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Figure 1. A temporal merge tree map (top) is a static visualization of a time-dependent scalar field (bottom). Our method uses
augmented merge trees to map the data samples of each time step to a vertical slice. An optimization scheme is employed to achieve
a temporally coherent mapping. The shown Storms data set represents storm activity over Europe in December 1999 and contains 744
time steps, arranged from left to right. Cyclones can easily be identified as dark blue lines and compared with each other wrt. their
strength, lifetime, and footprint, while still being shown in the context of the entire data. Temporal merge tree maps can serve as data
analysis tools in their own right, or be used to augment animations and other views. With some parallel processing, the above image
can be computed in less than 15 seconds.

Abstract— Creating a static visualization for a time-dependent scalar field is a non-trivial task, yet very insightful as it shows the
dynamics in one picture. Existing approaches are based on a linearization of the domain or on feature tracking. Domain linearizations
use space-filling curves to place all sample points into a 1D domain, thereby breaking up individual features. Feature tracking methods
explicitly respect feature continuity in space and time, but generally neglect the data context in which those features live. We present a
feature-based linearization of the spatial domain that keeps features together and preserves their context by involving all data samples.
We use augmented merge trees to linearize the domain and show that our linearized function has the same merge tree as the original
data. A greedy optimization scheme aligns the trees over time providing temporal continuity. This leads to a static 2D visualization with
one temporal dimension, and all spatial dimensions compressed into one. We compare our method against other domain linearizations
as well as feature-tracking approaches, and apply it to several real-world data sets.

Index Terms—Scalar field visualization, augmented merge tree, pixel-based visualization

1 INTRODUCTION

Essentially all natural phenomena are time-dependent. This includes
the weather, the climate, fluid flows, biological processes, chemical
reactions, and so on. Understanding the dynamics of these phenomena
is a common goal in data analysis.

Time-dependent data can be viewed dynamically or statically. A

• All authors are with KTH Royal Institute of Technology, Stockholm, Sweden.
E-mail: {wiebkek |weinkauf}@kth.se .

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

dynamic visualization employs an animated sequence of images to
convey the dynamics of the data in a transient manner. Such animations
are commonplace in data visualization and easy to comprehend as the
dynamics of the data match the dynamics of the animated visualization.
Yet, animations cannot be used in all contexts (e.g., printed on paper)
and their transient nature makes it difficult to perceive certain aspects:
rapid fluctuations can easily be missed, moving objects are difficult to
count, and even the dynamics from different parts of the animation are
difficult to compare.

Static visualizations of dynamic data show all time steps at once,
either by superimposing them or by assigning a spatial dimension to
time. Depending on the data, this can lead to too much information
being shown at once and to real estate being taken away from other



visualization aspects. Nonetheless, they are a good complement to
dynamic visualizations as they are often able to compensate for the
issues with animations mentioned above.

Approaches for the static visualization of time-dependent scalar
fields fall into two categories: domain linearizations and feature track-
ing methods. Linearizing a domain means to arrange all sample points
of the original 2D/3D data in a 1D domain. The temporal dimension
can then be placed orthogonally. Previous work uses space-filling
curves [11] to achieve this. Unfortunately, space-filling curves do not
keep features intact, which makes certain analysis tasks impossible
such as counting the number of features.

Feature tracking methods follow distinct objects of interest over time
and create feature paths/surfaces [37,38] or tracking graphs [22,31,45],
which can then easily be used for a static visualization. Features are
naturally kept intact with these approaches, but information is lost about
more general aspects of the data such as how the distribution of the
data looks like, i.e., we lose the data context in which these features are
living. This happens because (i) data samples not contained in a feature
are excluded from further processing, and (ii) data samples within a
feature are summarized to a few statistical moments.

We propose a feature-based domain linearization method. It keeps
features intact while keeping their data context by arranging all data
samples in the 1D domain. We build upon merge trees, which provide a
feature-based hierarchical decomposition of the spatial domain, which
we use to convert the original 2D/3D scalar field to a 1D function.
Notably, we show that under very mild assumptions the original data
and the 1D function are topologically equivalent in the sense that they
have the same merge tree that was used for the linearization.

We create a static, two-dimensional visualization of the entire time-
dependent data set by placing the temporal dimension orthogonally to
the linearized spatial domain. We propose an optimization scheme to
synchronize the linearizations of neighboring time steps, i.e., to achieve
temporal coherence such that users can visually follow features over
time.

