, the energy

Eglobal = sup
x,y∈U

|distS(x,y)− distT (f(x), f(y))| (1)

must be smaller than ν. For two points x,y ∈ U Eq. 1
corresponds to an additive error of at most ν, i.e.

|distS(x,y)− distT (f(x), f(y))| ≤ ν. (2)

The global consistency criterion is sometimes modified to
allow for a multiplicative error of ν instead, as

max

(
distS(x,y)

distT (f(x), f(y))
,
distT (f(x), f(y))

distS(x,y)

)
≤ (1 + ν).

(3)

The former error model considers absolute errors, while
the latter one considers relative errors.

In case of exact isometry, i.e., ν = 0, the set of match-
ing candidates becomes strongly constrained. The isom-
etry assumption has been used to embed the intrinsic
geometry of a shape in a Euclidean space using multi-
dimensional scaling, such that embeddings of isometric
shapes become identical, which facilitates shape recogni-
tion and matching [27–29]. Alternatively, the geometry
of shape S can be embedded into shape T using gen-
eralized multi-dimensional scaling, thereby computing a
cross-parameterization directly [14].

Exact isometry results in a set of matching candidates with
few degrees of freedom. Lipman and Funkhouser [10]
have noticed that isometries are special cases of conformal
maps, thereby having only the degrees of freedom given
by the Möbius group, which are fixed by three pointwise
matches on spherical topologies. Ovsjanikov et al. [11]
have shown that even a single point match is sufficient to
fix an isometry if the Laplace-Beltrami spectrum of S is
non-degenerate. In this paper, we exploit a different way
to uniquely describe an isometry: fixing one point, a tan-
gential direction, and the surface orientation is necessary
and sufficient to specify an isometric mapping [23]. This
provides the fewest possible degrees of freedom while still
covering all cases including shapes with global intrinsic
symmetries.

In case of small, global error margins, statistical triangula-
tion algorithms can be applied that compute all correspon-
dences from a few landmark matches [15, 16] or, simi-
larly, by voting for several approximate solutions [10,11].
Depending on the geometry of the shape, errors can be-
come amplified so that a bit more than only the minimal
set of initial correspondences are required [12]. Nonethe-
less, matching according to this model is efficient and can
be considered a more or less solved problem.

The global approximate isometry criterion has also been
employed to study matching partial overlaps of complete
surfaces. Van Kaick et al. [30] use a pair of features to de-
fine a map that captures a local geodesic region between
the two features, and show how this descriptor can be used
for partial matching. Here, using two features instead of
one is crucial because two features encode orientation in-
formation on the surface, while one feature does not.

The drawback of the global consistency model is its sen-
sitivity to topological noise. To make globally consistent
approaches more robust w.r.t. topological changes, several
approaches have been proposed to perform a band-limited
analysis in the eigenspace of the manifold’s Laplace-
Beltrami operator [17,20,21,31]. Unlike prior approaches
based on embedding the intrinsic geometry of the shape
directly [14, 27–29], these approaches successfully han-
dle small topological errors. However, they break down
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in the presence of large artifacts, such as wide contacts
or missing pieces. A notable exception is the heuris-
tic region growing approach by Sharma et al. [32]. It
tries to match points with similar spectral signatures us-
ing an expectation-maximization framework, which has
been shown to perform well in the presence of large con-
tacts. Despite good practical performance, the algorithm
is heuristic in nature and it remains unclear under which
conditions it will find a correct solution. In particular, if
local descriptors are not unique, the greedy region grow-
ing might fail and the EM-algorithm does not guarantee
to recover a correct global match. In contrast, our region
growing algorithm, which is based on propagation of met-
ric information rather than potentially ambiguous descrip-
tor matching, comes with the theoretical guarantee to find
correct results for exact isometries while requiring an ini-
tialization from a small search space with very few degrees
of freedom.

2.2 Global Approximate Isometry in Par-
tial Regions

The global consistency model is incompatible with the no-
tion of partial matching, since distances have to be mea-
sured on the complete surfaces S and T , which might not
be available. Xu et al. [22] modify the criterion in Eq. 1
by restricting paths to the partially matched region U :

Epartial = sup
x,y∈U

|distU (x,y)− distf(U)(f(x), f(y))|.

(4)

Note that Epartial considers again absolute errors

|distU (x,y)− distf(U)(f(x), f(y))| ≤ ν (5)

and can be modified to consider relative errors as in Eq. 3.

The drawback is that the shortest geodesic paths and thus
the energy depend on the shape of the domain, which
makes it difficult to optimize Epartial; changing the do-
main U influences which pairs of points are mapped in
a geodesically consistent way. For this reason, Xu et al.
restrict their method to considering geodesically convex
regions U , which are defined as regions where for any two
points x,y in U , there exists a shortest geodesic path be-
tween x and y in U . In this special case, both Epartial and
Eglobal measure shortest paths on S and T . The solution
proposed by Xu et al. optimizes the scale of consistent re-
gions and the consistent points separately, which leads to
a rather complex algorithm. Further, the notion of a scale
parameter is not canonically related to the original match-
ing problem.

Sahilloglu and Yemez [33] consider the case where one
of the surfaces is complete and the other an incomplete,
deformed part of that surface. Using a coarse sampling
and matching strategy between shape extremities, they can
directly estimate a scale parameter between the two sur-
faces, which allows them to define a scale-invariant iso-
metric distortion measure. This results in one-sided partial
dense intrinsic matching up to an arbitrary scale. Their ap-
proach also allows matching of semantically similar, but

non-isometric complete surfaces. Our approach allows
both surfaces to be incomplete, at the cost that they must
be scaled consistently beforehand. Given real-world scan-
ners often provide data in known units, our method is com-
patible with the scenario of matching surfaces acquired
with different modalities. While in this paper we do not
explore the latter scenario, our approach would be com-
patible with this task given a reliable way to estimate scale
change during metric propagation, possibly using shape
extremities or other intrinsic features.

Bronstein et al. [34] introduced a general framework to
evaluate partial similarity using Pareto optimality. In case
of partial intrinsic shape matching, this method aims to
find large parts of two surfaces that are similar to each
other, where similarity is measured according to Eq. 2.
In practice, the parts are found using generalized multi-
dimensional scaling. Raviv et al. [35] use a similar tech-
nique to find partial intrinsic symmetries.

