
Efficient Computation of a Hierarchy of
Discrete 3D Gradient Vector Fields

David Günther, Jan Reininghaus, Steffen Prohaska, Tino Weinkauf,and
Hans-Christian Hege

Abstract This paper introduces a novel combinatorial algorithm to compute a hi-
erarchy of discrete gradient vector fields for three-dimensional scalar fields. The
hierarchy is defined by an importance measure and representsthe combinatorial gra-
dient flow at different levels of detail. The presented algorithm is based on Forman’s
discrete Morse theory, which guarantees topological consistency and algorithmic ro-
bustness. In contrast to previous work, our algorithm combines memory and runtime
efficiency. It thereby lends itself to the analysis of large data sets. A discrete gradient
vector field is also a compact representation of the underlying extremal structures –
the critical points, separation lines and surfaces. Given acertain level of detail, an
explicit geometric representation of these structures canbe extracted using simple
and fast graph algorithms.

1 Introduction

The analysis of three dimensional scalar data has become an important tool in sci-
entific research. In many applications, the analysis of topological structures – the
critical points, separation lines and surfaces – are of great interest and may help to
get a deeper understanding of the underlying problem. Sincethese structures have
an extremal characteristic, we call themextremal structuresin the following.

The extremal structures have a long history [2, 14]. Typically, the critical points
are computed by finding all zeros of the gradient, and can be classified into min-
ima, saddles, and maxima by the eigenvalues of their Hessian. The respective eigen-
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vectors can be used to compute the separation lines and surfaces as solutions of
autonomous ODEs. For the numerical treatment of these problems we refer to
Weinkauf [22].

One of the problems that such numerical algorithms face is the discrete nature
of the extremal structures. For example, the type of a critical point depends on the
signs of the eigenvalues. If the eigenvalues are close to zero, the determination of
the type is ill-posed and numerically challenging. Depending on the input data, the
resulting extremal structure may therefore strongly depend on the algorithmic pa-
rameters and numerical procedures. From a topological point of view, this can be
quite problematic. Morse theory relates the extremal structure of a generic func-
tion to the topology of the manifold, e.g., by the Poincaré-Hopf Theorem or by the
strong Morse inequalities [15]. The topology of the manifold restricts the set of the
admissible extremal structures.

Another problem is the presence of noise, for example due to the imaging pro-
cess, or sampling artifacts. Both can create fluctuations inthe scalar values that may
create additional extremal structures, which are very complex and hard to analyze, in
general. A distinction between important and spurious elements is thereby crucial.

To address these problems, one may use the framework of discrete Morse theory
introduced by Forman who translated concepts from continuous Morse theory into
a discrete setting for cell complexes [5]. A gradient field isencoded in the com-
binatorial structure of the cell complex, and its extremal structures are defined in a
combinatorial fashion. A finite cell complex can therefore carry only a finite number
of combinatorial gradient vector fields, and their respective extremal structures are
always consistent with the topology of the manifold.

The first computational realization of Forman’s theory was presented by Lewiner
et al. [12, 13] to compute the homology groups of 2D and 3D manifolds. In this
framework, a sequence of consistent combinatorial gradient fields can be computed
such that the underlying extremal structures become less complex with respect to
some importance measure. The combinatorial fields are represented by hypergraphs
and hyperforests, which allow for a very compact and memory efficient represen-
tation of the extremal structure. However, the framework isonly applicable to rel-
atively small three dimensional data sets since the construction of the sequence re-
quires several graph traversals. This results in a non-feasible running time for large
data sets. Recently, several alternatives for the computation of a discrete Morse func-
tion were proposed, for example by Robins et al. [18] and Kinget al. [11].