We give the following contributions:
• a feature-based domain linearization that keeps features intact and

preserves their context by involving all data samples (Section 3.1),
• a formulation of a discrete optimization problem to address tem-

poral coherence with a practical heuristic to solve this with little
computational effort (Section 3.2),

• an evaluation and several comparisons to linearization and feature-
based methods (Section 4), and

• the application of our method to 2D and 3D time-dependent data
sets (Section 5).

2 RELATED WORK AND BACKGROUND

2.1 Augmented Merge Trees
Consider the sublevel sets {x∈ IR |s(x)≤ } of a scalar field s : IR
IR for an increasing isovalue α: each local minimum gives rise to

→
a

connected component, they merge at saddles until only one component
remains, which will finally collapse at the global maximum. We can
record this behavior in the join tree data structure as shown in Figure 2:
the minima are the leaves, the saddles are inner parents, and the global
maximum is the root. We refer to them as the supernodes of the join
tree, which are connected to each other via superarcs. The superarcs
represent the connected components of the sublevel sets. All data
samples can be assigned to a superarc. Most data samples are regular
nodes not giving rise to a topological change. If we opt to store regular
nodes in the tree data structure, we call it an augmented join tree.

n α n

Doing this for a decreasing isovalue gives us the split tree for the
superlevel sets. We can refer to both of them as merge trees. We refer
to Hamish Carr’s excellent PhD thesis for more details [6]. Figure 2
illustrates these concepts using a small example scalar field, which
we continue to use later on for the explanations in Figures 4 and 5.
In the remainder of this paper, merge trees are assumed to be binary
trees. This means degenerate cases such as plateaus have been dealt
with through strategies such as simulation of simplicity [10] and multi-
saddles are handled by repeatedly grouping children until a binary tree
is obtained. This procedure converts some of the multi-saddle children
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(a) Example scalar field given on a
triangulated grid.
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Figure 2. Example scalar field and its associated join tree. The different
colors represent the superarcs. See also Figures 4 and 5.

from regular nodes to supernodes. The Cylinder data set from Figure 14
features on average one multi-saddle per time step.

2.2 Visualization and Tracking of (Augmented) Merge Trees
All tree visualization methods can also be applied to merge trees. A
common example is the treemap [34], which finds its application in
topological landscapes [43]. Merge trees are an interesting mediator
between dimensions: they can be computed for any-dimensional scalar
data, and they can be visualized in any-dimensional space. For example,
Oesterling et al. [24] propose 1D topological landscape profiles for
multi-dimensional point clouds, where each superarc is represented by
a hill-like icon parameterized by size and persistence of that superarc.
Similar 1D topological landscape profiles have also been introduced for
barrier trees [40, 41] of optimization landscapes and level set trees [17]
of density estimates. Under specific parameter settings and applied
to scalar fields, these yield equivalent results to our proposed domain
linearization.

Tracking merge trees over time is a computationally very expensive
matter, as described by Oesterling et al. [23]. Alternative approaches
by Lohfink et al. [19, 20] and Pont et al. [27] achieve much faster
computation times by employing heuristics to compute tree alignments
for a given similarity metric.

Our approach uses merge trees from every time step as well, but we
use a different means to achieve temporal coherence: we formulate it
as a discrete optimization problem directly linking the original data
and the 1D output data. This serves our visualization purpose more
directly and is also very fast to compute. Furthermore, none of the
methods from above have been used to create static, two-dimensional
visualizations of a time-dependent data set.

2.3 Feature Tracking
A plethora of feature tracking methods exist to accommodate different
feature and data types. Point- or line-type features could be tracked by
solving an ODE called Feature Flow Fields [37, 38], or by applying
the Parallel Vectors operator [2, 26]. The results of these methods are
often superimposed on the original domain for visualization purposes.
Region-based features (same dimensionality as the domain) are often
tracked by overlap [18, 21, 22, 35, 45] or statistical moments such as
their histogram [30]. These result in tracking graphs whose layout
in the plane is a topic of research [18, 22]. Region-based tracking
methods are related to our work in the sense that they often also look
at sub/superlevel sets. However, the methods above employ fixed
thresholds, while our work uses merge trees describing the topology of
sub/superlevel sets over the entire data range without any thresholds.

One goal of feature-based methods is to drastically reduce the
amount of information coming with the original data to a small set
of features. Visualizations of feature tracks are therefore often abstract
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Figure 3. Overview of our method.