2.3 Local Approximate Isometry

Another common way to relax the requirement of ex-
act isometry towards approximate matching is to main-
tain the metric tensor in a least-squares-sense. Again, let
f : U → T ,U ⊆ S be a mapping between two manifolds,
where U is the open subset of S that should be mapped
to T in a distortion minimizing way. We can measure the
distortions for example by minimizing a matrix norm of
the Green deformation tensor (difference of the first fun-
damental form to identity):

Elocal(f) =

∫
U
‖If (x)− I‖2F dx. (6)

This criterion is purely local and thus well suited for par-
tial matching. It is worth noting that extrinsic elastic
deformation techniques, such as [36–38] are closely re-
lated: They either include the preservation of the curvature
tensor in the objective function to maintain the extrinsic
shape, or apply Eq. 6 to the 3-manifold of the embedding
Euclidean volume [39, 40]. All of these methods are de-
signed for partial matching.

The problem with both intrinsic and extrinsic elastic
matching models is that the search space becomes very
large, rendering any approach based on exhaustive search
prohibitively expensive. The structure of the search space
can be approximately understood by a linearized analy-
sis. In order to understand the degrees of freedom of the
local matching model, we can use the tool of modal anal-
ysis of such elastic models, first introduced by Pentland
and Williams [41] to the field of computer graphics (the
aim of their paper was actually to speed up the simulation
of extrinsic elastic deformations of solid objects in three-
space). Modal analysis represent the deformation of an
object as a linear combination of the eigenmodes of the
object’s vibration, which are found using a spectral analy-
sis of a linearized deformation energy.

Typically, these energies are related to the Laplacian of
the deformed domain, thus leading to eigenvalues that are
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only decreasing rather slowly. Many modes need to be re-
tained to represent the space of low-energy (i.e., plausible)
deformations adequately. If the local matching is not very
stiff, the size of the search space explodes. This is intu-
itive: Permitting local deformations creates a large variety
of permissible shape variants, for example by adding dif-
ferent local dents and combinations of those everywhere.
Due to this large search space, it is impractical to match
shapes purely based on the deformation model of Eq. 6.
In order to reduce the large search space for elastic match-
ing, existing methods use additional constraints, such as,
template models [40], temporal coherence [39], or fairly
large sets of coherent feature correspondences [37].

Recently, Kim et al. [18] proposed a new paradigm for
the elastic matching problem. First, the method computes
multiple dense maps between two shapes by assuming a
global near-isometric deformation model. Multiple maps
are obtained by fixing different triples of corresponding
points for the computation of global conformal maps [10].
Second, the method computes local weights for pairs of
maps, depending on their local adherence to isometry, and
performs a spectral analysis to combine multiple weighted
maps into a single global map. The key idea is to find
cliques of similar mappings by clustering approximately
compatible maps. The method was shown to perform well
in many interesting cases. However, it cannot handle par-
tial mapping; in particular constellations with large topo-
logical noise cannot be handled: Each global conformal
map can is highly distorted due to the lack of global con-
sistency. This introduces distortions in many of the lo-
cal matches, and it is not always possible to remove these
distortions in the final blended result (as demonstrated in
Section 5).

Our clustering method (Section 4.4) is based on the same
idea, but it combines partial maps instead of global maps,
therefore avoiding the mentioned problems of artifacts due
to only partial consistency. On the technical side, the main
challenge is that we cannot measure the distance between
all pairs of candidate maps but only between actually over-
lapping ones. This is a problem for the original spectral
clustering, which we substitute by an alternative technique
geared towards sparse pairwise constraints [24].

2.4 Previous Work on Local Isometry

In previous work, there have been a number of attempts
to find local isometric mappings, similar to our approach.
However, these did not consider mappings between gen-
eral surfaces but only local planar parametrizations.

Different techniques have been proposed to locally param-
eterize the intrinsic geometry of a surface to a plane using
a local approximate isometry criterion. Schmidt et al. [42]
used exponential maps to transport a local coordinate sys-
tem along a surface for the purpose of texture mapping.
More recently, Schmidt [43] used transported exponen-
tial maps to produce a parameterization of a local surface
patch to the plane that has low metric distortion. The lo-
cal surface patch is provided through user interaction as

an input stroke on the surface. Malvaer et al. [44] pro-
pose an alternative parameterization based on an extension
of polar coordinates to surfaces. In our work, we cross-
parameterize local surface patches from S to T . This
cross-parameterization is more challenging than a param-
eterization to the plane due to the arbitrary geometry of
T . Our cross-parameterization task is further complicated
as in our application scenario, both S and T are scanned
point clouds with missing surface information and scanner
noise. Hence, the reviewed methods cannot be applied in
a straight forward manner in our application.

3 Local Metric Matching

We saw that for general surface matching using a
global approximate isometry criterion for partial matching
(Eq. 4) is difficult since the domain changes, and that using
a local approximate isometry criterion (Eq. 6) is difficult
since this results in a large search space. In this section,
we outline our new method: starting from a point s ∈ S
and attached direction in TsS with known correspondence
f(s) ∈ T and corresponding attached direction in Tf(s)T ,
we find the largest domain U such that Eq. 5 is satisfied.

The key assumption of our approach is that S and T can
be matched using a global approximate isometry in some
partial region U containing s, implying that Eq. 5 holds.
Our goal is to find the largest region U for which this as-
sumption is satisfied. This assumption holds in scenar-
ios where we know that S and T are actually related by
a near-isometric map but the data does not comprise all
of the original input and/or contains additional unrelated
geometry or contacts. The most important practical ex-
ample where this assumption holds is the acquisition of a
surface that deforms near-isometrically but the scanning
equipment introduces areas of missing data (shadowed to
the scanner by other object parts) and cannot correctly re-
solve the topology in contact areas (such as the hand of a
person being in contact with the body).

Our approach can be viewed as a hybrid approach be-
tween global and local approximate isometric matching.
We use the assumption that S and T can be matched us-
ing a global approximate isometry in some partial region
U , and we compute U by growing a region using a local
approximate isometry criterion. This allows us to com-
bine the advantage of the global methods of having a low-
dimensional search space with the advantage of the local
methods of being well suited to describe partial isometric
matches.

Let Θ denote the parameter domain of all partial isometric
matchings between S and T . Our goal is to compute all
partial isometries {fθ,Uθ}θ∈Θ that map maximal subsets
U of S to T . The vector θ ∈ Θ parametrizes the set of all
such mappings.

In the following, we will discuss that:

• Isometric deformations of S have three degrees of
freedom.
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• A partial isometry can be parametrized by Θ = S ×
SO(1)× T × SO(1), where SO(1) denotes the unit
circle.