An alternative approach to extract the essential critical points and separation lines
was proposed by Gyulassy [7]. His main idea is to construct a single initial field and
extract its complex extremal structures by a field traversal. To separate spurious
elements from important ones, the extremal structures are then directly simplified.
One advantage of this approach is a very low running time. Onedrawback is that
certain pairs of critical points, i.e., the saddle points, may be connected among each
other arbitrarily often by saddle connectors [21]. This canresult in a large memory
overhead [8] since the connectors as well as their geometricembedding need to be
stored separately. Note that the reconstruction of a combinatorial gradient vector
field based only on a set of critical points and their separation lines is challenging.
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In this work, we construct a nested sequence of combinatorial gradient fields.
The extremal structures are therein implicitly defined, which enables a memory-
efficient treatment of these structure. Additionally, the complete combinatorial flow
is preserved at different levels of detail, which allows notonly the extraction of
separation surfaces, but may also be useful for the analysisof 3D time-dependent
data as illustrated by Reininghaus et al. [17] for 2D.

The computation of our sequence is based on the ideas of Reininghaus et al. [16].
A combinatorial gradient field is represented by a Morse matching in a derived cell
graph. In this paper, we focus on scalar data given on a 3D structured grid.

Although the computation of a sequence of Morse matchings isa global prob-
lem, an initial Morse matching can be computed locally and inparallel. We use an
OpenMP implementation of theProcessLowerStar-algorithm proposed by Robins
et al. [18] to compute this initial matching. The critical points in this matching cor-
respond one-to-one to the changes of the topology of the lower level cuts of the
input data.

As mentioned earlier, the presence of noise may lead to a verycomplex initial
extremal structure. The objective of this paper is to efficiently construct a nested se-
quence of Morse matchings such that every element of this sequence is topologically
consistent, and the underlying extremal structures becomeless complex in terms of
number of critical points. The ordering of the sequence is based on an importance
measure that is closely related to the persistence measure [24, 4], and is already
successfully used by Lewiner [12] and Gyulassy [7]. This measure enables the se-
lection of a Morse matching with a prescribed complexity of the extremal structure
in a very fast, almost interactive post-processing step. The critical points and the
separation lines and surfaces are then easily extracted by collecting all unmatched
nodes in the graph and a constrained depth-first search starting at these nodes.

The rest of the paper is organized as follows: in Section 2, weformulate elements
of discrete More theory in graph theoretical terms. In Section 3, we present our new
algorithm for constructing a hierarchy of combinatorial gradient vector fields. In
Section 4, we present some examples to illustrate the resultof our algorithm and its
running time.

2 Computational Discrete Morse Theory

This section begins with a short introduction to discrete Morse theory in a graph
theoretical formulation. We then recapitulate the optimization problem that results
in a hierarchy of combinatorial gradient vector fields representing a 3D image data
set. For simplicity, we restrict ourselves to three dimensional scalar data given on
the vertices of a uniform regular grid. The mathematical theory for combinatorial
gradient vector fields, however, is defined in a far more general setting [5].

Cell Graph. Let C denote a finite regular cell complex [9] defined by a 3D grid.
In this paper, we call a cell complexregular if the boundary of eachd-cell is con-
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a) b) c)

Fig. 1 Illustration of a cell complex and its derived cell graph. a) shows the cells of a 2×2×2
uniform grid in an exploded view. A single voxel is representedby eight 0-cells, twelve 1-cells, six
2-cells, and one 3-dimensional cell. These cells and their boundary relation define the cell complex.
b) shows the derived cell graph. The nodes representing the 0-,1-, 2-, and 3-cells are shown as blue,
green, yellow and red spheres respectively. The adjacency of the nodes is given by the boundary
relation of the cells. The edges are colored by the lower dimensional incident node. c) shows the
cell complex and the cell graph to illustrate the neighborhoodrelation of the cells.

tained in a union of(d−1)-cells. The cell graphG= (N,E) encodes the combinato-
rial information contained inC. The nodesN of the graph consist of the cells of the
complexC and each nodeup is labeled with the dimensionp of the cell it represents.
The scalar value of each node is also stored. Higher dimensional nodes are assigned
the maximal scalar value of the incident lower dimensional nodes. The edgesE of
the graph encode the neighborhood relation of the cells inC. If the cellup is in the
boundary of the cellwp+1, thenep = {up,wp+1} ∈ E. We label each edge with the
dimension of its lower dimensional node. An illustration ofa cell complex and its
graph is shown in Figure 1. Note that the node indices, their adjacence and their
geometric embedding inR3 are given implicitly by the grid structure.

