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Abstract
Extremal lines and surfaces are features of a 3D scalar field where the scalar function becomes minimal or
maximal with respect to a local neighborhood. These features are important in many applications, e.g., computer
tomography, fluid dynamics, cell biology. We present a novel topological method to extract these features using
discrete Morse theory. In particular, we extend the notion of Separatrix Persistence from 2D to 3D, which gives us a
robust estimation of the feature strength for extremal lines and surfaces. Not only does it allow us to determine the
most important (parts of) extremal lines and surfaces, it also serves as a robust filtering measure of noise-induced
structures. Our purely combinatorial method does not require derivatives or any other numerical computations.

Categories and Subject Descriptors (according to ACM CCS): I.4.7 [Image Processing and Computer Vision]: Fea-
ture Measurement—Feature representation

1. Introduction

Scalar fields are the results of measurements and numer-
ical simulations and essential to understanding processes
in many domains. Examples are imaging techniques in
medicine such as MRI or CT scans, electron tomography
in cell biology, or derived scalar quantities in fluid dynam-
ics. Scalar fields are visualized and analyzed using a large
number of tools. Established visualization choices include
volume rendering or isosurfaces.

Among the features of interest in a 3D scalar field are ex-
tremal lines and surfaces at which the scalar function be-
comes minimal or maximal with respect to a local neigh-
borhood. For example, vortex core lines can be found in a
flow data set as lines where the Q-criterion becomes max-
imal [SWTH07]. Blood vessels appear as lines of maximal
intensity in computer tomography data. In cell biology, the
membrane of a cell can be found as a surface of minimal
density [RGH∗12] in an electron tomography volume. Note
that the scalar value varies along these lines and surfaces.

Two different concepts are commonly used for extracting
extremal structures: the local analysis due to ridges/valleys
and the global point of view by means of topology. In this
paper, we concentrate on the topological view, but will also
provide a brief discussion of the similarities and differences
to ridges/valleys (Section 2).

The topologically motivated extremal structures of a reg-
ular 3D scalar field f are given by the Morse-Smale (MS)
complex: it is comprised of points, lines, and surfaces.
They provide a segmentation of the domain into monotone
cells [Mil63] (Section 3). Each cell is cornered by non-
degenerated critical points (a minimum, a maximum, and
saddle points). The boundaries between cells are provided
by separation lines and surfaces – so-called separatrices.

Two types of approaches exist to extract the MS complex.
The continuous approach [NS94, Wei08] builds on the gra-
dient g and Hessian H of f . Noise in f and its amplifica-
tion in g and H pose a numerical challenge. The discrete ap-
proach due to Forman’s discrete Morse theory [For98] works
on sampled data only, but does not require any derivatives
or other numerical computations, since it describes the MS-
complex in a purely combinatorial fashion. So while noise is
less of a problem due to the exclusion of derivatives, spuri-
ous extraction results still show up because of the noise level
in the original data f . Hence, filtering is necessary.

A well-accepted filtering criterion for critical points is
persistence due to Edelsbrunner et al. [ELZ02] (Section 3).
The separation lines of a 2D scalar field can be filtered us-
ing a closely related measure called separatrix persistence
[WG09], which determines the feature strength of a separa-
trix or parts thereof. However, such a measure does not yet
exist for the separation lines and surfaces of a 3D scalar field.
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Figure 1: Extremal lines of a 3D scalar field following two
different definitions: ridges (left) and separatrices (right).

In this paper, we extend the approach of [WG09] and in-
troduce separatrix persistence for the separation lines and
surfaces of 3D scalar fields (Section 4). To the best of our
knowledge, it is the first topologically motivated measure of
feature strength for separatrices of a 3D scalar field. It is a
non-trivial extension of [WG09], since it requires a consis-
tent definition for both lines and surfaces in 3D, whereas for
2D scalar fields it is only defined for lines. We comment on
implementational issues (Section 5), and apply our method
to data sets from different domains (Section 6).

2. Separatrices vs. Height Ridges

A minimal/maximal point is canonically defined in arbi-
trary dimensions. However, its higher-dimensional gener-
alizations cannot be defined in a canonical way, i.e., sev-
eral equated definitions exist for extremal lines or surfaces.
This is documented throughout the literature [Kv93,Dam99,
LLSV99, SWTH07, PS08, SPFT12]. Besides their global
definition as topological separatrices [Max70], another fre-
quently used concept are Height Ridges, which goes back to
De Saint-Venant [dSV52]. We will briefly recapitulate their
definition and discuss similarities and differences to topo-
logical separatrices.

The Height Ridge definition [Ebe96] is a local definition
and builds on the first and second derivatives of f , i.e., the
gradient g and the Hessian H. As elegantly formulated by
Peikert and Sadlo [PS08], ridge lines in a 3D scalar field are
found at locations where the vectors g and H · g are paral-
lel. They can be extracted using the Parallel Vectors opera-
tor [PR99,POS∗11]. Ridge surfaces can be found as parts of
the zero level set g ·e1 with λ1 < 0, where e1 is the eigenvec-
tor to the smallest eigenvalue λ1 of H. A consistent orienta-
tion of the eigenvectors at the vertices of each cell is nec-
essary to extract this level set. This can be achieved using a
principal component analysis [FP01].

