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Abstract We present feature-extraction techniques for numerical and experimental
data of complex fluid flows. Focus is placed on efficient analysis and visualization
of coherent structures of snapshots, temporal evolution and parameter-dependency
of coherent structures. One key enabler are Galilean invariant flow quantities based
on pressure, acceleration, vorticity and velocity Jacobians. Other important cataly-
zers are Lagrangian filters that distill persistent strong particle-fixed features while
neglecting weak and short-living ones. The proposed feature extraction framework
is exemplified for the time-dependent natural and actuated flow around a high-lift
airfoil, as well as other benchmark configurations of the SFB 557.

1 Introduction

Fluid flow datasets arising from experiments and simulation increase in size and
complexity. The automated analysis of numerically given fluid data therefore be-
comes more and more important. During the past two decades, much effort has
been devoted to the development of computer graphical techniques for display of
steady and unsteady flow fields – both in 2D and 3D. The resulting tools are widely
used today for visualization of flow fields. However, analyzing and understanding
intricate flow structures is often difficult — even with advanced visualization tools,
since only raw data are displayed instead of the more interesting flow structures.

Researchers and practitioners are interested in the main flow characteristics that
are relevant for their specific analysis questions. Schlichting’s book ‘Boundary layer
theory’ [18] and the Journal of Fluid Mechanics contain many masterpieces of hand-
crafted principle flow sketches — revealing the main flow characteristics in a single
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picture. The goal of our work is to advance analysis and visualization techniques
to a stage where similarly insightful features can be distilled from raw data in a
semi-automatic or even automatic manner.

In visual data analysis such flow structures are often called ‘features’. A feature,
as used in this paper, is a mathematically defined geometric object (point, line, sur-
face, volume) that potentially is time-dependent and represents some important flow
structure, e.g., a stagnation point, vortex core line, or vortex region. Though experts
in fluid dynamics have intuitive conceptions of specific flow features, unique and
agreed mathematical characterizations are often missing. Even for the concept of
a ‘vortex’ there is no generally accepted mathematical definition. Identifying prac-
tically interesting flow structures and finding mathematical definitions therefore is
part of the research. If such a mathematical characterization is given, often it is non-
trivial to extract the corresponding structures algorithmically. The development of
efficient and robust algorithms for feature extraction therefore is another task.

Once such features have been extracted and are represented as geometric objects,
they can be used in many ways. Here, we are mainly interested in using them for cre-
ation of visualizations that provide insight. Development of perceptually effective
feature visualizations therefore is also part of the research.

Feature-based visualization ideally distills information which conveys (i) the co-
herent structures, (ii) the temporal evolution of these structures, and (iii) the struc-
tural changes due to variation of configuration parameters (configuration robust-
ness). Furthermore, it reduces the amount of information, allowing to focus on spe-
cific aspects of the flow and providing interactive exploration.

In this paper we present a short overview of feature extraction techniques that
we have developed during recent years in the framework of the SFB 557, putting
special emphasis on recently developed methods. Due to space limitations we do
not try to present recent developments of other groups. A more complete overview
over the field can be found, for example, in references [12] and [17].

After introducing basic mathematical concepts (Sect. 2.1), we discuss feature ex-
traction algorithms for steady flows (Sect. 2.2) and unsteady flows (Sect. 2.3). Then
we present some selected techniques for discrete feature extraction (Sect. 2.4) and
show some applications to actuated flows (Sect. 3). Finally, we discuss the results
and draw some general conclusions (Sect. 4).

2 Feature Extraction

2.1 Fundamental Concepts

Notation. We consider either steady flows in a spatial domain D = Ω ⊂Rn (n = 2,3)
or unsteady flows in a spatiotemporal domain D = Ω × [0,T ]. A flow is specified
by physical fields on domain D. For incompressible flows the phase space is com-
pletely specified by velocity v : D→ Rn and pressure p : D→ R. These fields are
typically discretely sampled in D.
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Features. Features may either be directly based on the given flow, or on derived
scalar, vector or tensor fields. Examples of derived scalar fields are the Okubo-Weiss
field Q and the λ2 field. Here, Q is 1

2 (||A||2−||S||2) (with A = 1
2 (∇v− (∇v)T ) and

S = 1
2 (∇v+(∇v)T )). λ2 is the second eigenvalue of the symmetric matrix A2 +S2.