• There exists a global representation redundancy that
identifies all choices of parameters s ∈ U ⊂ S and
ds ∈ TsS.

3.1 Three Degrees of Freedom

For a (sufficiently) smooth Riemannian manifold S fixing
one point s on S, a tangential direction ds in TsS, and
a surface normal ns at s suffices to specify an isometric
mapping [23]. For details on the smoothness criteria, re-
fer to [45]. The following proof sketch aims to give the
intuition behind this statement for 2-dimensional surfaces
embedded in R3 by showing that we can transfer the local
coordinate frame defined by ds and ns to any point on S
in a canonical way.

We start with two definitions. The injectivity radius ρsS at
s is the largest radius, such that for any point x on S with
geodesic distance less than ρsS from s, there is a unique
shortest geodesic path between s and x. The injectivity
radius of S is defined as ρS = infs∈S (ρsS).

For closed surfaces, the injectivity radius can be bounded
from below by the minimum of π/

√
supK, where K

is the Gaussian curvature, and half of the length of the
smallest periodic geodesic [23, Thm. 10]. It follows that
ρS > 0 holds for closed Riemannian surfaces with fi-
nite Gaussian curvature. For general surfaces with bound-
ary, the injectivity radius may become zero. Note that in
this paper, we consider Riemannian surfaces with finite
Gaussian curvature with boundaries. The boundaries are
present because the closed Riemannian surface of interest
is only partially observed by the acquisition device. In this
special case, the injectivity radius is still positive.

Imagine that S is covered by overlapping regions of intrin-
sic radius less than ρS. These regions are all topologically
equivalent to disks. Consider a disk D containing a point
s as shown in Figure 1. In a small neighborhood of s,
D is arbitrarily close to the tangent plane TsS. Note that
s, ds, and ns fix a local orthonormal coordinate frame in
R3. This coordinate frame can be transported to a point
x : x ∈ D,x 6= s along the (unique) shortest geodesic
path Psx from s to x in D by parallel transport, which can
be thought of as repeatedly projecting the direction ds to
the tangent planes of consecutive points along Psx in in-
finitesimally small steps (for details on parallel transport
see for example Berger [23, Chapter 3.1]). Let dx denote
the transported direction. The transferred direction lies in
the tangent plane TxS, and can again be used to fix a local
orthonormal coordinate frame at x. This transfer can be
repeated by chaining together disks until every point y on
S was assigned a fixed tangential direction dy ∈ TyS by
parallel transport along a path connecting s and y that con-
sists of an arbitrary but fixed sequence of (unique) shortest
geodesic paths within the chained disks. Note that by con-
struction, we only use intrinsic information to propagate
the direction ds to the entire surface. Hence, the resulting

D

s x
Psx

ds dx

Figure 1: Propagating a local coordinate system along S.

local coordinate frames are invariant with respect to iso-
metric deformations of S when encoded relative to fixed
local coordinate systems u(y),v(y),n(y) on S.

This implies that any isometric deformation of an oriented
surface S can be specified using three degrees of freedom:
one point s on S (accounting for two degrees of freedom)
and a direction in the tangent plane of s.

3.2 Representation

We can use the fact that any isometric deformation of an
oriented surface can be specified using three degrees of
freedom to derive a representation θ for intrinsic map-
pings. Specifically, identifying one corresponding point
and one corresponding tangential direction completely de-
termines an isometric mapping between two oriented sur-
faces. More formally, to define an isometric mapping be-
tween (subsets of) S and T , it suffices to specify a point
s ∈ S, its intrinsically corresponding point t ∈ T , a
tangential direction ds in TsS, and its intrinsically cor-
responding tangential direction dt in TtT .

Starting from this information, and assuming that S and
T are isometric, we can propagate the correspondence in-
formation by mapping the metric structure of S onto T
as follows. Starting from the corresponding points s and
t along with the corresponding directions ds and dt, we
can propagate the correspondence information to a suffi-
ciently small geodesic neighborhood Ns of s by simulta-
neously walking along corresponding geodesic paths start-
ing at s and t, respectively, and by matching points that are
reached at the same time. Here, Ns is sufficiently small if
its geodesic radius is below ρS. Once the correspondence
information is computed for Ns, we continue propagating
the correspondence information from a point close to the
boundary of Ns to its geodesic neighborhood, and iterate
until every point on S has a correspondence.

The assumption that S and T are (near-) isometric can also
be used to detect the boundary of the largest region U ⊆ S
containing s for which the mapping is near-isometric. The
reason is that the propagation algorithm allows us to mea-
sure the difference in intrinsic geometry in newly mapped
parts of S and T directly. Hence, we can stop the re-
gion growing algorithm if a newly added correspondence
would induce a stretching larger than ν.

Figure 2 illustrates the near-isometric region growing pro-
cess. The plane on the left (S) and the plane with a hill on
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(a) Oriented point match. (b) Some growing.

(c) More growing. (d) Final mapping.

Figure 2: Illustration of the near-isometric region growing
process. Corresponding points share the same color.

the right (T ) are isometric except for the hill. Beginning
with a point and direction match in Figure 2a, the isomet-
ric region grows outward in all directions where the isom-
etry condition is locally satisfied. This way, the largest
near-isometric partial match is identified, as shown in Fig-
ure 2d. Note that this region can have a complex topology
and geometry.

3.3 Representation Redundancy

The representation discussed above contains redundant in-
formation: Infinitely many θ may represent the same near-
isometric mapping.

The first degree of redundancy is the choice of the direc-
tion ds in the tangent plane TsS. Changing this direction
merely rotates the field of directions dx in TxS (and sim-
ilarly, the field of corresponding directions dy in TyT ).
Hence, the choice of this direction has no influence on the
final result. To remove this redundancy, we start from an
arbitrary but fixed direction ds and precompute and fix dx

for all x on S.