Figure 1 shows the ridge lines (left) and separation lines
(right) of a 3D scalar field. It can be seen that they largely
coincide and that both are in the center of the shown isosur-
faces. which confirms their extremal characteristic.

It has been pointed out by Sahner et al. [SWTH07] that
every separatrix can be assigned a ridge counterpart: each

Figure 2: An illustration of topological features. Minima, re-
pelling and attracting saddles, and maxima are depicted as
blue, green and yellow, and red spheres. Attracting and re-
pelling surfaces are shown in blue and red, respectively.

saddle point of f gives rise to ridges as well as separatri-
ces (they do not need to coincide at any other places). How-
ever, not every ridge can be assigned a separatrix counterpart
[SWTH07]. Intuitively, this happens when a ridge-creating
fluctuation of f does not break its monotony. This is nicely
shown by the “Ridges without Critical Points” example of
Peikert and Sadlo [PS08].

By definition, separation lines are tangential to the gradi-
ent g. Ridges lines, on the other hand, are defined as features
where g is parallel to H · g. In fact, additionally requiring
that they are also tangential to g yields an overdetermined
system as discussed by Schindler et al. [SPFT12]. However,
in some applications, ridge lines should roughly point into
the direction of g. Peikert and Sadlo [PS08] proposed a filter
criterion Fα based on the angle α between the ridge line and
the gradient. Typically, α varies between 5◦ and 60◦.

There are several differences between ridges and separa-
trices from an algorithmic point of view: ridges are local fea-
tures, which eases their extraction using parallel algorithms.
This might be difficult for separatrices due to their global na-
ture. On the other hand, separatrices can be extracted combi-
natorially without any derivatives as it is shown in this paper.
Ridge lines depend on the computation of first and second
derivatives, which usually causes a wealth of spurious ex-
traction results. In Section 6, we compare our topological
extraction results against ridge lines/surfaces.

3. Theoretical Background

In this section, we discuss the for our purposes most im-
portant terms of topology, discrete Morse theory, and persis-
tence. We assume that a Morse-Smale function f : Ω→ R
with Ω ⊂ R3 is given [Sma60]. To ease notation in the
following, we define the height difference h of two points
x ∈ R3 and y ∈ R3 as

h(x,y) = | f (x)− f (y)|. (1)

3.1. Topological Features

The topological features of a 3D Morse-Smale function f
consist of non-degenerated critical points, separation lines
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Figure 3: Illustration of a cubical cell complex C and its de-
rived cell graph G. The nodes of G represent the 0-, 1-, 2-,
and 3-cells of C and are shown as blue, green, yellow, and
red spheres, respectively.

and separation surfaces. For their numerical treatment, we
refer to [Wei08].

There are four types of critical points: minima, repelling
saddles, attracting saddles, and maxima. Considering an in-
creasing isovalue, the critical points are closely related to
the evolution of connected components, tunnels, and voids
of isocontours. The births and deaths of these elements are
described by the critical points [Mil65]. For example, a con-
nected component is born at a minimum. A tunnel, on the
other hand, is born at a repelling saddle when a component
forms a closed loop with itself.

Two separation lines emerge from each saddle point,
which are streamlines in the underlying gradient field. They
connect a repelling saddle to at most two minima, while an
attracting saddle is connected to at most two maxima. We
call these lines minimal lines and maximal lines, resp..

In addition to separation lines, a separation surface em-
anates from each saddle point, which is a set of streamlines
in the underlying gradient field. We call it a repelling surface
if it emanates from a repelling saddle, and attracting surface
otherwise. The boundary of a separation surface consists of
separation lines and critical points. An attracting surface is
bounded by repelling saddles and their minimal lines (Figure
2 left). A repelling surface, on the other hand, is bounded by
attracting saddles and their maximal lines (Figure 2 right).

The non-degenerated critical points, separation lines and
surfaces give rise to the Morse-Smale (MS) complex that
decomposes the domain Ω into compartments where f be-
haves monotonically [Mil63]. The border between two ad-
jacent compartments constitutes a change of that monotony,
and is given by a separatrix. In this sense, separatrices have
an extremal characteristic.

3.2. Discrete Morse Theory

We now give a brief introduction to discrete Morse the-
ory. The interested reader is referred to the seminal work
of Forman [For98, For02] for a more thorough descrip-

(a) (b)

(c) (d)

Figure 4: Basic definitions of discrete Morse theory: (a) the
cell graph G, each node is labeled by its dimension; (b) a
combinatorial gradient field V defined on G, the edges con-
tained in V are depicted by solid lines, the critical nodes –
are shown as black spheres; (c) a combinatorial streamline;
(d) two separatrices of V (blue and green) emanating at a
saddle (yellow) and ending in two different minima (blue).

tion of this theory. For computational aspects we refer to
[LLT03, Lew12, GNP∗05, GRWH11, GRP∗12].