A frequently used derived vector field is vorticity ω = ∇× v. Considering com-
mon feature definitions, there are two re-occurring concepts, namely ridge lines and
scalar/vector field topology, which will be recalled in the following.

Typical features of a scalar field f are, e.g., minima, maxima, saddle points, ridge
and valley lines. Ridges and valleys, as extremal structures, play a special role in
flow analysis. The concept of extremal structures has been studied by Eberly [1] and
Lindeberg [8] in great generality. Here we are mainly interested in one-dimensional
ridge lines, which are defined as follows: For a smooth function f : U → R of an
open set U ⊂ Rn let ∇x0 f = g be the derivative of f at x0 ∈ U and Hx0( f ) = H
the Hessian of f at x0. Further let λ1,λ2, . . . ,λn be the sorted eigenvalues of the
Hessian matrix and e1,e2, . . . ,en the corresponding unit eigenvectors. Then, a point
x0 is defined as a ridge point, if λn−1 < 0 and ∇x0 f · ei = 0 for i = 1,2, . . . ,n−1. A
valley point is a ridge point in the negative field − f .

Typical features of a vector field v are integral curves (e.g., streamlines or path-
lines), or components of flow topology, i.e., critical points xc with v(xc) = 0, 1D-
separatices (= streamlines starting in a saddle point in direction of their eigenvector
corresponding to the unique negative or positive eigenvalue), and 2D-separatices (=
stream surfaces starting in a saddle point in the plane spanned by the two eigenvec-
tors with matching sign).

For scalar fields f , also scalar topology is considered, which is the flow topology
of the gradient vector field ∇ f . The existence of a potential gives additional structure
to this topology, and it can be described with more ease, as no closed integral lines
(limit cycles) can occur. The so-called Morse-Smale complex of a real-valued field
partitions its domain into regions having uniform gradient flow behavior.

For a successful feature extraction, not only an appropriate feature definition, but
also efficient and stable extraction algorithms are essential. Thereby, we differen-
tiate discrete algorithms, which work directly with sampled data, and continuous
algorithms, which require spatial or spatiotemporal interpolation.

2.2 Algorithms for Steady Data

We start with feature extraction methods originally developed for steady flow fields.
Typically, these methods are related to streamline analysis.

Streamline-based Topology. Topological methods segment a flow field into sec-
tors of equivalent streamline behavior by extracting critical points, separation lines
and surfaces (see e.g. [23]). They are especially well suited for the analysis of flow
separation. For complex 3D topologies, these separating surfaces tend to hide each
other as well as other topological features. To solve this problem, the concept of
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saddle connectors and boundary switch connectors has been introduced [21; 27; 23].
The main idea is to replace stream surfaces by their intersection curves, which are
particular streamlines. The visualization of saddle connectors instead of the sepa-
ration surfaces results in expressive visualizations even for topologically complex
data sets. In addition, the integration of stream surfaces is computationally more
involved and less stable than the integration of streamlines, since convergence and
divergence effects on the stream surface may occur.

Vortex Related Features. Complementing the topological analysis, vortices and
vortex systems are the most prominent features in fluid flows. Both, the regions of
influence of vortices – called vortex regions – and the locations of the vortex centers
(in 2D) or center lines (in 3D) are of interest. Since, there are several characteriza-
tions of vortices, there is a wide range of algorithms to extract these. For an overview
see Post et al. [13].
Vortex and Strain Skeletons Based on Scalar Identifiers. While vortex region quan-
tities are Galilean invariant, many methods for extracting vortex cores are based
on streamline analysis and thus depend on the frame of reference. Alternative ap-
proaches to extract vortex cores use Galilean invariant vortex region quantities.
Besides displaying these scalar quantities (such as Okubo-Weiss and λ2) directly,
extremum lines of the scalar fields represent vortex cores explicitly as line type fea-
tures. We developed methods for their extraction based on the notion of ridges [15]
and the notion of watersheds/topology [16]. For the visualization of extracted line
features, an iconic representation indicating their scale and extent is used. In Section
2.4 we present two novel methods based on discrete topology that aim at extracting
extremal lines in a robust manner.
Hierarchical Vortex Regions. We have further complemented this set of methods
by a scheme for extracting regions around a vortex core [11]. Vortex systems often
consist of a spatial hierarchy of nested vortices. In this 2D streamline-based tech-
nique, a vortex region is defined by surrounding lines that intersect the velocity field
in an constant angle along the lines. Clusters of homotopic lines around vortex cen-
ters define a vortex region. These regions build a spatial hierarchy of vortex regions,
cf. Fig. 8. Vortex splitting and merging events can be detected and visualized with
this technique.