Morse Matchings.A subset of pairwise non-adjacent edges is called amatching
M ⊂E. Using these definitions, acombinatorial gradient vector field Von a regular
cell complexC can be defined as a certain acyclic matching of the cell graphG
[3]. The set of combinatorial gradient vector fields onC is given by the set of these
matchings, i.e., the set ofMorse matchingsM φ of the cell graphG. An illustration
of a 2D Morse matching is shown in Figure 2 a).

Extremal Structures. We now define the extremal structures of a combinatorial
gradient vector fieldV in G. The unmatched nodes are calledcritical nodes. If up is
a critical node, we say that the critical node has indexp. A critical nodeof indexp is
called minimum(p= 0), 1-saddle(p= 1), 2-saddle(p= 2), or maximum(p= 3).
A combinatorialp-streamlineis a path in the graph whose edges are of dimensionp
and alternate betweenV ⊂ E and its complementE \V. In a Morse matching, there
are no closedp-streamlines. This defines the acyclic constraint for Morsematch-
ings. A p-streamline connecting two critical nodes is called ap-separation line. A
p-separation surfaceis given by all combinatorial 1-streamlines that emanate from
a critical point of indexp. The extremal structures give rise to a Morse-Smale com-
plex that represents the topological changes in the level sets of the input data. Since
we have assigned the maximal value to higher dimensional cells, there are no sad-
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Fig. 2 Depiction of algorithmconstructHierarchy. Image a) shows a 2D Morse matchingM. The
matched and unmatched edges of the cell graphG are depicted as solid and dashed lines respec-
tively. The unmatched nodes ofG are shown as black dots. Each node ofG is labeled by its dimen-
sion. Image b) shows the two minima (blue dots) and the saddle (yellowdot) as well as the only
two possible augmenting paths (blue and green stripes) inM. Image c) shows the augmentation of
M along the left (green) path. The start- and endnode of this path are now matched and not critical
anymore. A single minimum (blue dot) remains inM.

dles with a scalar value smaller or greater than their connected minima or maxima
respectively.

Optimization Problem. The construction of a hierarchy can be formulated as an
optimization problem [16]. Given edge weightsω : E→ R, the objective is to find
an acyclic matchingVk ∈M φ such that

Vk = argmax
M∈M φ , |M|=k

ω(M). (1)

However, equation (1) becomes an NP-hard problem in the caseof 3D manifolds
[10]. We therefore only use (1) to guide our algorithmic design to construct a nested
sequence of combinatorial gradient vector fieldsV = (Vk)k=k0,...,kn

. For eachk, we
are looking for the smallest fluctuation to get a representation of our input data at
different levels of detail. Note that this proceeding differs from the homological
persistence approach introduced by Edelsbrunner et al. [4]. There are persistence
pairs in 3D that cannot be described by a sequenceV as shown in a counterexample
by Bauer et al. [1].

3 Algorithm

In this section, we describe the construction of a sequence of combinatorial gradient
vector fields. The construction consists of two steps. In thefirst step, an initial Morse
matching is computed. The matching represents the fine-grained flow of the input
data. In the second step, the initial matching is iteratively simplified by removing
the smallest fluctuation in every iteration. The simplification is done by computing
the p-separation lineS representing this fluctuation in a given matchingV̀ . A p-
separation line, which is connecting two critical points, is an augmenting path since
it is alternating and its start- and endnode are not matched.We can then produce a
larger matchingV̀ +1 by taking the symmetric difference

V̀ +1 = V̀ 4S. (2)
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Algorithm 1 constructHierarchy
Input: initial matching Vk0 , cell graph G
Output: hierarchy
1: hierarchy← nil
2: saddleQueue← initQueue(G)
3: while saddleQueue6= /0 do
4: s← saddleQueue.pop()
5: if isCritical(s) then
6: [cancelPartner,augPath]← getUniquePairing(s.idx)
7: if cancelPartnerthen
8: weight← getWeight(s.idx,cancelPartner)
9: if weight< saddleQueue.top().weight then

10: updateMatching(augPath)
11: hierarchy.append(augPath)
12: else
13: saddleQueue.push(s.idx,weight)

Equation (2) is calledaugmentingthe matching. The simplification stops if the
matching can not be augmented anymore. This final result represents the gradient
field with the coarsest level of detail.