– such as the Nested Tracking Graphs [22] – and carry only little in-
formation about the data besides the existence and correspondence of
features. In contrast, our work aims at showing features together with
the entire data context in one image.

2.4 Data Linearizations
The highly astonishing fact that there is a 1-to-1 correspondence
between the points on the unit line segment and the points in n-
dimensional space was first observed and proven by Georg Cantor [5].
Motivated by this result, Giuseppe Peano developed the first space-
filling curve [25], which in turn inspired David Hilbert to come up
with one of the most widely used space-filling curves in computer
science [15].

Space-filling curves also find their applications in the visualization
domain to map a higher-dimensional data set to a 1D domain with
the goal of comparing data sets [8, 44]. Franke et al. [11] use them
for spatio-temporal visualizations similar to ours and compare several
curves with each other for their suitability. Most space-filling curves
are purely geometrically motivated and data-unaware. Among the
few exceptions are Dafner et al. [7] and Zhou et al. [46] who propose
data-aware space-filling curves.

None of the above methods keeps the features of a scalar field intact
as we show in Section 4.3.

Other methods for deriving a linear order work on point sets and use
hierarchical clustering [12] or multi-dimensional scaling [32]. They are
not directly applicable to scalar fields.

3 TEMPORAL MERGE TREE MAPS

We propose a method (Figure 3) to linearize a scalar field based on
its merge tree (Section 3.1). We show that this method preserves the
merge tree topology and therefore keeps features intact The mapping of
consecutive time steps is optimized towards resembling the dynamics
of the scalar field as closely as possible (Section 3.2). The optimized
one-dimensional mappings are combined into a pixel-based static visu-
alization (Section 3.3) which we call a temporal merge tree map. We
consider the following to be given:

• A series of n scalar fields s(x, t) with t ∈ [t0, . . . , tn−1]. Each time
step contains m data samples.

• An augmented merge tree M ∈ [M0, . . . ,Mn 1] for every time step.−
We use readily available algorithms in the open-source library
Topology Toolkit (TTK) [39] to compute those.

Algorithm 1: Traversal of an augmented merge tree M to derive
a mapping of positions in nD to 1D.

Data: An augmented merge tree M = (N,E)
Result: A position xi ∈ [0, . . . ,m−1] for each node in M

Function ProcTree(M):
the root node is placed at x = 0
xL, xR ← PlaceNode(root, 0, m
x , x ProcSuperArc(child super

−1, true)
L R ← arc of root, xL, xR)
ProcSuperNode(child supernode of root, xL, xR)

Function PlaceNode(node or supernode, xL, xR, left):
if left:

xi← xL ; xL ← xL +1
else:

xi← xR ; xR xR 1
return xL, x

← −
R

Function ProcSuperArc(superarc, xL, xR):
left← false
for node in superarc:

xL, xR ← PlaceNode(node, xL, xR, left)
left← not left
return xL, xR

Function ProcSuperNode(supernode, xL, xR):
n
x
← size of first child superarc and subtree below it

C ← xL +n
the supernode is placed at xC
PlaceNode(supernode, xC, xC, true)
x1 ,L x1

R← ProcSuperArc(first child arc, xL, xC −1)
ProcSuperNode(first child super node, x1 ,L x1)R
x2 ,L x2

R← ProcSuperArc(second child arc, xC +1, xR)

ProcSuperNode(second child super node, x2 ,x2)L R

3.1 Mapping a Single Time Step: Rd R→
Consider the d-dimensional scalar field s for a given time step with
its merge tree M. We want to find a function g : Rd → R that maps
each original sample location x ∈ Rd of the given scalar field s to a
one-dimensional sample location x ∈ R in our output scalar field f .
This is a linearization of the domain, while the function values of the
samples remain the same. Straightforwardly, we use integer locations
for the output, i.e, g : Rd → [0, . . . ,m− 1]. This aids the subsequent
conversion into pixels.

Under very mild assumptions, our newly constructed output scalar
field has the same merge tree M as the input scalar field. This means,
we see as many maxima in our output as there are in the split tree of
our input (or as many minima as there are in the join tree). This is
crucial to retaining features described by minima/maxima (cyclones in
climate data, vortices in flow data, etc.) in our final results. We show
this Merge Tree Identity property in the supplemental material.