2.3 Algorithms for Unsteady Data

Principally, all methods for steady flow fields can be applied to single time steps of
unsteady fields. A framework to track the temporal development of extracted struc-
tures has been developed by introducing feature flow fields [22], which was applied
to topological structures as well as vortex cores [20]. Treating time as additional
parameter was proposed in [28] to extract topological changes over time. While
providing some interesting insight, these so-called snapshot features are not suffi-
cient for a complete analysis of unsteady data. Most flow phenomena are unsteady in
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nature and particle motion is described by pathlines. This generally leads to differ-
ent flow patterns. The topological concept has been extended to a pathline oriented
topological segmentation for periodic 2D time-dependent vector fields [19]. The ap-
proach detects critical pathlines as well as basins from which the pathlines converge
to the critical ones. In the following, we describe three methods especially designed
for time-dependent flows based on the analysis of pathlines.

Vortex Core Detection based on Swirling Motion. One way to assess vortices
in experiments is to emit particles (smoke) into the flow and to examine their behav-
ior: patterns of swirling flow indicate vortices. For steady numerical and measured
datasets, Peikert and Roth formulated the successful concept of the ‘parallel vectors’
operator and presented a fast and robust extraction technique [9]. We have extended
this concept to extract the cores of swirling particle motion in unsteady flows based
on the behavior of pathlines [26].

Given a time-dependent vector field v(x, t), we consider the dynamic system
d
dt (x, t)T = (v(x, t),1)T by including time as an explicit state variable at the ex-
pense of an increase in dimension by one. Pathlines then are tangent curves of the
vector field p(x, t) = (v(x, t),1)T . In the 3D unsteady setting, the Jacobian J(p) has
the eigenvalues e1,e2,e3,0 with the respective four eigenvectors (e1,0)T , (e2,0)T ,
(e3,0)T , f, where e1,e2,e3 are the eigenvectors of the spatial Jacobian. Under the
condition that J(p) has a pair of conjugate complex eigenvalues (sorted such that
e1,e2 are complex and e3 is real), we find swirling motion around the point of in-
terest which is a necessary condition for a swirling particle core. As we have shown
in [26], a point x is on the swirling particle core if the flow vector p(x) lies in the
plane of non-swirling flow spanned by the two real eigenvectors es := (e3,0)T and
f. In other words, the swirling particle cores are at locations where

λ1p+λ2es +λ3f = 0 with λ
2
1 +λ

2
2 +λ

2
3 > 0 , (1)

i.e. where the 4D vectors p, es and f are coplanar. The resulting core structures are
lines sweeping over time, i.e., surfaces in the space-time domain. At a single time
step, particles group around these core lines forming patterns of swirling motion.
In order to extract them, we have shown how to re-formulate the problem using the
parallel vectors operator [9] and applying it accordingly. Fig. 1 shows the extraction
result for a flow behind a cylinder.

Finite-time Topology. Critical points of the velocity field, the basic building blocks
of vector field topology, are not Galilean invariant. If no preferred frame of ref-
erence is given, topological analysis appears somewhat arbitrary. Acceleration
a(x, t) = ∂tv(x, t) + (v(x, t) ·∇)v(x, t), however, is a Galilean invariant property.
In steady fields, particles at fixed points have zero acceleration; in unsteady fields
acceleration at these points is small compared to their neighborhoods. Therefore,
particles with minimal acceleration ‖a‖ are of interest. We call space-time points
(x0, t0) where ‖a(x0, t0)‖ has a local minimum in space Lagrangian equilibrium
points (LEP).
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Fig. 1: 3D unsteady flow behind a cylinder. The red lines denote swirling particle
cores at a certain time step. The gray fluid particles show that the core lines are
located at the centers of swirling particle motion.