Initial Matching. To compute the initial matchingVk0, we use the algorithm
ProcessLowerStar[18]. ProcessLowerStarcomputes a valid Morse matching by
finding pairs in the lower star of each 0-node in lexicographic descending order.
Since the decomposition of a cell graph in its lower stars is adisjoint decomposition,
each lower star can be processed in parallel. The assumptionin ProcessLowerStar
is that the scalar values are distinct. To fulfill this requirement, we use the same idea
as Robins et al. [18]. Two 0-nodes in a lower star with the samescalar values are
differentiated by their index. If the enumeration of the 0-nodes inG is linear, this
correlates to a linear ramp with an infinitesimal smallη .

Computing the Hierarchy. In the following we describe the construction of a
sequence of Morse matchingsV . See Algorithm 1 and Figure 2 for a depiction of
it. The main idea is to compute thep-separation line with the smallest weight that
emanates from a saddle and allows for an augmentation of the Morse matching.
While the computation of the 0- and 2-separation lines is straight forward, special
attention needs to be taken for the computation of 1-separation lines since they can
merge and split in the combinatorial setting.

We start with the initial matchingVk0 as described above. In the first step, the
priority queue is initialized by the functioninitQueue(line 2). This function collects
all unmatched 1- and 2-nodes and computes the weight of thesenodes. The weight
is given by the smallest difference in the scalar values of a saddle and its neighbors
[16]. initQueueuses basically the same functionality as the functiongetUniquePair-
ing, which is described subsequently. After the queue is initialized, the first saddles
of the queue, i.e., the element with the smallest weight, is taken (line 4) and checked
whether it is still critical (line 5). This is necessary since previous simplification
steps may have affecteds. Then, the functiongetUniquePairingcomputes the can-
cel partner as well as the augmenting path that connects thisnode withs (line 6).
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a) b) c)

Fig. 3 Illustration of algorithmgetUniquePairing. In the first step (a), the two 1-separation lines
(blue lines) starting from a 1-saddle (green sphere) are integrated. Both end in distinct minima (blue
spheres), which would allow for an augmentation along one of these lines. The combinatorial flow
restricted to the separation lines is indicated by arrows. In the second step (b), the separation surface
(blue surface) is integrated using a depth first search. The surface ends in 2-separation lines (red
lines) that emanate from 2-saddles (yellow spheres). For each of these 2-saddles the intersection
of their separation surface and the surface emanating from the 1-saddle is computed in the third
step (c). The intersection is depicted by red stripes. The resulting saddle connectors, i.e., the 1-
separation lines, are shown as green lines. The right 2-saddle is connected twice with the 1-saddle.
An augmentation of the matching along one of these lines would result in a closed 1-streamline.
This saddle is therefore not a valid candidate for a cancellation. From the remaining 2-saddles and
the two minima the critical node is chosen that has the smallest weight with respect to the 1-saddle.

If the saddles is connected to every neighbor by multiple paths, then we cannot
cancel this saddle since a closed combinatorial streamlines would be created (line
7). Otherwise, we compute the weight ofs and its cancel partner and test whether
it is smaller than the weight of the next element in the queue (line 8 and 9). This
is necessary since previous simplification steps may have affected the connectivity
of s. If the weight is smaller, it represents the smallest fluctuation at this time, and
we can augment the matching along the path (line 10). This results in a simplified
combinatorial gradient field where the saddle nodes and its cancel partner are no
longer critical. Since the augmentation of a matching alongan augmenting path
never creates new critical nodes, the complexity of the underlying extremal struc-
ture is reduced. The path is finally stored to be able to restore this specific level of
detail (line 11). We reinsert the saddles with the new weight (line 13) if the weight
is greater.