The second redundancy is the choice of the start point s.
Let U ⊆ S be the maximal set within which an isometry
f : U → T can be constructed. We can replace s in θ by
any other point s′ ∈ U . See Fig. 3. This requires an up-
date of the remaining parameters. The direction ds′ is set
to the precomputed value (see above), and the remaining
parameters can be updated using the computed mapping
f . More specifically, t′ = f(s′) and the direction of dt′

is set to the direction of f(s′ + εds′) − f(s′), where ε
is set small enough that s′ + εds′ is in U . Thus, in the
case of a global isometry, or when we know beforehand
the isometric region U , the mapping f has three degrees
of freedom. In the general partial isometry case, however,
where U is unknown, the starting point s ∈ S is not fully
redundant; it still selects the equivalence class that rep-
resents a certain partial map; computationally, this is the
patch to be matched by the propagation algorithm. This
does not increase the complexity strongly as we just have
to restart the matching in case multiple partial matches ex-
ist. Ideally, we would sample one starting point per par-
tial isometric region, which in practice will be far fewer
than there are samples on S. While we do not determine
this lower-bound beforehand, we maintain low complexity

s tU ⊆ S f(U) ⊆ T

s′ t′s′′ t′′

s′′′ t′′′

Figure 3: For a given set U and a corresponding isome-
try (shown in blue), the choice of the starting point s is
arbitrary.

by using features to identify potential starting points, and
marking a starting point s as redundant if another starting
point s′ produces an isometric region U containing s. In
case of a mismatch, it can be discovered quickly if the tar-
get area does not match, which will become evident within
constant time.

In summary, all mappings represented by s′,ds′ , t
′,dt′

form an equivalence class in the parameter space Θ. Since
we can remove one degree of redundancy by fixing the tan-
gential directions on S, for each mapping f we have two
degrees of freedom that vary among equivalent maps (the
choice of the start point on S), which along with the man-
ifold structure of U implies that each equivalence class
forms a 2-manifold in Θ, which can be computed directly
using the propagation algorithm introduced in Section 3.2.

In practice, we can take advantage of this representational
redundancy as follows. Since S and T are discretized and
corrupted by noise, the error of the correspondence in-
formation computed using the propagation algorithm in-
creases with increasing distance from the start point of
the propagation. Hence, it is possible that the propaga-
tion stops prematurely due to discretization artifacts and
the influence of noise, thereby identifying a region U that
is smaller than the correct solution. Thanks to the redun-
dancy in the representation, we can start the propagation
algorithm from multiple oriented point pairs, identify a set
of equivalent mapping functions fi, and them into a single
mapping function f that covers a larger area of S and is
less influenced by noise than the individual fi. The follow-
ing section discusses a direct implementation of this theo-
retically motivated method, which we will use to compute
correspondences of noisy scanner data.

4 Pairwise Intrinsic Matching

From the preceding analysis, we derive an algorithm for
computing partial near-isometries between two surfaces S
and T . We start our discussion by outlining how surfaces
are represented and how basic steps of the algorithm are
implemented (Section 4.1). Our direct, non-optimized im-
plementation is based on enumerating the non-equivalent
choices by selecting different oriented point matches (Sec-
tion 4.2), growing the isometric region locally from there
until no more points locally satisfy ν (Section 4.3), and
finally clustering the partial maps into equivalence classes
(Section 4.4). Figure 4 gives a graphical overview of our
matching pipeline.
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Features Oriented Point
Matches

Partial
Matches

Clustered and
Merged Result

Figure 4: Overview of the pairwise matching pipeline. First, features are detected, second, oriented point matches are
computed, third, starting from the oriented point matches, partial isometric matches are found, and finally, different partial
matches are clustered and merged.

4.1 Surface Representation

In our implementation, the surfaces S and T are either
represented as oriented point clouds or meshes. While
most parts of the algorithm can be extended to discretized
surfaces in a straight forward manner, for some parts of
the algorithm we require a continuous surface represen-
tation. We obtain a continuous surface representation as
implicit moving-least-squares (MLS) manifolds using the
robust method of Öztireli et al. [46]. Using this method,
a discretized surface S is represented continuously as the
zero level-set of an implicit function derived from the ori-
ented vertices of S .

Using a MLS representation allows a point to be projected
to a continuous representation of S in the case where S
is given as oriented point cloud or mesh. In the follow-
ing, whenever we refer to projecting a point x onto a dis-
cretized surface S, this projection is implemented as pro-
jecting x to the MLS representation derived from S.

One basic operation needed by our algorithm is the com-
putation of geodesic distances and paths on S. In some
parts of the algorithms, rough estimates of geodesic dis-
tances and paths suffice, and these are computed using Di-
jkstra’s algorithm. In other parts of the algorithm, it is cru-
cial to have accurate estimates of geodesic distances and
paths. In these cases, we initialize a geodesic path P to
the Dijkstra path and refine P by minimizing the length of
P using the constraint that P must not leave S. This opti-
mization is carried out iteratively using a conjugate gradi-
ent method. After each step, P is projected back to S. In
the following, we refer to these refined geodesic distances
and paths as smoothed geodesic distances and paths.

A core part of our approach is to compare distances mea-
sure on the target surface to distances measured on the
source for corresponding points. Comparing geodesics be-
tween all pairs of correspondences quickly becomes pro-
hibitively expensive and would limit the practical appli-
cability of our algorithm. To remedy this, we construct a
topology hierarchy on S similar to [47] as follows. We de-
fine level 0 of the hierarchy to be the original set of vertices
and their connectivity–either the original triangle mesh or
the k-nn graph for a point cloud. (In all our experiments
involving point clouds, we set k = 8.) The sample spac-
ing ε0 is defined as the average edge length. Level 1 of
the hierarchy is constructed by selecting an evenly spaced
subset of the level 0 vertices and connecting vertices in
a topology preserving way. Subsequent levels j + 1 are
constructed in the same way as a subset of level j. At
each level the subset for the next level is determined by
doubling the desired sample spacing, εj+1 = 2εj . At a
coarser level of this hierarchy fewer vertices are connected
to any others, but at a greater distance to each other. In our
algorithm, we only consider geodesic distances between
vertices that share an edge in at least one level of the hi-
erarchy, which results in a sparse set of distances to be
optimized, even for a dense set of correspondences.

This hierarchical structure ensures that locality is re-
spected, as only geodesics between points that are neigh-
bors in some level of the hierarchy are considered. Hav-
ing a structure that respects locality is crucial to allow for
partial matching. The number of levels in the hierarchy
determines the trade-off between local and global isome-
try constraints. We use 5 levels in all experiments in this
paper.
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Note that during the execution of the matching algorithm,
the vertices on S are fixed, as we aim to find a correspon-
dence for every vertex of S on T (if such a correspondence
exists). Hence, we can precompute all geodesic distances
on S for vertices connected in some level of the hierarchy.
This way, only distances on T need to be updated during
the metric optimization.

4.2 Finding Oriented Point Matches

In principle, by exhaustively trying all possible starting
points and directions, our algorithm will recover all partial
isometries. However, since this is infeasible, we reduce
the search space using sparse feature matches. This sec-
tion outlines an algorithm to find features matches. How-
ever, note that this part is not a novel contribution of this
paper and only given for completeness; in principle, any
feature matches can be used to reduce the search space, as
demonstrated in Section 5, where we show a result using
image-based feature matches from a multi-view capture
setup. We denote the feature descriptor at a point s ∈ S
with a vector DS(s), and similarly for points on T .