Fluid dynamicists are interested in the dominant structures that influence the flow
behavior. Of particular interest are long-living features. We take a Lagrangian view
by considering trajectories (‘particles’) in space-time domain D and observing their
properties. By measuring how much and how long particles exhibit characteristic
properties, we can filter out salient, long-living structures. Let p(t;x0, t0) be the
trajectory of a particle moving through point x0 at time t0. As mentioned before, an
interesting feature is ‘low acceleration magnitude’ a(x, t) = ‖a(x, t)‖. To evaluate
this, we compute the average of a2 for particles moving through point x0 at time t0

A (x0, t0) =
1

tmax(x0, t0)− tmin(x0, t0)

∫ tmax(x0,t0)

tmin(x0,t0)
a(p(t;x0, t0), t)

2 dt (2)

over some time span [tmin(x0, t0), tmax(x0, t0)] ⊆ [t0− τ, t0 + τ] with maximal width
2τ . The actual width is called ‘feature lifetime’. The parameters tmin and tmax are
chosen such that along the pathline segment {p(t;x0, t0) | t ∈ [tmin, tmax]} two condi-

Pathline

a

athreshold

C

Cthreshold

t=t0 t=t0+τ=tmaxt=t0-τ t=tmin
Lifetime

t

Fig. 2: Definition of a feature’s lifetime along a pathline (parametrized by time). In
the depicted case parameter tmin is determined by the acceleration threshold and tmax
by the maximum lifetime window.

tions are fulfilled (cf. Fig. 2): (i) the acceleration magnitude a is below some thresh-
old athreshold and (ii) the difference between the average acceleration at spatially
neighbored grid points and the acceleration at the considered points (denoted as Ca)
is greater then some threshold Cthreshold:
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Fig. 3: Mixing of six Oseen vortices.
The time axis is orthogonal to the tex-
ture plane. The illuminated pathline
segments indicate the lifetime interval
[tmax, tmin]. (magnify the image)

Fig. 4: Dataset of the flow behind a cir-
cular cylinder. Depicted is the simulta-
neous visualization of forward (red) and
backward (blue) L-FTLE , integration
time T = 3 periods.

tmin(x0, t0) = min(t ′ ∈ [t0− τ, t0] | ∀t ∈
[
t ′, t0

]
:

a(p(t;x0, t0), t) < athreshold and (3)
Ca(p(t;x0, t0), t0) > Cthreshold),

and tmax equivalently. In the resulting field A the minima are searched (due to the
averaging these are not exactly the LEPs). These minima are then filtered by a life-
time criterion tmax(x0, t0)− tmin(x0, t0) > tthreshold.

As an example, the mixing of six Oseen vortices in 2D is depicted in Fig. 3. The
lifetime and averaged squared acceleration A were computed; then the minima of
A were determined and used as seed points for pathlines. Length and color coding
of the pathlines indicate the lifetime. Since particles remain a long time in the vicin-
ity of vortices, this approach is useful for extraction of time-dependent vortex cores.

Localized Finite-time Lyapunov Exponent. The Finite-Time Lyapunov Exponent
(FTLE) is a measure for the rate of separation of particles in time-dependent flow
fields. FTLE is typically computed by analyzing the flowmap, which maps the end
points of pathlines to their starting positions. The spectral norm of the gradient of
this map determines the separation of a pathline over a finite period of time. The
gradient is in general approximated using finite differences. To obtain a measure
for the convergence of particles, the flowmap has just to be computed for particles
traced backwards in time.

This standard approach assumes a linearization of the flow, which is only valid
for short advection times. Furthermore, the sampling distance of the pathlines has a
strong impact on the results: Large values lead to wrong results, since the particles
more and more diverge from the trajectory for which the FTLE is to be measured.
One remedy is a continuous renormalization of the pathlines.



8 J. Kasten, T. Weinkauf, C. Petz, I. Hotz, B.R. Noack, H.-C. Hege

In [7] we presented an algorithm for measuring the separation by tracing a single
pathline. We use the Jacobian matrix as a generator of the separation to measure it
locally. Consider a pathline p(t) = p(x0, t0, t) for a particle started at space-time lo-
cation (x0, t0). The deviation of trajectories of infinitesimally close particles started
at (x0 +δ0, t0), with δ0→ 0, are governed by the Jacobian of the velocity field along
p(t). The time evolution of the deviation in a flow field v is given by the differential
equation

δ̇ (t) = (∇v|p(t))δ (t), (4)

with δ (0) = δ0. For sufficiently small values of t < ∆t , the gradient can be ap-
proximated by the constant matrix ∇0 = ∇v|p(0). Solving the differential equa-
tion then yields δ (t) = exp(∇0 t)δ0. By discretizing the total integration time T
in intervals of size ∆t , a repeated application of the previous expression results in
δ (T ) =

(
∏

0
i=N−1 exp(∇i ∆t)