The input domain Ω is given in a discretized manner.
Common discretizations are lattices or tetrahedrizations. The
discretization gives rise to a finite regular cell complex C
[Hat02]. This complex consists of cells with different dimen-
sions (e.g., vertices, edges, faces, volumina) and of boundary
maps describing their neighborhood relation. For example,
an edge is bounded by its two incident vertices, whereas a
face is bounded by its incident edges. An illustration of a
cell complex is given in Figure 3 left.

We consider the cell complex C in a graph theoretical set-
ting: the cell graph G = (N,E) encodes the essential com-
binatorial information of C. The nodes N represent the cells
of C and each node up is labeled by the dimension p of the
cell it represents. The edges E encode the neighborhood re-
lation of the cells. If a cell up is in the boundary of a cell
wp+1, then ep = {up,wp+1} ∈ E. The edge ep is said to be
of index p. A depiction of a cell graph is shown in Figure 3
right.

A subset of pairwise non-adjacent edges is called a match-
ing. A combinatorial gradient field V ⊂ E on a regular cell
complex C can now be defined as a matching of the cell
graph G with a certain acyclic constraint [Cha00]. We will
define this constraint later in this section.

In this combinatorial setting, the critical points are the un-
matched nodes of V . A critical point up of index p is a min-
imum (p = 0), repelling saddle (p = 1), attracting saddle
(p = 2), or maximum (p = 3).

A combinatorial p-streamline is a path in the cell graph
G whose edges are of index p and alternate between V and
its complement E \V . The above mentioned acyclic con-
straint is now specified as the non-existence of any closed
p-streamline. A p-streamline connecting two critical points
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Figure 5: Persistence P of a 1D function f (x). Sweeping
through the data in an ascending manner collects the min-
ima (blue) and maxima (red) in the shown order. Every max-
imum is paired with a preceding minimum and their height
difference is their persistence. Note how the global minimum
and maximum have been assigned the highest persistence.

up and wp+1 is called a combinatorial p-separation line. A
0-separation line is a minimal line, whereas a 2-separation
line represents a maximal line. A combinatorial separation
surface is given by all combinatorial 1-streamlines that em-
anate from a repelling or attracting saddle. Note that combi-
natorial extremal lines and surfaces are given as discrete sets
of edges in G in contrast to their continuous counterparts.

Figure 4 shows a simple cell graph, a combinatorial gra-
dient field and its combinatorial structures. For the sake of
simplicity, this is shown in 2D.

3.3. Persistence

An established importance measure for critical points is per-
sistence P . Considering an increasing isovalue, it measures
the “life time” of connected components, tunnels, and voids
of the isocontours of f . The birth and death events are de-
scribed by pairs of critical points. For simplicity, Figure 5 il-
lustrates this for the 1D case. We refer the reader to [ELZ02]
for the more general case.

An important property of persistence is given by the
stability theorem of Cohen-Steiner et al. [CSEH07]. They
proved that persistence behaves stable under small pertur-
bations of the input function. This property allows for the
distinction of noise-induced and dominant critical points.

3.4. Topological Simplification

Topologically simplifying a combinatorial gradient field V
means to reduce the number of its critical points in order
to create different levels of detail of the input function f .
All fine-grained topological features are present in the ini-
tial gradient field V , while the last level contains only the
dominant topological features of the scalar field f .

Such a hierarchy can be achieved by increasing the set
of edges in V without introducing any closed p-streamlines
as discussed by Forman [For98]. Consider two critical points

sasb m
`a`1`2

before after

sa
`a

ssa

Sa

sb

Sb

sa

Sa

Figure 6: Simplification increases the length (top row) and
area (bottom row) of affected extremal lines and surfaces.
Shown are the extremal structures before (left) and after
(right) a simplification.

up and wp+1 that are connected by a single p-separation line
q. This line is given as a sequence of alternating edges that
belong either to E \V or V . Taking the symmetric difference
Ṽ = V 4q yields a new combinatorial gradient field Ṽ with
an increased set of edges where up and wp+1 are not criti-
cal anymore, i.e., the edges incident to these points are now
matched. Note that this operation does not create any cycles
as long as there is a unique path connecting the two critical
points [For98].

The symmetric difference not only removes two criti-
cal points from a combinatorial gradient field, it also in-
creases the length/area of the affected p-separatrices. The
extremum-saddle simplification (sb,m) in the top row of Fig-
ure 6 yields a merge of the separation lines `1, `2 with `a: the
length of `a is increased while `1 and `2 are removed. The
saddle-saddle simplification (s,sb) in the lower row of Fig-
ure 6, on the other hand, increases the area of the separation
surface Sa: the surface Sb merges into Sa.

A hierarchy of combinatorial gradient fields (Vi)i=0...m
could be obtained by iteratively taking the symmetric differ-
ence with respect to the persistence pairs (Section 3.3). How-
ever, this symmetric difference does not necessarily yield
a combinatorial gradient field where upcoming persistence
pairs can be canceled in the sense of Forman, as extensively
discussed by Bauer et al. [BLW11]: a necessary property to
reduce the number of critical points in the sense of Forman
is collapsibility of a discrete Morse function, but this is not
always given for a generic 3D Morse function.