The main computational effort lies in the computation of thebest pairing that
contains a uniquely defined connection. Algorithm 2 and Figure 3 show how this
can be achieved efficiently. Lets be an unmatched 1- or 2-node. In the first step,
the two 0- or 2-separation lines – the paths that connect a saddle node with at most
two 0-nodes or 3-nodes – are computed. We take the two 0- or 2-edges incident to
s (line 2) and follow the combinatorial gradient field until anunmatched node is
found. This is done by the functionintegrateSeparationLine(line 3). Note that these
separation lines are uniquely defined if we start at a saddle.Multiple lines can merge
but they can not split. We need to check whether these two paths end in the same
minimum or maximum (line 4). If they do, an augmentation along one of these paths
would create a closed streamline, which are not allowed in combinatorial gradient
fields. If the two endnodes are distinct, we choose the one with the smallest weight
and take the corresponding path as augmenting path (line 5 and 6).
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Algorithm 2 getUniquePairing
Input: saddle s
Output: cancelPartner, augmentingPath
1: cancelPartner← nil , augmentingPath← nil , isCircle← f alse, weight← ∞
2: [ f irstLink,secLink]← getLinkToExtrema(s)
3: [ f irstPath,secPath]← integrateSeparationLine(s, [ f irstLink,secLink])
4: if getEndNode( f irstPath) 6= getEndNode(secPath) then
5: [cancelPartner,augmentingPath]← getBestWeight( f irstPath,secPath)
6: weight← getWeight(s,cancelPartner)
7: [sur f ace,saddles]← integrateSeparationSur f ace(s)
8: sort(saddles)
9: for all n∈ saddlesdo

10: if n.weight< weight then
11: [isCircle, line]← checkMultiplePairing(sur f ace,n.idx)
12: if isCircle= f alsethen
13: weight← n.weight, cancelPartner← n.idx
14: augmentingPath← line
15: return

In the second step, we investigate the connectivity ofswith complementary sad-
dle nodes. The 1-separation lines that connect these saddles are also called saddle
connectors [21], and are defined by the intersection of the complementary separation
surfaces. In contrast to 0- and 2-separation lines, these lines can split and merge. In
previous work of Lewiner [12], this property results in a non-feasible running time,
and in the work of Gyualssy [7], it induces a large memory consumption. The sec-
ond part of Algorithm 2 and Algorithm 3 show a memory and running time efficient
alternative.

Given the saddles, we integrate the separation surface using a depth-first search
(line 7). This is done byintegrateSeparationSurface. Note that the integration only
follows the 1-streamlines, i.e., the 1-paths that alternate between the current match-
ing and its complement. Since the boundary of a separation surface consists of sep-
aration lines, the integration will terminate at these lines. The 1- and 2- nodes de-
scribing these lines are already matched and hinder a further flooding. The result
of integrateSeparationSurfaceis a list of 1- and 2-nodes representing the separation
surface. Additionally, a list of the complementary saddlesis returned. We sort these
saddles by their weight tos (line 8) and test them in ascending order (line 9). Since
the objective is to remove the smallest fluctuation, we are looking for a saddle part-
ner with a smaller weight thanshas with its uniquely connected minima or maxima
(line 10). If there is such a partner, we check whether there are multiple connections
between these two saddles by callinggetUniqueSaddleConnector(line 11). If the
connection is unique we use it as an augmenting path and return (line 13, 14 and
15).