)
δ0, where N is the number of discretized time steps,

N ·∆t = T and ∇i = ∇v|p(i∆t ). Thus, the matrix

ΨT (p) =

(
0

∏
i=N−1

exp(∇i∆t)

)
(5)

is an approximate mapping of the neighborhood at the starting point p(0) to devi-
ations at the end point p(T ) after advection, similar to the flowmap gradient. The
‘localized FTLE’ defined by

L-FTLE+(x0, t0,T ) =
1
T

ln(||ΨT (p(x0, t0, .)||λ ) (6)

reflects the separating behavior of infinitesimally close particles along the pathline.
Analogously, the exponent L-FLTE− for backward integration is defined, describing
the convergence behavior.

In Fig. 4, for a 2D instationary flow behind a circular cylinder the L-FTLE is com-
puted for three shedding periods, showing the typical pattern of the von-Kármán vor-
tex street. The separation and convergence of particles is illustrated by red and blue
coloring, respectively. The time-dependent Lagrangian structures emerge clearly.

2.4 Discrete Feature Extraction

In this section, we present two methods for the extraction of extremal lines using
scalar field topology. Due to its robustness, we use the characterization of the topo-
logical skeleton as a Morse-Smale (MS) graph on a discrete domain as introduced
by Forman [4]. In this context, the grid underlying the discretized scalar field is
considered as a simplicial complex. In the simplicial graph, every node corresponds
to a simplex in the simplicial complex and the links represent the neighborhood of
these simplices. In two dimensions, there are three types of critical points, which
are nodes in the simplicial graph: minima (0-cells or vertex nodes), saddles (1-cells
or edge nodes) and maxima (2-cells or face nodes). The setting is analog in three
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dimensions, but the saddles split up into two types: 1-saddles and 2-saddles. In this
topological setting, extremal lines are found as separatrices of the MS complex,
which are discrete integral lines connecting critical points. Since we are typically
interested in the minimal lines of the scalar field, the connecting lines of the 0-1
edges represent the raw feature set of interest.

A common problem with topological methods is their sensitivity to noise: every
local extremum of the scalar field is a critical point (often referred to as “overseg-
mentation”). Topological simplification aims at reducing this complexity by suc-
cessively removing pairs of critical points (cancellation) in an order determined by
some importance measure. The result is still a valid MS complex, but with less crit-
ical points.

As a measure of importance, we use persistence, introduced by Edelsbrunner et
al. [3; 2]: critical points with lower persistence will be removed before those with
higher persistence. Loosely speaking, persistence measures how long connected
components of an isocontour exist when the isovalue is increased. More precisely,
persistence measures the function value difference between acts of creation (minima
and splits at saddles) and acts of destruction (maxima and merges at saddles).

After this brief introduction into MS simplification, we will now discuss specific
problems: for 2D, we introduce an extension of the concept of persistence to separa-
trices, and for 3D, we deal with technical problems of the MS simplification process.

Separatrix Persistence. Persistence was originally introduced for critical points.
Thus, only 0-dimensional features of the topological skeleton could be organized
into a hierarchy. In two dimensions, the 1-dimensional features, the separatrices,
are of intereset, too. In order to measure the importance of separatrices, we propose
separatrix persistence [24]: Let s denote a saddle connected to the minima mi and
maxima Mi in the skeleton of the scalar field f . The persistence of a separatrix ` is
defined for each point x ∈ ` as

p`(x) =
{

f (x)−max( f (mi)) , if` is a maximal line
min( f (Mi))− f (x) , if` is a minimal line. (7)

Separatrix persistence measures the significance of every point on a separatrix. As

Fig. 5: Flow behind a cylinder. Maximal lines of forward L-FTLE, extracted using
discrete topology, are shown in gray. Their thickness is scaled according to their
separatrix persistence.
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it is derived from classical persistence, it inherits the stability under small perturba-
tions. Obviously, p` reaches its highest value at the extremum. The point on ` with
the lowest persistence is the saddle s. Separatrix persistence allows us to identify the
most important, most salient parts of all separatrices contained within a MS com-
plex. Fig. 5 shows an example at a flow behind a cylinder.