We derive the mapping g through a depth-first traversal of M. At
each stage of the algorithm, we maintain a contiguous output range
[xL,xR] of unassigned sample locations to be used for all upcoming
nodes in the tree traversal. The following explanations are accompanied
by illustrations in Figure 4 and pseudocode is given in Algorithm 1.

Root We start with xL = 0 and xR = m 1. The root is placed at
the left side of the output range at x

−
L (Figure 4(a)). Thereafter, our

active range of unassigned sample locations is between xL = 1 and
xR = m−1.

Traversal of a Superarc The regular nodes of a superarc are
placed in the remaining range [xL,xR] from the outside inwards in an
alternating fashion: the first node is placed on the right at xR, the
second node on the left at xL, then back to the right side at xR = xR 1,
and so on. Figure 4(a) shows this. Starting on the right side is

−
an

implementation choice: we could just as well start on the left, or even
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(a) The root is placed at the left.
The regular nodes are placed in
an alternating fashion from the
outside inwards.

(b) At an inner supernode , the
remaining space [xL,xR] is
distributed between the left and
the right child superarcs, with
the supernode in between.

(c) The nodes of the left child
superarc are placed in an
alternating fashion and the
recursion ends with the leaf .

(d) The process repeats recursively
until all nodes are placed.

x xxCL R0 m−1 x xL R0 m 1− −0 x xL R m 1

Figure 4. We linearize each time step of our input scalar field (2D/3D) with the help of its augmented merge tree. The procedure builds on a
depth-first traversal of the merge tree. Importantly, under very mild assumptions, the resulting 1D scalar field has the same merge tree as the original
data, i.e., we keep features intact during our linearization process. Algorithm 1 and the explanations in Section 3.1 provide further details. This
example uses the input data from Figure 2 and we show the resulting 1D scalar field in Figure 5.
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Figure 5. After the domain linearization (Figure 4), we assign the original
data values to the samples. The resulting 1D scalar field keeps features
intact and contains all original data samples for data context. Compare
to the original data in Figure 2.

choose the starting side randomly, without affecting the property of
representing the same merge tree.

During the traversal, we keep our range [xL,xR] updated (see func-
tions ProcSuperArc() and PlaceNode() in Algorithm 1). The pro-
cedure ends upon reaching the next supernode.

Entering Recursion at a Supernode All inner1 supernodes of
M have two child superarcs. Hence, we have to place three entities
in [xL,xR]: the two child superarcs and the supernode itself. We need
to place the supernode between its two child superarcs to maintain
the same topology as in the input data. To see this, recall that the
child superarcs represent connected components of super- or sub-level
sets that merge or split at the supernode. This can only happen if
the supernode is adjacent to both of its children, i.e., between them.
Assuming the child to be traversed first has a total of n nodes, the
supernode will be placed at xC = xL +n. The child superarcs are then
processed recursively: The first child fills the range [xL,xC− 1], and
the second child fills the range [xC +1,xR]. Figure 4(b) illustrates this.

The order of the child superarcs plays an interesting role. Impor-
tantly, either order will create a function with the same merge tree
as the original data. However, the flexibility in choosing which child
to traverse first is what allows for optimizing the mappings between
individual time steps with respect to the entire evolution of the data,
see Section 3.2.

Ending Recursion at Leaf Nodes A leaf node terminates the
recursion. At this point in the algorithm, only a single space at xL = xR
is left open for the leaf to be assigned to.

1The outer supernodes are the root and the leaves.

3.2 Mapping all Time Steps: Rd+1 R2→

Output: 1D Scalar Field The mapping function g(x) = x as-
signs each original sample location a 1D location. Its inverse function
g−1(x) = x recovers the original sample location. The output scalar
field f : {0 given by f (x 1, . . . ,m−1}→ R is simply ) = s(g− (x)), i.e.,
we assign each mapped position its original data value. We note that
f (x) f (g−1= (x)) holds, meaning f is a valid linearization of itself.

We can visualize f using a straightforward line plot, or apply color
coding to obtain a line of colored pixels, see Figure 5. We will use
the latter to assemble many time steps into a static 2D picture in the
following.
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After compressing the spatial dimensions to 1
through linearization, we can use the second di-
mension of our display to show time. For example,
we can orient the time steps vertically and arrange
them from left to right. This provides great insight
into the dynamics of the data.