The above theoretical argument results, in practice, in the
following situation: when creating a hierarchy in the order of
the persistence pairs, one arrives rather early in a deadlock
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Initial Level Coarsest Level

Figure 7: Persistence-based simplification. Shown are the
extremal structures of the initial field V0 (left) and the fi-
nal field Vm (right), which still contains critical points. Gray
isosurfaces illustrate the underlying synthetic function.

where a unique p-separation line between two paired criti-
cal points does not exist. An artificial example is shown in
Figure 7. The input function consists of 129 critical points.
However, only the first 32 persistence pairs could be re-
moved using the symmetric difference. The coarsest rep-
resentation of the input function still contains 65 critical
points. In fact, it follows from Joswig et al. [JP06] that it
is an NP-hard problem to pair critical points such that Vm
contains the minimal number of critical points, which itself
is given by the topology of the domain (for a uniform lattice
this is a sole minimum).

In this paper, we use the greedy strategy proposed by Gün-
ther et al. [GRP∗12] for pairing critical points. The main idea
is to apply the symmetric difference to a pair representing the
current smallest fluctuation in the data. This greedy approach
is motivated by the fact that persistence pairs coincide with
smallest fluctuation pairs for 2D Morse functions [DLL∗10].

Given a certain level of the hierarchy Vi, we are looking
for the pair of critical points {up,wp+1} that is connected
by a unique p-separation line q and represents the smallest
height difference h(wp+1,up) of all possible pairs. The sym-
metric difference

Vi+1 =Vi4q (2)

yields the simplified field Vi+1. Applying (2) iteratively gives
the hierarchy (Vi)i=0...m.

In practice, we found that this greedy approach is able to
pair more critical points than a persistence-based simplifica-
tion. In the above example (cf. Figure 7) all critical points
are paired with this approach and a sole minimum remains
in Vm. The greedy approach leads to longer separation lines
and larger separation surfaces in the coarsest level of the hi-
erarchy. The coarsest level using the persistence pairing, on
the other hand, may contain a large number of unimportant
critical points. This influences the computation of separatrix
persistence and may lead to an underestimation of the im-
portance as discussed in Section 4.

m1m2

M1

M2

`1

`2

s
m2

M1

M2

Figure 8: Illustration of the 2D simplification process.
Shown is the 2D Morse-Smale complex before the simpli-
fication (left), and after the simplification (right). Images
taken from [WG09] with permission of the authors.

3.5. Separatrix Persistence in 2D

Separatrix persistence was originally introduced for scalar
functions defined on a 2D manifold and has been used to
extract salient edges on surfaces meshes [WG09]. It quan-
tifies the feature strength for each point on a 2D separation
line individually. This enables the distinction of spurious and
dominant parts of a separation line. In contrast, topological
simplification removes only whole separatrices.

Let s denote a saddle. Four separatrices emanate from s:
two minimal lines connecting s to at most two minima mi,
and two maximal lines connecting s to at most two maxima
Mi. We assume that (s,m1) is a persistence pair that causes
a simplification of the underlying gradient field. The simpli-
fication removes the critical points s and m1 as well as the
maximal lines. Figure 8 shows this. Let `1 and `2 denote the
two removed maximal lines. For each point x ∈ `1 ∪ `2, the
2D separatrix persistence S2D has originally been defined
in [WG09] as follows

S2D(x) = f (x)− f (m1), (3)

with a similar statement holding for minimal lines. The fea-
ture strength of all points of all separation lines is computed
during a continued simplification process until no further
simplification is possible.

To ease the extension to 3D, we stress that h(x,m1) =
h(x,s) + h(s,m1). Note that the same statement holds for
minimal lines by considering h(M1,x). Additionally, the
identity h(s,m1) = P(s) = P(m1) is given for each per-
sistence pair (s,m1). We rewrite (3) in an equivalent form,
which now applies to both minimal and maximal lines using
the same notation:

S2D(x) = P(s)+h(x,s). (4)

4. Separatrix Persistence in 3D Scalar Fields

In the following, we extend the notion of separatrix persis-
tence from 2D to 3D. It will allow us to measure the feature
strength of the separatrices in the 3D MS-complex, i.e., the
extremal lines and surfaces of a 3D scalar field. Separatrix
persistence will be used to filter less significant or noise-
induced (parts of) extremal lines and surfaces. This is es-
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S

s

m1 m2

Figure 9: Illustration of
the local feature strength
of separation surfaces.
The evolution of isocon-
tours is depicted as yel-
low surfaces.

Sa Sb

s

sa sb

`1

`2

Figure 10: Illustration of
the local feature strength
of separation lines. The
evolution of isolines is
depicted as black lines.

pecially important when the coarsest level of (Vi) still con-
tains topological information (Section 3.4). Separatrices that
mainly describe artificial features may be present. Our mea-
sure will enable us to keep only the relevant parts of them.
Separatrix persistence is derived from the persistence of crit-
ical points and inherits its stability under small perturbations
of the input function.

Similar to the persistence of critical points, separatrix per-
sistence builds on the behavior of isocontours when consid-
ering an increasing isovalue. Based on this behavior, we will
define the local strength of separation for the separatrices
of a single saddle, i.e., for its separation surface and its two
separation lines (Section 4.1). This local measure will be the
foundation for the definition of separatrix persistence in a
3D scalar field (Section 4.2).