We identify features on S and T using the geodesic fin-
gerprint descriptor DS(s) [48], which compares how an
isocontour of the geodesic distance from a point s ∈ S
deviates in length from the isocontour of the same 2D
Euclidean distance. We use 10 isocontours in all exper-
iments, for geodesic radii between rmin and rmax. The
values of rmin and rmax need to be varied slightly depend-
ing on the amount of noise in the input data, and are dis-
cussed in Section 5. We define the distinctiveness FS(s)
of a point s ∈ S as the sum of L1 distances to the rest of
the vertices of S in descriptor space. Features are points
that locally maximize distinctiveness. The left-most box
in Figure 4 shows features color-coded by distinctiveness
(red for most distinct, blue for least distinct).

To find feature matches, we begin by computing the Carte-
sian product of L2 descriptor distances between features
on S and T . The vast majority of these are not correct
mappings between the surfaces. We filter these potential
feature matches using both the L2 distances between de-
scriptors and the distinctiveness of the features. More pre-
cisely, for each feature s on S, we only consider the K
features of T that have the closest descriptor matches to s.
(We use K = 10 in all our experiments.) The initial dis-
similarity δ(init)

s,t between two features s ∈ S and t ∈ T is
defined as

δ
(init)
s,t = − log (FS(s)) + ωD ‖DS(s)−DT (t)‖22 , (7)

where ωD is a weight. (We use ωD = 400 in all our exper-
iments.) This dissimilarity is minimized for features with
high distinctiveness that are similar in descriptor space.

This procedure often produces a good set of sorted feature
matches on clean data. For noisy data from real scanners,
however, the descriptors will be less discriminative, and
considering spatial relations between features in addition
to descriptors and distinctiveness leads to more reliable
feature matches.
To do this, we iteratively build (possibly overlapping)
clusters Ci of consistent feature matches. In each itera-

tion, the feature match (s, t) with the next lowest δ(init)
s,t

is chosen as a starting point for Ci. The cluster Ci is
built by repeatedly adding the close-by feature match that
has the lowest dissimilarity to Ci. More precisely, let
Ci = {(sj , tj)}. In the next step, all features s′ 6∈ Ci
that are neighbors of sj in the topology hierarchy are con-
sidered, along with their K potential matches t′ ∈ T . The
dissimilarity δCi,(s′,t′) between a feature match (s′, t′)
and cluster Ci is defined as

δCi,(s
′,t′) = δ

(init)
s,t + ωC

∑
(sj ,tj)

∣∣distS(sj , s
′
)− distT (tj , t

′
)
∣∣2 ,

(8)

where ωC is a weight. (In all our experiments, we set ωC
to one over 8× the square of the average edge length on
S.) We repeatedly add the match (s′, t′) with smallest dis-
similarity δCi,(s′,t′) to Ci as long as δCi,(s′,t′) is below a
threshold. (We use threshold 11.5 ≈ − log 10−5 in all our
experiments.) We stop adding new clusters once the sum
of the cardinalities of the clusters Ci exceeds the initial
number of feature matches.

Note that the above clustering scheme is equivalent to
modeling both the descriptor distances and the summed
stretches of geodesic distances of a feature match to a
cluster as normally distributed. Hence, the above stop-
ping criteria correspond to stopping the clustering once
the joint probability of a match belonging to a cluster be-
comes small.

After the clustering, we place the feature matches (s, t)
in a min-priority queue, so that we start isometric re-
gion growing first from the matches we expect to be
most reliable. A feature match (s, t) is assigned prior-
ity ∞ if (s, t) is not part of any cluster Ci and priority
minCi:(s,t)∈Ci

δCi,(s′,t′) otherwise. We repeatedly take
the minimum element from queue and use it to generate
partial isometric mappings using the region growing of
Section 4.3.

However, so far we have only established a positional
correspondence between features, and we need a direc-
tional correspondence as well to fix the partial isometry
we wish to grow. To establish direction, we build a min-
priority queue as outlined above, but only with the subset
of features in the neighborhood of the current positional
match in the topology hierarchy. Matches of neighboring
features allow us to find corresponding tangent plane di-
rections from corresponding smoothed geodesic paths be-
tween feature points.

Once a partial isometry has been computed, we increase
the priority of feature matches that are redundant given the
already computed partial match. If the same source and
target points are already matched, by our model, the result
of running the growing again from those same points will
be equivalent.

To keep the run-time of our method bounded, we stop after
a fixed number of oriented point matches have been tried.
(We use 200 in all our experiments.) A more general stop-
ping criterion could be devised based on determining the
maximal coverage of S and T subject to a consistent map-
ping. The second box from the left of Figure 4 shows three
oriented feature matches found using this method.
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4.3 Isometric Region Growing

Starting from an oriented point match s,ds, t,dt, we
grow the region U by adding matches incrementally in the
local neighborhood of the boundary of U . For a new point
u near the boundary of U such that u /∈ U , let N1(u)
denote the neighborhood of u in level 1 of our topology
hierarchy. We use parallel transport along corresponding
directions in S and T emanating from an oriented point
match s′,ds′ , t

′,dt′ , where s′ ∈ U ∩ N1(u) is in a lo-
cal neighborhood of u. We know the full path between
s′ and u on S, and from ds′ and dt′ we know the corre-
sponding start direction on T . Hence, we can transport the
start direction along corresponding paths on S and T until
we have traveled distS(s′,u). In practice, we implement
parallel transport by moving in small steps in the tangent
plane, and by reprojecting the resulting point to the surface
and updating the tangent to the path. We use smoothed
geodesic paths to transport the position of the new match
on T to reduce discretization errors for differently sam-
pled surfaces. For robustness, we use all available oriented
point matches inN1(u) and take the Riemannian center of
mass [49] of the transported points, where all transported
points have equal mass.

The newly matched source point u is added to U only if it
locally respects the stretch factor ν as given in Eq. 5. This
is necessary for two reasons. First, subsequent matches
will be estimated based on the assumption that the exist-
ing matches are near-isometric. Second, as discussed next,
we use a nonlinear least-squares optimization to refine the
positions of the matched points on T , which effectively
distributes the error evenly over the matched region. To
avoid introducing errors, it is therefore important to ver-
ify that each newly added point match locally respects the
stretch factor ν.