Discrete Feature Extraction in 3D. In theory, the cancellation of critical points
extends from 2D to 3D without significant changes. But in praxis there evolve some
problems concerning the implementation as well as the results. First, this makes an
adaptation of the cancellation process necessary and, moreover, calls for an addi-
tional post processing filtering step, which will be described in the following.
Extracting the extremal skeleton. The direct implementation of the cancellation
algorithm in 3D leads to two problems due to the additional saddle connectors. First,
the generation of multiple connections between saddles causes a memory problem.
To ease this problem we adapted the concept of valences (number of links per node
in the MS complex) introduced by Gyulassy [5]: Cancellation in the 1-2 layer is
only performed if the number of new edges falls below some predefined thresholds.
Furthermore, multiple edges between two vertices of the MS complex are stored
only once. The multiplicity of those edges is counted in the edge data structure.

Second, the 1-2 connections get knotty which limits the cancellation possibili-
ties. These knotty structures remain at all persistence levels and generate a complex
skeleton of minima lines. Furthermore, these knots complicate the cancellation algo-
rithm. The cancellation in three dimensions is a non-deterministic polynomial-time
(NP) hard problem. Thus, for large data sets only heuristics can be applied.
Filtering. For filtering the discrete extremal structures, we use a quantity that mea-
sures for each point in the domain of a scalar field the local ‘rigdeness’. In their
work using the parallel vectors operator, Peikert and Sadlo [10] extract a set of raw
feature points using the ridge condition for a scalar field f : Hg = λg, or equiva-
lently (Hg,g)

‖Hg‖‖g‖ = 1. Measuring at a point x0 ∈Ω to which extend g(x0) := ∇x0 f and
Hx0( f )∇x0 f = Hx0g(x0) are parallel, we define the ‘ridgeness’ R( f ):

R( f )(x0) =
(Hx0( f )g(x0) , g(x0))
‖Hx0g(x0)‖‖g(x0)‖

.

This measure, applied to the results of the first step, suffices for filtering discrete
extremal structures.
Application. As an example, we consider a flow field behind a circular cylinder. The
λ2 measure is used as an indicator for vortices. In Fig. 6(a), the raw feature skeleton
resulting from the MS cancellation can be seen. The lines are color-coded with λ2.
Fig. 6(b) shows the filtering with λ2 itself. By removing every second point from the
lines, a line of best fit is computed from the discrete lines, which run along the grid.
The lines are scaled with negative values of λ2. The isosurfaces of λ2 separate most
parts of the lines from uninteresting structures – the vortex core lines remain. On the
other side, directly behind the cylinder, the structures cannot be distinguished from
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(a) (b)

(c)

Fig. 6: Time-dependent vortex core lines of a flow behind a circular cylinder. The
blue arrow is the time axis. As vortex-indicating quantity λ2 has been chosen. The
lines were computed with a discrete method that extracts extremal structures (a) and
then filtered with λ2 (b) as well as with ridgeness (c). The tube-like semi-transparent
surfaces are isosurfaces of λ2 and ridgeness. The lines (clearly visible only with
magnification) are colored according to λ2.

each other and are still linked at some points. Thus, we use ridgeness as another
filter criterion, cf. Fig. 6(c). Here, the isosurfaces of high ridgeness separate the
lines much better.

3 Features of Actuated Flows – Results

In this section, we present some results of our methods applied to a more complex
configuration, the Swept Constant Chord Half-model (SCCH) [25], cf. Fig. 7, with
flow actuation. The time-dependent, three-dimensional CFD-datasets show the sim-

Fig. 7: Snapshot visualization of the flow around an airfoil. Illuminated streamlines
illustrate the actuated flow. (magnify the image)
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Fig. 8: Hierarchical vortex regions of
the flow around an airfoil (SCCH) in a
plane, after subtracting the average flow.
(magnify the image)

Fig. 9: Tracking of critical points for a
two-dimensional instationary version of
the airfoil dataset. (magnify the image 5-
6 times)

ulated flow around an airfoil for different configurations of actuation.
First, for one actuation state of the model, we extract the hierarchy of vortex

regions. After choosing an appropriate frame of reference by subtracting the average
flow of the field, the vortices behind the airfoil get clearly visible in the line integral
convolution (LIC) texture. Applying hierarchical vortex extraction, cf. Fig. 8, the
pairing of vortices directly behind the airfoil is clearly highlighted.

For a time-dependent analysis, first we apply our tracking method to a two-
dimensional instationary dataset of the SCCH model. In Fig. 9, this result is dis-
played (red and green axes = spatial dimensions, blue axis = time). A snapshot of
the flow is depicted in one LIC plane together with the critical points (gray spheres)
of that time step. They serve together with fold bifurcations (births and deaths of
critical points depicted as gray spheres in the spatiotemporal volume) as the start-
ing points of the tracking. The yellow lines indicate the tracking of saddles and the
green lines the center lines of vortices.