4.1. Local Strength of Separation

Consider a single repelling saddle s and its repelling separa-
tion surface S as shown in Figure 9. The separation surface
is the boundary between the two volumes governed by the
minima m1 and m2. Our goal is to define the strength of this
separation for each point on S. To do so, we observe how the
evolution of an isocontour affects the separation between the
volumes. Let f (m1) > f (m2). Also note that f (s) > f (m1)
by construction. For an increasing isovalue r, we have the
following behavior for the isocontour:

zero components r < f (m2) < f (m1) < f (s)

one component around m2 f (m2) ≤ r < f (m1) < f (s)

two components around m1 and m2 f (m2) < f (m1) ≤ r < f (s)

the two components merge at the saddle s f (m2) < f (m1) < r = f (s)

one component intersecting the separation surface f (m2) < f (m1) < f (s) < r

The separation surface is pierced by the isocontour for the
first time when the two components merge at the saddle. This

Figure 11: Extremal lines scaled by local feature strength
(left) and separatrix persistence (right). Small fluctuations in
the data cause an improper representation of the dominant
extremal structures using the local feature strength. Separa-
trix persistence, in contrast, reveals the global structure.

infinitesimal small hole constitutes a breach of the separation
between the two volumes. In other words, the saddle is the
weakest point of separation between the two volumes. With
further increasing r, the hole becomes larger, and we find
that the outer parts of S provide the strongest separation be-
tween the volumes. Mathematically speaking, we define the
local strength of separation IS for all points x ∈ S as

IS(x) = P(s)+h(x,s), (5)

which has its smallest value at the saddle: IS(s) = P(s) de-
notes the persistence of s and thereby the “life time” of the
weakest point on the separation surface. Note that P(s) =
P(m1) = h(s,m1), if (s,m1) is a persistence pair, which is
the case in a simple scalar field as described above. In the
next section, we will consider scalar fields with more topo-
logical structures, where (s,m1) may not be a persistence
pair. A statement similar to (5) holds for attracting surfaces.

The definition for the two separation lines `1, `2 of a
saddle s follows the same ideas, except that these lines do
not separate volumes, but areas on two neighboring sepa-
ration surfaces Sa,Sb coming from two saddles sa,sb with
f (sa) > f (sb) (Figure 10). Therefore, we observe the evo-
lution of isocontours of f restricted to these surfaces, i.e.,
we consider isolines. They emanate at sa and sb, merge at s,
and create an increasingly larger hole in `1 and `2. It turns
out, we can define the local strength of separation I` for all
points x ∈ `1∪ `2 very similarly to (5):

I`(x) = P(s)+h(x,s). (6)

Note that P(s) = P(sa) = h(s,sa), if (s,sa) is a persistence
pair.

4.2. Definition of Separatrix Persistence

The objective of this paper is to define a measure that allows
to filter the separation lines and surfaces of the MS com-
plex such that only the ones with the strongest separating
behavior remain. A naïve approach would be to use the local
strengths of separation I` and IS directly on the unsimplified
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MS complex. However, taking only the locally connected
critical points into consideration does not accommodate the
global gestalt of the function; as shown in Figure 11 left for
a synthetic data set. Local perturbations cause an erratic and
unintuitive behavior of I` and IS – if applied directly to the
unsimplified MS complex.

We use the hierarchy of combinatorial gradient fields
(Vi)i=0...m from Section 3.4 to successively remove small
perturbations and gain an increasingly global view of the
topological features. Note that the connectivity of critical
points changes within (Vi). Additionally, combinatorial sep-
aration lines and surfaces may merge during the simplifica-
tion process. A point x on a separatrix can therefore sepa-
rate multiple critical points. Hence, we need to determine
the maximal strength of separation for x by considering (5)
and (6) over all elements of (Vi). We define for separation
surfaces:

Definition 1 (Separatrix Persistence for Surfaces) Let Si
be the separation surface of a saddle si at a hierarchy level i.
At most two extrema are connected to si: let ei denote the
extremum with the smallest persistence. The Separatrix Per-
sistence S is defined for each point x ∈ Si as

S(x) = max
i=0,...,m

(Pmax(si,ei)+h(x,si)) , (7)

where Pmax(., .) denotes the maximal persistence of two
critical points.

In other words, S(x) is the largest strength of separation that
could be found over all hierarchy levels at the point x. This
corresponds to (cf. Equation (5))

S(x) = max
i

(ISi(x)) (8)

= max
i

(P(si)+h(x,si)) (9)

= max
i

(P(ei)+h(x,si)) (10)

but only if the saddle-extremum pairs (si,ei) obtained
through the hierarchy are actually persistence pairs. As dis-
cussed in Section 3.3 as well as in [BLW11], this is not
necessarily the case in 3D scalar fields. This may yield the
situation that a saddle point with a low persistence is con-
nected to an extremum with a high persistence. Taking only
the persistence of the saddle into account would result in
an underestimation of the emerging separatrices. We there-
fore use the maximum of persistence Pmax(si,ei) in (7) of
two neighboring critical points (si,ei), since it estimates the
largest strength of separation.