Features moving in a scalar field are inherently spatially and tempo-
rally coherent, i.e., their value and position changes are smooth. This is
true for essentially all natural phenomena such as fluid flows, molecular
dynamics, the weather and the climate, and so on. When converting
these phenomena to data, the spatial and temporal sampling resolutions
play a role: features get only represented appropriately if the Nyquist
frequency is respected.

Any dimensionality reduction of the spatial domain restricts the
spatial movement of features. This is also the case for our linearization.
Furthermore, the following aspects may vary between consecutive time
steps: the number and size of features, the hierarchical structure and
depth of the merge trees, and features may merge or split. Despite these
issues, our goal is to portray the dynamics of the data as accurately as
possible. This problem statement is partly related to laying out tracking
graphs [18, 45], or any graphs [3], in the plane. Note that we explicitly
refrain from using tracking information for the merge trees, since this
incurs very high computational costs [23].

Luckily, our linearization algorithm from Section 3.1 gives us some
freedom in how to arrange the features such that we can maximize
spatio-temporal feature coherence: when encountering an inner su-
pernode, we can decide the order in which we are processing its two
child superarcs. Figure 6 illustrates this with a data set containing two
subtree regions a and b in ti as child superarcs of the root. The regions
slightly move and change their geometry between the time steps ti and
ti+1. Let us denote them as a′ and b′ in ti+1. Without loss of generality,
we can fix the traversal of the tree at ti such that a comes before b. Now
we have two options for traversing the tree at ti+1: either b′ before
a′ (mapping 1), or the other way around (mapping 2). It is crucial to
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Figure 6. The traversal order during linearization of two consecutive time
steps is chosen such that the overlap in the linearized domain resembles
the overlap in the original data. In this example, mapping 2 is preferred
over mapping 1.

understand that we do not actually know the “names” of these regions;
each time step has its own merge tree and is linearized independently.
However, we do know the amount of overlap that we get with each
mapping in relation to the overlap of the regions in the original data.
In the original data, the regions a and a′ as well as b and b′ overlap
substantially. For the linearized data, mapping 2 is the preferred option,
since its overlap resembles the overlap in the original data much better
than mapping 1.

3.2.1 Discrete Optimization Problem
Let S ∈Mt and T ∈Mt+1 be subtrees in the merge trees of two consecu-
tive time steps. We measure their overlap (cf. Silver and Wang [35])

p(S,T ) = |S∩T | (1)

as the number of nodes (sample points in the data) belonging to both
subtrees. We note that this is computable in the original and in the
linearized domain independently, and we denote these measures as pnD

and p1D, respectively.
We seek to capture the difference in subtree overlap

d(S,T ) = pnD(S,T )− p1D(S,T )
2( )

(2)

between the original data and our mapping. Taking all time steps and
all subtrees into account, we measure the sum of overlap differences
over all pairs of subtrees in all pairs of consecutive time steps:

E =
tn−2

∑
t=t0

∑
S j∈Mt

∑
Tk∈Mt+1

d(S j,Tk) . (3)

This brings us to a discrete optimization problem where E is the objec-
tive function to be minimized, and the search space is formed by all
possible merge tree traversal orders.

3.2.2 Heuristic Approach to the Discrete Optimization Problem
Traversal orders are determined by a series of binary decisions: At each
inner supernode, we have to decide which child superarc to process
first. This means our search space contains a total of 2N possible
configurations, where N is the total number of inner supernodes over all
time steps. Such a large search space is impossible to fully enumerate
even for moderately sized data sets.

Local, greedy heuristics give great results for many complex discrete
optimization problems. We propose such a heuristic for the above
optimization problem. In particular, we exploit the fact that mismatches
higher up in a merge tree cause a larger error compared to lower levels
just due to their larger size. Intuitively, a misalignment early in the
traversal cannot be rectified by changing traversal decisions in the lower
parts of the tree.

We propose the following procedure: We regard the traversal order
for one initial merge tree Mt as fixed, e.g., using the order in which the

arcs are stored in the data structure. Any time step could be chosen here.
The traversal of the next merge tree Mt+1 is then optimized by starting
at its root and establishing a traversal order at each inner supernode. To
do so, we compute the contribution of the two children to the overall
objective from Equation (3) for both possible traversal orders. The
traversal order with the smaller contribution wins. We continue with
the inner supernodes at the deeper levels of the tree.

After determining the traversal order for Mt+1, we continue with
Mt+2 and so on. Similarly, we can go back in time from Mt to Mt−1
until the merge trees in all time steps have a fixed traversal order.