To reduce the effect of quantization errors and noise, we
optimize the metric matching of U using a non-linear op-
timization technique [14] every time the area of U has
doubled. This means more frequent optimizations at the
start of the growing process. This optimization reduces the
amount of drift as it re-aligns the matched regions while
taking into account long geodesics, between neighbors in
the top level of our topology hierarchy, in U . For increased
efficiency, we only consider edges in the topology hierar-
chy of S (explained in Section 4.1) during the optimiza-
tion.

An important difference to the global approach used by
Bronstein et al. [14] is that we optimize the metric only
using geodesic paths which are entirely within U and
f(U). This models the isometry criterion in partial re-
gions and is crucial to handling topology changes and
missing data. Note that such defects may cause large
differences between distS(x,y) and distU (x,y), as well
as distT (f(x), f(y)) and distf(U)(f(x), f(y)), respec-
tively. The second box from the right in Figure 4 shows
the first three partial isometries found by growing isomet-
rically from oriented feature matches in our priority queue.

The proper value for the stretching threshold ν depends
on a number of factors: material properties, the resolu-

tion at which the surface is sampled (as it affects the accu-
racy of the Dijkstra paths), and the noise of the acquisition
process. In our experiments, we do not consider material
properties, and we assume that the acquisition noise has
an equal influence on both source and target. Hence, we
set ν to 0.5ε0 to account for quantization effects in the
computation of geodesics.

4.4 Combining Equivalent Partial Maps

It remains to identify and merge a set of partial mappings
that represent the same mapping function f . If the surfaces
were related by exact isometries and noise was negligible,
the following step would not be required. However, for
real-world data, the identification of functions that are ap-
proximately equivalent improves the results substantially.

The problem at this point similar to the blending problem
by Kim et al. [18]. Recall that their approach uses a spec-
tral method to find blending weights for different maps.
This is a good approach in their case as blending weights
are given as the solution to a quadratic energy function.
Note that since in our model, equivalent mappings form a
2-manifold in parameter space Θ, and the parameter space
Θ is non-linear, it is not appropriate to use a spectral ap-
proach.

However, we can take advantage of the property that
equivalent mappings form a 2-manifold in Θ. We employ
the agglomerative clustering algorithm of Zhang et al. [24]
for discovering manifold structures in high-dimensional
data based on the in-degree and out-degree of the nearest-
neighbor graph of points in high-dimensional space. In
our case, we consider the nearest neighbor graph of par-
tial isometric mappings, where the dissimilarity between
these points in Θ is measured as follows.

We compare different maps fi and fj using a dissimilarity
measure based on their domains Ui and Uj :

dΘ(fi, fj) = W1

∫
Uij

distT (fi(x), fj(x))dx

+ W2

∫
fi(Uij)∩fj(Uij)

distS(f
−1
i (y), f

−1
j (y))dy(9)

where Uij = Ui ∩ Uj , W1 = 1
A(Uij) , W2 =

1
A(fi(Uij)∩fj(Uij)) , and A(·) denotes the surface area. In
practice, we compute a discrete version of this dissim-
ilarity by replacing integrals over regions by sums over
vertices in the region. We cluster different mappings to-
gether until the maximum affinity between any two clus-
ters is greater than a threshold ρ. Affinity is computed
from the weighted graph degree between mappings, where
the weights have a double-exponential fall-off as dΘ in-
creases. See Zhang et al. [24] for details. While the di-
rect relation of ρ to the allowed stretch is not easily de-
fined, it should be lower when we want to allow for greater
stretching between partial maps. We only have to ad-
just this value in a few cases in our experiments, as dis-
cussed in Section 5. Following the clustering, we select
for our final mapping the cluster with the highest intra-
cluster affinity, or connectivity, as proposed by Zhang et
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al. [24]. This most often correlates with the cluster that
covers the largest portion of the surface.

We merge clustered maps by computing a weighted
geodesic average on T for each source point in the union
of the mapped regions as

f(x) = arg min
y∈T

∑
i

wi(x) distT (y, fi(x)), (10)

where fi are the clustered partial isometries, which
we want to merge into f . The weights are com-
puted as an exponential distribution in the geodesic dis-
tance from the starting point match si as wi(x) =
exp(−λds distUi(x, si)), reflecting that we expect errors
to accumulate as the growing proceeds because of dis-
cretization artifacts, data noise, and deviations from isom-
etry. We set λds = 1/(5ε1), where ε1 is the sample spac-
ing of the level 1 of the topology hierarchy described in
Section 4.1. Note that this is equivalent to finding the Rie-
mannian center of mass [49] of the estimates fi(x). The
right-most box of Figure 4 shows the final clustered and
merged result.

5 Experiments

To validate our theoretical analysis, we evaluate a direct
implementation of our algorithm and compare our results
to state of the art approaches. In the following, we demon-
strate that our method achieves results that are either com-
parable or superior to the state of the art, which demon-
strates that our algorithm not only has theoretical advan-
tages, but is applicable in practice as well.

5.1 Implementation Details

We implemented the algorithm described in Section 4 in
C++, and conducted our evaluations on a standard laptop
PC. During the evaluation, all but two types of parame-
ters are fixed. The first type of parameters that is varied
is {rmin, rmax}, which controls the size of the neighbor-
hood used to compute surface descriptors. If the radii are
set higher, then the method is more robust with respect to
noise at the cost of potentially missing features of small
scale. In our experiments, we only use two settings for
these parameters. The first setting, rmin = 0.9R and
rmax = 1.7R, is for relatively clean data, and the second
setting, rmin = 1.5R and rmax = 3.4R, is for noisy data.
Here, R is set to 5% of the diameter of S. The second
parameter that is varied is the threshold ρ used to control
the clustering. Lower values of ρ allow for less isometric
patches to be clustered together. We vary ρ ∈ {0, 1, 1.9}
in our experiments.

For the examples discussed below, our algorithm takes be-
tween 30 minutes and 8 hours to compute the final result.
To give an idea of the distribution of the time, we dis-
cuss the running time for one pair of models (the space-
carved samba models shown in Fig. 9) in more detail. For
this pair, finding oriented feature matches takes about 2

minutes, growing partial mappings takes about 1.5 hours,
clustering the mappings takes about 9 minutes, and merg-
ing the patches takes about 44 minutes. Hence, the total
time to compute the results is about 2.4 hours. Note how-
ever, that the running time of our method depends signif-
icantly on the distinctiveness of the intrinsic geometry of
the surfaces, relative to the noise level. For example, the
template-fitted samba models shown in Fig. 6 take about
1.5 hours in total, despite having more than twice as many
vertices as the space-carved versions, because the approx-
imate isometry criterion is more discriminative (geodesic
distances are less perturbed by surface noise).