Note that a separatrix exists only up to a level V j in the hi-
erarchy (Vi). Hence, (7) is effectively computed for the levels
V0, . . . ,V j , and not further examined for levels k > j.

Separatrix persistence for separation lines follows a simi-
lar scheme:

Definition 2 (Separatrix Persistence for Lines) Let `i be a

Table 1: Time needed to compute the initial MS-complex
(1), persistence of critical points (2), and the hierarchy (Vi)
including separatrix persistence (3). The number of critical
points after ε = 10% simplification is given in the second
column.

Data set # Crits (1) (2) (3)
(Resolution) ε = 10% (min) (min) (min)

Bonsai 3905 1 5 9
(2563)
Aneurism 8549 1 < 1 2
(2563)
Cylinder Flow 43 < 1 < 1 < 1
(265× 337× 65)
Filopodium 8521 < 1 < 1 5
(124× 154× 47)

separation line of a saddle si at a hierarchy level i. The sepa-
ration surface of si has several other saddles in its boundary:
let ti denote the one with the smallest persistence. The Sep-
aratrix Persistence S is defined for each point x ∈ `i as

S(x) = max
i=0,...,m

(Pmax(si, ti)+h(x,si)) . (11)

Figure 11 right shows the minimal lines of a synthetic data
set that have been scaled by separatrix persistence.

4.3. Computing Separatrix Persistence

A straightforward approach in computing S(x) is to iterate
over each saddle si in each level of the hierarchy (Vi)i=0...m
and compute (7) and (11) for each point x on the separatri-
ces of si. However, a more efficient approach is possible by
exploiting that a simplification step Vi → Vi+1 creates only
local changes in the MS-complex (Section 3.4): only one
pair of critical points gets removed with every simplification
step. Hence, we compute (7) and (11) only for the separa-
trices that are affected in this step; and continue to the next
level in the hierarchy. At Vm, we evaluate (7) and (11) for
the separatrices of the (few) remaining saddles. Since sepa-
ratrices are given as discrete set of edges in the cell graph
G, we assign the importance values only to the nodes inci-
dent to these edges. An explicit sampling of separatrices is
not necessary. This makes computing separatrix persistence
very efficient, and can actually be done while building the
hierarchy.

5. Implementation

The input of our algorithm is a scalar field f given on any
discretization that can be represented using a cell complex,
e.g., a tetrahedral mesh or a regular 3D lattice. The latter
allows for a very memory efficient implementation, since
node/edge indices and neighborhood relations are implicitly
given [GRP∗12]. Let n denote the number of vertices of the
cell complex, and let c denote the number of critical points
of V0. We follow a rather common pipeline (e.g. [GRP∗12])
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(a) Isosurface (b) Filtered maximal lines

Figure 12: Extraction of extremal lines in a CT-scan of an aneurism using separatrix persistence.

to extract the extremal lines and surfaces of f . The compu-
tation of their separatrix persistence is woven into this:

1. Initial MS complex: We use the algorithm ProcessLow-
erStar by Robins et al. [RWS11] to compute the initial
combinatorial gradient field V0. The computational effort
is O(n) and it allows also for a parallel computation.

2. Persistence: Since the persistence homology of the cell
complex and the MS complex of V0 coincide, we can
compute the persistence of the critical points directly on
the MS complex itself [RWS11] with a complexity of
O(cn+ c3) [GRWH11].

3. Hierarchy: The hierarchy (Vi) is constructed as dis-
cussed in Section 3.4. The computational effort depends
on the topological complexity, i.e., the number of critical
points and their connectivity, with a worst-case complex-
ity of O(n3). However, in practical cases the behavior is
almost linear [GRP∗12].

During hierarchization, we compute separatrix persis-
tence as discussed in Section 4.3.

4. Geometric embedding: Finally, the extremal lines and
surfaces are written out by traversing (Vi) in reverse or-
der. The computational effort depends on the size of the
structure, but is at most O(n).

For the final step, we found it beneficial to consider only
the topological structures above an ε-persistence threshold
to disregard small-scale structures. In our experiments, we
set ε to 10 percent of the data range. This worked out for
all of our experiments. However, this parameter depends on
the application and needs to be adapted to the purpose of
investigation. Since this parameter affects only the output
and not the computation itself, this adaption can be easily
done.

Note that different types of separation lines/surfaces share
cells of the same dimension in the cell complex. This is
by definition, see Section 3.2. Since these features are in-

dependent from each other, we use four sparse contain-
ers to store separatrix persistence individually for mini-
mal/maximal lines and repelling/attracting surfaces together
with a reference to the corresponding cell.

Given the extraction result, the user chooses an appro-
priate threshold for separatrix persistence to filter noise-
induced and less important (parts of) extremal lines and sur-
faces. After filtering by separatrix persistence, we remove
small isolated lines and surfaces.