An implementation of this benefits from the following observations.
First, we can pre-compute subtree overlaps pnD in the original scalar
field by iterating over the data once. Second, as we navigate the search
space of traversal orders, overlaps in the linearized domain have to be
calculated frequently. We can utilize interval arithmetic to compute this
directly without iterating over the data. For this, we use the minimum
and maximum position assigned to each subtree and calculate the
amount of overlap between S j and Tk as the difference between the
smaller maximum and the larger minimum.

min
xmax

= min(xmax(S j),xmax(Tk))

max
xmin

= max(xmin(S j),xmin(Tk))

p1D(S j,Tk) = max(0,min
xmax
−max

xmin
+1) (4)

Lastly, note that the subtree below the root, i.e., the entire tree, can be
omitted from these computations. Any other subtree always overlaps
with the full domain in its entirety. This naturally holds for both original
and linearized data, and the difference makes no additional contribution
to the objective function.

3.3 Assembling the Final Image: Pixel-Based Visualization
Our final visualization consists of a 2D image representing linearized
space in one direction (usually vertical), and time in the other direction
(usually horizontal). We use color coding to show the corresponding
data values and call this image the temporal merge tree map. See the
bottom of Figure 3 for an illustration.

If we were to represent every sample point of the original data as
a single pixel, the final resolution of the image would be m×n, with
m being the number of data points in a time step, and n being the
number of time steps. However, m often significantly exceeds the
dimensions of a display or a GPU texture size limit, while n is often
below those numbers. Along the dimension of linearized space, we use
subsampling to reduce the number of pixels to below the GPU texture
size limit, which is 4096 on our hardware. Along the dimension of
time, if necessary, we use linear interpolation to fill the display.

4 EVALUATION AND DISCUSSION

We start our evaluation by introducing all data sets used in this paper and
providing the respective running times of our algorithm (Section 4.1).
We then analyze the quantitative and qualitative performance of the op-
timization scheme (Section 4.2). We compare our algorithm with other
linearization methods (Section 4.3) and with feature tracking meth-
ods (Section 4.4). Finally, we discuss the limitations of our algorithm
regarding data size and complexity (Section 4.5).

4.1 Data Sets and Runtime Performance
We use the following data sets in this paper:

Nucleon Padded slice from the nucleon data set used for evaluation
by Zhou et al. [46]. The data set is publicly available in the Open
Scientific Visualization Datasets collection [16] and courtesy of SFB
382 of the German Research Council (DFG).

Ring Analytical data set created and used for evaluation by Franke
et al. [11]. Parametrized by peak value and standard deviation to
generate a Gaussian bell-curve along a circle given by center position
and radius. All parameters except the center position vary linearly
between start and end.



Table 1. Overview of our data sets with their dimensions (x× y× z), time
steps (n), persistence threshold p in % of the data range, and number
of supernodes in the simplified merge trees (# snodes). The runtimes
for the pre-processing (extracting and simplifying the merge trees with
TTK [39]) are summarized as ttopo. The runtimes for our method are given
in detail for each individual stage: the optimization (topt ), the linearization
(tmap), and the image creation (timg). All timings are given in seconds
and measured single-threaded unless indicated otherwise; times with *
are from parallel runs with 18 threads. We use a workstation with two
18-core 2.3GHz Intel Xeon E5-2697 v4 processors and 256GB main
memory. The shorter runtimes are obtained by averaging 10 runs.

data set x× y× z n p # snodes ttopo our method ttotal

topt tmap timg

Nucleon 64×64 1 – 28 0.10 – 0.01 – 0.1
Ring 14×14 40 – 4 - 14 0.28 0.01 0.03 0.09 0.4
Benzene 61×61 21 0.05 14 - 68 0.73 0.02 0.02 0.23 1.0
Storms 282×181 744 0.015 15 - 79 67.71 0.50 2.24 1.22 71.7
Cylinder 135×64×48 508 2 2 - 375 641.32 7.13 14.00 4.20 666.7

0.15 418 - 2811 20min* 10.4h 56.50* 15.97 10.7h

Tangaroa 300×180×120 201
0.5

2
392 - 1974
322 - 794

96min
94min

147min 115.37
9min 116.87

14.96
13.02

150min
104min

10 50 - 186 101min 15.67 123.53 14.13 103min

Benzene The electrostatic field around a benzene molecule was
calculated using the fractional charges method described in [36]. The
gradient of this field describes the force upon a positive point charge
given in a certain location.