5.2 Comparison to State of the Art

We compare the performance of our algorithm against four
existing methods, namely heat kernel maps (HKM) [11],
blended intrinsic maps (BIM) [18], the method of Sharma
et al. [32], and the method of Tevs et al. [50]. We se-
lect these methods for comparison because they represent
the state of the art for matching between surfaces. More
specifically, HKM is derived from the theoretical com-
plexity of isometric mappings, BIM can match surfaces
that exhibit local deviations from isometry, and the meth-
ods of Sharma et al. and Tevs et al. are heuristics that have
been specifically designed for matching partial data with
topological noise. For HKM we use our own implementa-
tion, which uses two feature correspondences to initialize
the mapping, for BIM we use the authors’ implementa-
tion, for comparisons with Sharma et al., we run our code
on their data, and for the method of Tevs et al., the authors
were kind enough to run their algorithm on our data.

We show comparative evaluations on a variety of types of
data. The first type is a synthetic data set that helps in
understanding the major difference between our approach
and HKM, and illustrates the partial isometric matching
model. The second type is data acquired using either a
laser scanner or an image-based reconstruction system that
was processed by fitting a template to the data. In this
case, we treat the result of the template fitting as ground
truth. The third, and most challenging, type is unprocessed
real-world data acquired using different acquisition sys-
tems.

To compare our approach to previous methods, we use two
evaluation methodologies. In cases where ground truth is
available, we compare quantitatively by evaluating the ac-
curacy of different results with respect to the ground truth.
For data that has no ground truth, we rely on visual evalua-
tion. Our visualization scheme is as follows. A texture on
S is mapped to corresponding points on T , and regions of
T that have no correspondence in S are colored red. As a
texture we combine constant coloring of semantically dis-
tinct parts (where applicable) with a checkerboard pattern.
This type of texture simultaneously shows both global se-
mantic accuracy and fine-scale distortion.
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Figure 5: Results of our method and HKM on globally
non-isometric data. Red indicates unmatched area.

5.3 Synthetic Data

We start by comparing our algorithm against HKM using
the synthetic example shown in Fig. 5, where we map from
a plane to a plane with three peaks. This experiment illus-
trates the difference between a global isometric matching
model and partial one: the two surfaces are globally non-
isometric, but the planar part is isometric. In this example,
we use two ground truth correspondences to initialize both
algorithms to remove differences due to different feature
matching approaches. Since HKM aims to map the shapes
using a global isometry, the result maps planar parts to the
peaks, while our method successfully detects the largest
part of the surfaces that can be isometrically mapped.

5.4 Template-Fitted Scan Data

Next, we consider acquisitions of real-world data that was
processed by fitting a template shape to the raw data. For
all experiments in this section, we use rmin = 0.9R and
rmax = 1.7R.

We first use two frames of the samba sequence by Vlasic
et al. [51]. These frames are locally very close to isomet-
ric, but globally have high non-isometric distortion due to
the dress being connected to the legs. We therefore set
ρ = 0 in the clustering step. Vlasic et al. provide a pro-
cessed version of the frames, where a template was fitted
to the data. This processing ensures that the models have
the same topology, and the processed data can be used as
ground truth correspondence.

We compare our method to HKM and BIM using the pro-
cessed frames of the samba sequence. Figure 6 shows the
results. Note that while HKM leads to a result with visual
artifacts, the results of BIM and our method are visually
pleasing. Furthermore, since we have ground truth cor-
respondences, we show the cumulative error distributions
for all three methods in Figure 7. Here, geodesic error is
measured as a fraction of the square root of the surface
area of T . Note that our method numerically outperforms
the two other methods.

The experiments conducted so far have shown that HKM,
while being based on a solid theoretical foundation, leads
to results of low quality when the aim is to find dense
correspondences in datasets that contain noise and non-
isometric distortion. Hence, in the following, we exclude
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Figure 7: Cumulative error distributions for BIM, HKM,
and our method based on the known ground truth. The
models are shown in Figure 6.

 0

 20

 40

 60

 80

 100

 0  0.05  0.1  0.15  0.2  0.25

%
 M

at
ch

es

Geodesic Error

This paper
Blended intrinsic maps

Figure 8: Cumulative error distributions for BIM and
our method based on the known ground truth for SCAPE
dataset.

this method from our comparisons.

Second, we test our algorithm on the SCAPE dataset [52]
consisting of 71 scans of a male scanned in different pos-
tures. In our experiment, we match the neutral posture to
all 70 remaining postures using BIM and our approach.
The cumulative error distributions for all 70 mappings
are shown in Figure 8. This data differs from the samba
frames in that it is globally near-isometric, but contains
local areas of high-distortion (at joints for example). For
this reason it provides a different kind of near-isometric
test, and poses a greater challenge for our method, which
does not exploit global assumptions. This is reflected in
our error curve being below that of BIM. We set ρ = 1.9 in
this experiment to reduce the influence of partial isometric
patches that were thrown off by high local distortions.

5.5 Raw Scan Data

Finally, we consider raw scan data acquired using different
acquisition systems. This type of data is noisy and incom-
plete, and is therefore significantly more challenging to
match than the data used in the previous experiments. By
using data from a variety of acquisition systems, we show
our methods robustness to different types of acquisition
noise. We also show our method’s robustness to other ac-
quisition artifacts that violate global isometry: large holes
and contacts.
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source and target Heat kernel maps [11] Blended intrinsic maps [18] This paper

Figure 6: Comparison to HKM and BIM on models with ground truth. For error rates see Figure 7. Red indicates
unmatched area; all further colors and the checker board have been painted on the source surface in order to visualize
correspondences.