(a) (b)

Fig. 10: L-FTLE− for two versions of the SCCH dataset - non-actuated (a) and
actuated (b). The effect of the actuation parameter can be clearly seen. (magnify the
images)

In Fig. 10, the localized finite-time Lyapunov exponent (L-FTLE) is calculated
for two versions of the SCCH dataset – non-actuated (a) and actuated (b). It provides
provides insight into the complex nature of instationary parameter-dependent flows.
Here, it is computed in backwards direction and, hence, shows the convergence of
particles. The time-dependent vortices thus can be clearly seen. Furthermore, it is
possible to observe the effect of the actuation. The vortex pairing behind the airfoil
is not as strong in the actuated version as in the non-actuated one.



Extraction of Coherent Structures from Natural and Actuated Flows 13

In [25] (cf. also [14]), we studied the influence of the actuation parameters fre-
quency and intensity of air injection on vortex structures and thereby, e.g., on lift.
We showed, (i) how vortex structures change when actuation parameters are varied,
(ii) when vortex structures are leading to more favorable situations (e.g. higher lift),
and (iii) when new, detrimental vortex structures are introduced by the flow con-
trol itself. This analysis demonstrates that feature-based analysis and visualization
supports the understanding of the physics behind flow actuation.

4 Discussion and Conclusion

Visualization and feature extraction comprises an astonishingly rich expertise in
data analysis and is at an advanced stage in many scientific areas. In fluid dynam-
ics, visualization has its roots in experimental techniques and therefore has a long
tradition. Computer-based methods, however, offer more opportunities, particularly
regarding the extraction and visual accentuation of flow structures or flow features.

Regarding steady 2D flows, powerful methods for visual analysis are already
available. Our aim was to significantly contribute to the extension of methods to
deal with 3D, unsteady and parameter-dependent flows, cf. Fig. 11 and Fig. 12.

Fig. 11: Parameter dependencies of
flow data sets: steady flows X, un-
steady flows X+T, parameter depen-
dent steady and unsteady flows X+P
and X+T+P, resp.

Method X X+P X+T X+T+P
Streamline-based Topology

u u u u[21; 27]
[22; 28]

Vortex Core Lines (Ridges) u t u t[15; 16]
Vortex Core Lines (Swirl) u t u t[20; 26]

Hier. Vortex Regions u u t t[11]
FTT u t[6]

L-FTLE u u[7]

Fig. 12: Methods for feature extraction de-
veloped by the authors for the four cases of
parameter dependencies depicted in Fig. 11.
u: the method was used for this case; t: the
method is transferable to this case.

With this generalization two major challenges are associated. First, the transition
from 2D to 3D which confronts us with significantly more complex flow structures;
this requires the development of suitable filtering criteria that select the really im-
portant structures. Second, the transition from steady to unsteady flows requires a
switch in perspective: tracking of features in snapshots can reveal interesting infor-
mation, but is not sufficient; considering pathlines instead of streamlines is another
step and changing to a Lagrangian viewpoint instead of an Eulerian is a third one.
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We tackled these problems as follows (cf. Fig. 12): First, we developed feature
extraction methods based on pathlines. These are pathline-based topology, also in
combination with Galileian-invariant variables like acceleration, extraction of vor-
tex structures based on detection of swirling motion characteristics, as well as La-
grangian analysis techniques based on FTLE. Second, we developed and adapted
discrete methods to flow analysis problems, which particularly provide controlled
simplification. Additionally, we introduced techniques that utilize lifetime parame-
ters for filtering in continuous extraction methods.

The developed techniques have been successfully applied to benchmark config-
urations of the collaborative research center SFB 557. We demonstrated that the
feature extraction and visualization techniques aid researchers in understanding nat-
ural and actuated flows.

Our flow visualizations have been awarded by the fluid dynamics community,
adopted for book covers, illustrate popular science magazines and were used for
many other similar purposes. Thereby, we contributed also to the outreach activities
of SFB 557.
Acknowledgements The project is part of the DFG SFB 557 “Control of complex turbulent shear
flows”; it is also supported by the Emmy Noether program of DFG. All visualizations have been
created using Amira - a system for advanced visual data analysis (http://amira.zib.de).
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