Due to the combinatorial nature of our algorithm, the ex-
tracted lines and surfaces reflect the discrete nature of Ω,
see the line wiggling in the close-up of Figure 15b or the
discrete surface in Figure 16. To obtain visually pleasing
results, we apply simple heat diffusion smoothing for sur-
faces and Bézier curve-based smoothing for lines. Note that
a strong heat diffusion smoothing yields a shrinking of the
surface, and Bézier curves are not able to capture kinks. We
manually adjusted the smoothing strength such that these de-
viations can be neglected in our investigations.

6. Results

All results have been computed on a machine with an Intel
Xeon E31225 (3.1GHz) CPU and 16 GB RAM. The timings
given in Table 1 show the computation times needed to com-
pute the initial MS complex, persistence of critical points,
and the complete hierarchy (Vi) including separatrix persis-
tence. Note that the computation time depends strongly on
the topological complexity of the data set, i.e., the number
of critical points and their connectivity (see also Section 5).

Aneurism Computer tomography (CT) scans usually suffer
from a large amount of noise as it can be seen in the isosur-
face visualization of an aneurism in Figure 12 (left): filigree
structures such as blood vessels are interrupted and repre-
sented by scattered surfaces. We applied our method with
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(a) Vortex core lines (red) of a flow behind a cylinder as maximal lines using separatrix persistence. (b) Close-up of a maximal line
(red) extracted using our
method.

(c) Ridge lines (green) of Q extracted using [PS08]. (d) Close-up of a ridge line (green)
extracted using [PS08].

(e) The attracting surfaces (blue) of Q are a part of the strain skeleton for Q <

0 [SWTH07]. They partition the domain into vortex regions. Inside these
regions, maximal lines (red) of Q are shown, i.e., lines of maximal vortical
behavior. Lines/surfaces extracted using our method.

(f) All extremal lines of V0.

(g) Most dominant extremal lines filtered
and scaled by separatrix persistence.

Figure 13: 3D unsteady flow behind a cylinder. Shown are extremal features of the Q-criterion for t = π. The gray isosurface
depicts the zero-level of Q while the level Q = 2.7 is illustrated as yellow isosurface.

the goal to extract blood vessels as maximal lines. Figure 12
(right) shows the smoothed result filtered and scaled by sep-
aratrix persistence. Even in the presence of noise, connected
blood vessels are robustly extracted.

Cylinder Flow Figure 13 demonstrates the results of our
method applied to a scalar quantity derived from a flow
behind a cylinder. The data set was provided by Bernd R.
Noack (TU Berlin) from a direct numerical Navier Stokes
simulation by Gerd Mutschke (FZ Rossendorf). It resolves
the so called “mode B” of the 3D cylinder wake at a
Reynolds number of 300 and a spanwise wavelength of 1
diameter. The data is provided on a 265× 337× 65 curvi-
linear grid as a low-dimensional Galerkin model. The ex-
amined time range is [0,2π]. The flow exhibits periodic vor-
tex shedding leading to the well known von Kármán vortex
street [ZFN∗95]. This phenomenon plays an important role
in many industrial applications, like mixing in heat exchang-
ers or mass flow measurements with vortex counters. How-
ever, this vortex shedding can lead to undesirable periodic
forces on obstacles, like chimneys, buildings, bridges and
submarine towers.

We analyze the Q-criterion [Hun87] of this flow, which is
a derived scalar field that allows to distinguish between vor-

tex (Q > 0) and strain (Q < 0) behavior. The latter measures
the amount of stretching and folding which drives mixing to
occur. As pointed out by Sahner et al. [SWTH07], the min-
imal points/lines/surfaces of Q represent the strain skeleton,
while the maximal features of Q denote the vortex skeleton.

Figures 13f-g provide a comparison between the unfil-
tered extremal lines and the lines filtered and scaled by sep-
aratrix persistence. Minimal lines are shown in blue, maxi-
mal lines in red. This exemplifies that separatrix persistence
is able to reveal the most dominant features. We additionally
applied a derived filter criterion here: the variance of sepa-
ratrix persistence along a line. The idea is to favor lines that
stay in the center of a vortex, i.e., that have a rather constant
Q-value and therefore a rather constant separation strength.

The most dominant maximal lines and ridges of Q are
shown in Figures 13a and 13c, respectively. The ridge lines
are filtered by the F45 filter [PS08]. We additionally removed
small isolated lines. Both extraction methods yield qualita-
tively very similar results. However, the close-ups in Figures
13b and 13d reveal an important difference of the two ap-
proaches: The topological approach gives long, fully con-
nected lines (Figure 13b). In contrast, ridge lines are often
split into several smaller parts in this data set (Figure 13d).
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(a) All ridges. (b) Filtered by F45.

(c) Ridges restricted to the volume with f > 55.

Figure 14: Height ridges of the Bonsai data set.

(a) All maximal lines scaled by
separatrix persistence.

(b) Filtered by separtrix persis-
tence.

(c) Most dominant smoothed maximal lines.

Figure 15: Maximal lines of the Bonsai data set.

This is due to the fact that ridge lines are local features, i.e.,
it is locally decided whether or not a point is on a ridge or
not. Due to numerical instabilities or noise, some of the local
decisions along a ridge line may produce a “miss”, which
then leads to disconnected results. This cannot happen for
the topological approach, since separatrices are global fea-
tures. On the other hand, ridge lines do not suffer from devi-
ations due to smoothing.