In the discrete Morse setting of Forman’s theory, saddle connectors can merge
and split. This property prohibits a direct walk starting ata saddle as we have done
for the 0- and 2-separation lines. Saddle connectors could be computed by definition
as the intersection of the two corresponding separation surfaces [21], but this would
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Algorithm 3 getUniqueSaddleConnector
Input: separationsur f ace sepSur f, saddle s
Output: sepLine, isCircle
1: sepLine← nil ,
2: queue← nil , queue.push(s)
3: while queue6= /0 do
4: curNode← queue.pop(), numNeighbors← 0
5: nodeList← getAllNeighborsInSur f ace(curNode,sepSur f)
6: for all m∈ nodeListdo
7: if isVisted[m] = f alsethen
8: if numNeighbors> 1 then
9: isCircle← true

10: return
11: else
12: queue.push(m), sepLine.push(getLink(m,curNode))
13: isVisted[m]← true
14: numNeighbors← numNeighbors+1

result in a infeasible running time. Instead, we compute theintersection directly
using the functiongetUniqueSaddleConnector, shown in Algorithm 3.

Consider a set of 1- and 2-nodes representing a separation surface, and a saddle
s in the boundary of this surface. We first pushs in a queue (line 2). This queue
will allow the traversal of the saddle connector. For the first element of the queue,
we collect all neighboring 1- and 2-nodes in the node list given by the separation
surface (line 4 and 5). Note that the saddle connector is a 1-streamline and its edges
must alternate between the matching and its complement. This is achieved by the
functiongetAllNeighborsInSurface. The main idea is now to check for split events
in the intersection. If there is such an event, we know that there are multiple connec-
tions between the two saddles since by definition the intersection always ends in the
complementary saddle. We test each of these nodes if they were already visited (line
6 and 7). In order to check for split events, we need to count the number of possible
extensions of the saddle connector. If there are more than one, the algorithm returns
with a boolean indicating multiple connections (line 8, 9 and 10). If this is not the
case, the current node is an extension of the saddle connector. The node is added to
the queue and the corresponding link to the saddle connector. The number of possi-
ble extensions is increased by one (line 12, 13 and 14). The loop ends in the other
saddle, and the links describing the saddle connector are insorted order.

Extraction of Extremal Structures. Given a nested sequence of combinatorial
gradient vector fieldsV = (Vk)k=k0,...,kn, an arbitrary element of the sequence can
be restored as follows: first we take the coarsest possible field Vkn. This is the final
result of Algorithm 1. Note that this field can be efficiently represented by a boolean
vector whose size is given by the number of edges inG. Then, this field is iteratively
augmented along the augmenting paths computed in Algorithm1 in reverse order
(Vkn−1,. . ., Vk1). The augmentation of a fieldV̀ along an alternating pathp` is given
by the symmetric differenceV̀ −1 = V̀ 4 p`. In contrast to (2) this augmentation
increases the number of critical nodes by two. The augmentation stops if the de-
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Data Set Initial Matching Speed Up 5% Simplification |V5%| Peak Memory
(Size) 12 cores (1 core) Complete Hierarchy |V | Memory Factor
Neghip 6 sec 10.3 11 sec 4974 1 MB 1

643 (1 min 2 sec) 11 sec 5023
Hydrogen 51 sec 11.6 2 min 13 sec 87821 8 MB 1

1283 (9 min 53 sec) 2 min 13 sec 87825
Aneurism 7 min 02 sec 11.54 15 min 45 sec 38542 107 MB 1.59

2563 (81 min 12 sec) 21 min 39 sec 48561
Beetle 18 min 43 sec 11.46 34 min 26 sec309290 260 MB 1.52

4162×247 (214 min 26 sec) 41 min 19 sec321222
Benzene 30 min 46 sec – 33 min 1 sec 92 392 MB 1.51

4013 33 min 7 sec 123
Synthetic 8h 26 min 19 sec – 8h 45 min 22 sec 203 6.3 GB 1.51

10243 8h 49 min 16 sec 243

Table 1 Running times and memory consumption for six data sets of varying dimensions. The
computation of the initial matching with 12 cores and, as reference, for 1 core is shown in the
second column. The resulting speed up factor is shown in the third column. The running time
for a 5% and a complete simplification, and the number of levels in the hierarchies are shown
in the fourth and fifth column. The peak memory consumption and the memory factor for a full
simplification including the augmenting paths are shown in the sixth and seventh column.

sired number of critical nodes is achieved or the weight of the last augmenting path
corresponds to a prescribed threshold.