First, we use the same two frames of the samba sequence
by Vlasic et al. [51] that were used above. However,
this time, we consider the geometry reconstructed by a
space-carving algorithm rather than template fitting. In
this case, the frames we choose have different topology
(as the hands merge with the body at the hips in one of the
models) and are severely corrupted by noise. For this rea-
son, we set rmin = 1.5R, rmax = 3.4R, and ρ = 1. We
use these models to compare our method to BIM, Tevs et
al.’s method, and Sharma et al.’s method. Figure 9 shows
the results. Note that the results using BIM and the method
by Tevs et al. match parts of the body of S to the arms and
legs of T , thereby leading to visual artifacts. (See enlarged
areas in Figure 9.) The method of Sharma et al., which is
especially well suited to the scenario of handling contacts,
leads to a result that covers the surfaces well. For this
example, our method is run using two feature sets: first,
using the standard features of our method and second, us-
ing the same image-based features used by Sharma et al.
Our method produces a visually accurate mapping in both
cases. However, when using standard features, the result
of our method does not cover the right foot of the target
surface, while the entire target surface is covered when
using image-based features. Note that both the result by
Sharma et al. and our results detect the contacts correctly
and stop the growing in these regions. Hence, all areas of
the surface are matched well. The improved performance
with image-based features illustrates some of the technical
challenges. The high level of surface noise makes match-
ing geometric features difficult, which results in poorer
sampling of the space of isometries, which in turn results
in a poorer clustering result. We note however, that using
the same features as Sharma et al., we obtain equal cov-
erage and accuracy, and that when using purely geomet-
ric information, we outperform the other purely geometric
methods tested.

Second, we compare our method to BIM and Tevs et
al.’s method using two models of the BU-3DFE face
database [53]. The two models contain numerous small
holes and outliers. Furthermore, the models have differ-
ent topology because the mouth is closed in one model
and open in the other one. For these reasons, we set
rmin = 0.9R, rmax = 1.7R, and ρ = 1. Figure 10
shows the results. Note that our method obtains a map-

source and target
Blended intrinsic

maps [18]

Tevs et al. [50] Sharma et al. [32]

This paper
This paper with

image-based features

Figure 9: Comparison in presence of large contacts. Each
pair shows S on the left and T on the right. Different data
than in Figure 6. Red again indicates unmatched area
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ping with higher visual accuracy than both BIM and the
method of Tevs et al. In the case of BIM, this is to be
expected, since the topological change breaks the global
isometry. (Note the lips mapped to the side of the face.)
The method of Tevs et al. produces a much more accu-
rate result, but with still significant overall distortion and
outliers (speckle-like effect). Our method leverages lo-
cal information to fix partial isometries, and produces a
mapping that largely preserves the semantic coloring with
significantly lower distortion and without outliers.

Third, we compare our method to that of Tevs et al. on two
point clouds acquired using a laser scanner. The two mod-
els contain numerous holes and outliers. As the models are
point clouds and BIM requires input meshes, we do not
compare our result to BIM for this experiment. For these
models, we set rmin = 1.5R, rmax = 3.4R, and ρ = 1.
The results are shown in Figure 11. As can be seen, the
method of Tevs et al. obtains better coverage, however our
method has fewer outliers–islands of incorrectly mapped
points within larger smoothly mapped regions (see the en-
larged parts of Figure 11). The suboptimal coverage of
our method is due to the difficulty in matching features
on surfaces plagued by missing data. A feature descriptor
less sensitive to holes could improve this.

5.6 Limitations

In the previous sections, we have demonstrated that our
method not only has theoretical advantages, but also com-
putes results that improve upon the state of the art results
in challenging cases where the input data is a pair of raw
scans with topological noise.

We now discuss some limitations of our algorithm. Our al-
gorithm is based on growing near-isometric mappings be-
tween partial regions of two surfaces and then clustering
consistent mappings together. In this way, our algorithm
enumerates a set of near-isometric mappings. For mod-
els that exhibit a large number of partial intrinsic sym-
metries, this technique enumerates a large set of near-
isometric mappings where many of the mappings are in-
consistent with each other. Since we stop growing new
near-isometric regions after the first 200 oriented feature
point matches have been considered, for shapes with a
large number of partial near-isometric symmetries, it may
happen that there is no cluster of consistent mappings cov-
ering a large area of S.

An example where the clustering step fails to identify a
cluster of consistent mappings covering a large area of S
is shown in Figure 12. The two frames of the flashkick
dataset [54] contain a large topological change due to a
merge of the subject’s pants in one of the models. Note
that our algorithm correctly stops the growing of single
partial mapping in this area, as shown in Figure 12. How-
ever, since the legs and core of the target body are intrinsi-
cally symmetric (similar to cylindrical), many inconsistent
partial mappings are found by the algorithm, and they can-
not be clustered in a consistent way.

We should also note that the computational costs are quite

input: source (left) and target (right)

Blended intrinsic maps [18]

Tevs et al. [50]

This paper

Figure 10: Comparison on data with significant topologi-
cal changes and acquisition noise. Each pair shows S on
the left and T on the right. Unmatched area marked in red.
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front back

Tevs et al. [50]

front back

This paper

Figure 11: Comparison on data with significant holes and
acquisition noise. The first row shows the method of Tevs
et al., while the second row shows our method. Within
each row, the front and back are shown, in each case with
S on the left and T on the right. Unmatched area shown
in red.

Figure 12: A single partial mapping for an example with
large topological changes. The red area is unmatched.

high. This is partially due to unoptimized code, but
an algorithmic shortcoming is the rather simple feature-
matching algorithm for finding start positions and direc-
tions. Optimizing this was not the focus of this work; our
method should rather be understood as an alternative for
the dense matching step where it can replace previous ap-
proaches based on conformal maps ( [10, 18] and follow-
ups), heat-kernel maps ( [11] and follow-ups), or geodesic
triangulation with landmarks ( [15, 16] and follow-ups) in
order to handle partial matching.

For future work, to address this limitation, we plan to com-
bine our approach with an approach that detects continu-
ous intrinsic symmetries [55], thereby reducing the search
space for the initial feature matching and allowing us to
efficiently enumerate all partial matches. Similarly, our
framework could be extended to find partial intrinsic sym-
metries within a single object.

6 Conclusion

We have analyzed the complexity of the isometric match-
ing problem under global and local isometry assumptions
and based on this analysis we have introduced a new ap-
proach to solve the partial isometric matching problem
using a representation for partial isometries that is both
low-dimensional and redundant. Underpinning this is the
fundamental observation that isometric mappings can be
determined using purely local information and have only
three degrees of freedom on 2-manifolds. The local met-
ric propagation algorithm we derived from this observa-
tion is designed to handle topological noise that could af-
fect large portions of the model, including both large holes
and contacts. The redundancy in the representation can be
exploited to increase robustness of and to combine partial
matches.We have shown how a direct implementation of
this theoretical framework can be used to match challeng-
ing surfaces with different types of topological noise.

The insights gained by studying the partial isometric
matching problem have the potential to impact other shape
processing tasks. For instance, the representation for par-
tial isometric matches introduced in this paper can be used
to derive new algorithms to detect partial symmetries of
shapes. For future work, we plan to further investigate
this option.
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