Figure 13e shows the attracting surfaces of Q restricted to
Q < 0. Following Sahner et al. [SWTH07], this provides a
partition of the domain into vortex regions, which is nicely
confirmed by the shown vortex core lines in the center of
each of these regions.

Bonsai Figures 14 and 15 show the results of [PS08] and
our method, respectively, applied to a CT-scan of a Bonsai
tree. The objective in this data set is the extraction of the

tree-skeleton – the trunk with all its branches. It appears as
lines of maximal intensity in the CT-scan.

To extract the ridge lines, we first had to smooth this data
set using a Gaussian filter. This reduced the noise level such
that we were able to extract a meaningful result. The ridge
definition alone yields a wealth of scattered lines, where the
trunk and the tree are not identifiable, see Figure 14a. There-
fore, we applied the filter criterion F45 [PS08]. While this re-
duced the complexity of the extraction result, the trunk and
its branches are still not detectable, see Figure 14b. We re-
stricted the ridge computation to regions with f > 55. Using
this restriction, the overall structure of the tree becomes visi-
ble. However, the branches and the trunk are still represented
by a scattered set of lines, see Figure 14c.

We applied all topological computations to the original
data set (no smoothing). The result is shown in Figure 15a,
where we show all maximal lines scaled by separatrix per-
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Figure 16: Discrete (top)
and smooth (bottom) rep-
resentation of a subregion
of the cell membrane.

Figure 17: Extraction of a cell membrane in a cryo-electron tomogram us-
ing separatrix persistence (left column) and ridge/valley definition (right col-
umn). The top row shows the original data. The bottom row shows the results
after Gaussian smoothing.

sistence. While the overall scenery is quite complex, the
structure of the tree is already identifiable. Figure 15b shows
the result after filtering by separatrix persistence. Due to the
combinatorial nature of our method, the maximal lines fol-
low the grid structure as it can be seen in the close-up of Fig-
ure 15b. We smoothed the maximal lines to obtain a visually
pleasing result, see Figure 15c. The smoothing introduced
only slight deviations in the geometric embedding. Note how
the trunk and its branches are nicely represented as a con-
nected network in contrast to the ridge extraction result.
Filopodium Cryo-electron tomography allows to visualize
sub-cellular structures such as cell membranes. This imag-
ing technique suffers from a very low signal-to-noise ratio
and artifacts arising from incomplete information (“miss-
ing wedge”), which makes an automated extraction of these
structures very challenging. We applied our method to a sub-
tomogram of a Dictyostelium discoideum cell [RGH∗12]
with the goal to extract the cell membrane as the dominant
parts of the attracting surfaces.

The sub-tomogram shows the so-called Filopodium – a
finger-like extension of the cell. Figure 17 (left, upper row)
shows the result after filtering using separatrix persistence
and smoothing the surface using heat diffusion (see Figure
16 for the effect of the surface fairing). Although some holes
within the membrane occur, its overall shape is well recov-
ered. As described in [RGH∗12], the tomogram was already
filtered using non-local means. However, this filtering is not
sufficient for the extraction of ridge surfaces as shown in
Figure 17 (right, upper row): the membrane is only repre-
sented by a scattered set of small surface pieces. The remain-
ing noise level challenges the ridge computation, in contrast
to the topological approach. We applied Gaussian smoothing

to lower the noise level further. The bottom row of Figure 17
shows the results for the smoothed version. Both extraction
approaches benefit from this smoothing step. The cell mem-
brane is almost closed, only few holes remain.

7. Conclusion and Future Work

We presented the – to the best of our knowledge – first topo-
logically motivated measure of feature strength for separa-
trices of a 3D scalar field: separatrix persistence. It allows
to filter noise-induced and less important extremal lines and
surfaces. We compared our measure to the concept of Height
Ridges on data sets from fluid dynamics, computer tomog-
raphy and cell biology. The global nature of separatrix per-
sistence, and the fact that it can be computed purely com-
binatorially without any need for derivatives, makes it very
robust even in the presence of noise. The computation of
separatrix persistence is woven into the common topological
simplification process with only a small overhead, since ex-
isting information is reused. Furthermore, the computation
of separatrix persistence is free of parameters, which allows
for batch computations without any user interaction.

The topological simplification is currently the most time-
consuming part of our extraction pipeline. We want to ad-
dress this in future work by considering parallel computation
approaches. This is a highly non-trivial issue, since topologi-
cal simplification is an inherently global process. A first step
in this direction has been presented in [GNPH07], but sep-
aration surfaces are not treated by that approach. Further-
more, we currently smooth the discrete extraction results us-
ing methods based on heat equation or Bézier curves. Al-
though this smoothing is able to obliterate the discrete na-
ture of the combinatorial separatrices, it introduces devia-
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tions in their geometric embedding, which could result in an
intersection of them. It is therefore beneficial to investigate
feature-based approaches in more detail that allow for error-
controlled smoothing. Especially, constrained least-square
approximations could be promising.
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