For a certain level in the hierarchyV , the critical nodes are computed by col-
lecting all unmatched nodes. From each of the collected 1- and 2-nodes, the 0- and
2-separation lines are computed by following the combinatorial flow. The separa-
tion surfaces are restored by a depth-first search similar asis used in Algorithm 2.
For the computation of the saddle connectors, we can use Algorithm 3 in a slightly
modified version. Instead of returning when a split event wasfound, a new line is
started. The geometric embedding is given by the grid structure of the input data.
Note that the extremal structures can not be easily updated incrementally.

Memory Consumption. For the construction of the hierarchy, a boolean vector,
whose size is given by the number of edges inG, is needed to represent the current
matching. The number of nodes in the cell graph is eight timesthe number of ver-
tices in the input grid. The number of edges inG is therefore bounded by 24 times
the number of vertices. Since the size of a boolean is 1/32th of a single precision
number we need a factor of 0.75 of the input data to represent the matching. Three
additional boolean vectors of size of number of nodes are necessary for the surface
integration, its intersection, and the node matching. The total factor is therefore 1.5
of the input data. Robins proved that the critical points arein a one-to-one corre-
spondence to the topological changes in the lower level sets[18]. Since (2) only
decreases the number of critical nodes, the size of the priority queue is given by
the number of critical points in the input field. The theoretical maximal memory
consumption for separation surfaces is bounded by the number of 1- and 2-nodes in
G.
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Fig. 4 This image shows the critical points and thep-separation lines of a synthetic example for
different levels of detail. Minima, 1-saddles, 2-saddles and maxima are depicted as blue, green,
yellow and red spheres respectively. Thep-separation lines are shown as blue (p= 0), green (p= 1)
and red (p = 2) lines. Image a) shows the initial Morse matchingVk0 whereas b) and c) show
the levelVkn−13 andVkn−4. The isosurface (grey) in c) illustrates the most dominant minima and
maxima regions. The hierarchy consists of 243 levels.

4 Examples

In the following, we present some examples to illustrate ourmethod. All experi-
ments were done on an AMD Opteron 6174 CPU. To compute the initial matching,
we implemented an OpenMP version ofProcessLowerStar. Table 1 shows the run-
ning time and memory consumption for different 3D data sets.The neghip, hydro-
gen and aneurism are provided byThe Volume Library[19] while the beetle data set
is provided by Gr̈oller et al. [6]. We give the running time for the computationof
the initial matching with 12 cores and 1 core, respectively,and the corresponding
speed up factor. Besides computing the complete hierarchization, it is in some cases
sufficient to compute only a subsequence ofV in order to remove only the most
spurious/noisy extremal structures. Therefore, we also give the computation time of
the algorithm for a 5% simplification, i.e., until the weightof the last augmenting
path corresponds to 5% of the data range. The corresponding number of hierarchy
levels is given as well. The memory consumption is measured by observing the
peak memory usage during computation. This includes also the augmenting paths.
The memory factor relates the consumption to the file size (single point precision).
Figure 4 shows the extremal structures for different levelsof detail of a synthetic
example. The running time and memory consumption is also given in Table 1.

The speed up factor is nearly optimal and scales with the dimensions of the data
set. The construction time ofV for the complex aneurism data set was approxi-
mately 21 minutes, which correlates to the work of Gyulassy et al. [8] with a rea-
sonable valence parameter. This example shows also that thetopological complexity
of the initial field influences the running time. For simple data sets as the neghip or
hydrogen there is nearly no difference in running time between a 5% and a full sim-
plification. The overall running time and the practical memory consumption, which
is less than a factor of two of the input data, allows for the analysis of large data
with an appropriate topological complexity.
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a) b)

Fig. 5 Extremal structures of the electrostatic field of a benzene molecule forVkn−90 with 181 crit-
ical points. (a) shows the minimal structures: the 48 minima (blue spheres), 78 1-saddles (green
spheres), 0-separation lines (blue lines) and the 1-separation surface (blue surface). (b) shows the
maximal structures: the 12 maxima (red spheres), 43 2-saddles (yellowspheres), 2-separation lines
(red lines) and the 2-separation surface (red surface). Ude to symmetry, only one half of the separa-
tion surfaces is shown. Note that 1-separation surfaces separatethe flow given by the 0-streamlines,
while 2-separation surfaces separate 2-streamlines. Triangulating the 2-nodes of 1-separation sur-
faces therefore does not necessarily lead to closed surfaces in contrast to 2-separation surfaces.

Comparison of Continuous and Combinatorial Extremal Structures. Fig-
ures 5 and 6 visualize the extremal structures of the electrostatic potential around
the benzene molecule. This data set has been analyzed by Theisel et al. [21] us-
ing numerical methods, and we use their results for a side-by-side comparison of
continuous and combinatorial structures. To achieve comparable results, we chose
the hierarchy levelVkn−90 where we have the same number of 1- and 2-saddles as
in the continuous case. The data set is sampled on a 4013 regular grid using the
fractional charges method [20]. The running time is shown inTable 1; the extrac-
tion of the critical points and thep-separation lines for an arbitrary element ofV

took at most 20 seconds whereas the separation surfaces tookat most 60 seconds.
Figure 5 shows our combinatorial result from a top view. Notehow the regularity
of the underlying data set has been perfectly captured. Thisposes a challenge for
numerical algorithms, since guarantees about finding all critical points can usually
not be given. The side-by-side comparison of the continuousand the combinatorial
extraction results is shown in Figure 6.

We make the following observations: First, the continuous version is not only
visually more pleasing, but it better communicates the smooth nature of the flow
to a viewer. For such purposes, the classic continuous methods are preferable over
the combinatorial ones. Second, numerical algorithms require a larger number of
parameters, which are often difficult to choose. In this example, the continuous ver-
sion misses some saddle connectors, since a certain maximalnumber of integration
steps had to be chosen for the extraction algorithm [21]. Of course, we could have
changed that parameter and re-run the algorithm by Theisel et al. [21], but this still
would not make it a proofably watertight case. Our combinatorial algorithm, on the
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a) b)

Fig. 6 Comparison of combinatorial and continuous extremal structuresfor the electrostatic field
around a benzene molecule. Image a) shows smooth extremal structures extracted as in [21]. The
minima and the maxima are depicted as blue and red spheres while the1- and 2-saddles are shown
as blue and red disks respectively. The saddle connectors are shown as blue-red stripes. Gray il-
luminated lines represent streamlines emanating from the saddles.Image b) shows combinatorial
extremal structures. The minima, 1- and 2-saddles, and the maxima are represented by blue, green,
yellow and red spheres respectively. The saddle connectors areshown as green lines. Gray illu-
minated lines depict the 2-separation lines emanating from the2-saddles. Gray surfaces depict the
carbon and the hydrogen atoms and their bonds.

other hand, captures all connectors by design. Hence, combinatorial methods are
preferable over continuous ones if proofable correctness is the primary goal, e.g., if
the extraction results are supposed to serve as an input for afurther analysis.

5 Conclusions and Future Work

We presented a novel combinatorial algorithm to construct aweighted hierarchy of
combinatorial gradient vector fields for 3D scalar data. Thehierarchy represents the
combinatorial flow for different levels of detail and implicitly defines the extremal
structures. The weighting enables a distinction between spurious and dominant ex-
tremal structures. The hierarchy is efficiently represented by a sequence of augment-
ing paths. As seen in Table 1 the running time scales reasonable for common data
sets. The memory consumption of Algorithm 1 is bounded. Thisallows for an anal-
ysis of large data sets. Our algorithm could allow for an extension of other methods
that make use of a combinatorial gradient vector field such astopological smoothing
[23] or tracking of critical points [17] to 3D.
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