Storms 1-hourly mean sea level pressure anomaly for December
1999. Instantaneous data is obtained from the ERA5 reanalysis data
set available at the Copernicus Climate Change Service (C3S) Climate
Data Store [14]. We subtract the mean over 8 days following the data
processing procedure used for detection of cyclones by Deroche et
al. [9] and apply a light Gaussian smoothing to the result.

Cylinder The flow behind a square cylinder has been obtained
from a direct numerical Navier Stokes simulation by Camarri et al.
[4]. A uniformly resampled version of this flow from von Funck et
al. [42] has been used to compute the Okubo-Weiss criterion Q =
1/2(∥Ω
vortex acti

∥2−∥S∥2), which is a time-dependent scalar field indicating
vity for regions with Q > 0 and used in this paper.

Tangaroa The flow behind a model of the research vessel Tan-
garoa has been simulated with the Gerris flow solver [28] by Popinet
et al. [29]. We use the velocity magnitude of a resampled version avail-
able from the visualization data set collection at the ETH Computer
Graphics Laboratory [13].

Resolutions, simplification thresholds, topological complexity, and
runtimes are given in Table 1. We note that the majority of the runtime
is spent in TTK [39] on the extraction and simplification of the merge
trees, which can be sped up significantly by parallelizing over the time
steps as we have done for the Tangaroa data set. We obtain a speed-up
factor of 8 by running with 18 parallel threads.

4.2 Analysis of the Objective Function
To gain insight into our optimization scheme, we choose a non-trivial
data set for which we can expect a certain output. The Benzene data
set represents the electrostatic potential around the benzene molecule
and exhibits the well-known 6-fold symmetry in the xy-plane. It is a
static 3D scalar field and we choose the z-dimension to slice through
the data over “time,” making this a 2D time-dependent field. Five
representative z-slices show the setup in Figure 7. At z = 10 we see
the strongest values for the electrostatic potential, since this slice cuts
directly through the molecule itself. With increasing distance from
z = 10, the field becomes weaker in both directions, i.e., we have a
“temporal” symmetry besides the spatial 6-fold symmetry.

We used the join tree to analyze this data, i.e., the leaves of the join
tree are the minima of the electrostatic potential.

The temporal merge tree map in Figure 7 shows the optimized output
of our algorithm and reveals both temporal and spatial symmetries very
nicely. The spatial 6-fold symmetry is easily discernible in slices z≤ 4
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Figure 7. Temporal merge tree map for the electrostatic potential of the
Benzene molecule when slicing through the z-dimension. The spatial
6-fold symmetry, as well as the temporal symmetry, are well captured.
Compare this optimized version with the other ones in Figure 9.
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Figure 8. Our optimization scheme results in consistently better objec-
tive values, compared with not optimizing or using completely random
traversal orders. This holds irrespective of the time step at which we
initialize the optimization. See the text for more details. This experiment
has been conducted with the Benzene data set. The visual result for the
best optimized objective is shown in Figure 7, and the non-optimized and
worst randomized results are shown in Figure 9.

where six horizontal blue lines represent the minima that we also see
as six distinct blue areas in the z = 2 slice. We see the same behavior
in slices z ≥ 16, which successfully reveals the temporal symmetry
in the data. It also shows that our optimization scheme handles the
near-identical data at either end of the z-dimension in a very consistent
manner.

To quantitatively evaluate the optimization scheme, we set up the
following experiment: for each time step, we start the optimization
scheme 100 times; each run is initialized with a different starting
condition by randomizing the traversal order of the merge tree in that
time step. We recorded the objective function value E from Equation (3)
for each run and plotted the results in green color in Figure 8. We
compare this with two other conditions: the dashed line represents the
objective function value for the unoptimized version, and the blue dots
represent runs where we randomized the traversal order of all merge
trees. As we can see, our optimization achieves significantly better
objective function values in a consistent manner. This also translates to
a higher visual quality: Figure 9, shows the temporal merge tree maps
for the non-optimized and randomized versions, which exhibit less
symmetry and more distortions than the optimized version in Figure 7.

4.3 Comparison with other Linearization Methods
Franke et al. [11] use space-filling curves to linearize their data for
a spatio-temporal summary view. The layout is very much like ours:
linearized space and time are the two dimensions of this view. Many
different space-filling curves are evaluated for this purpose, particularly
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Figure 9. Non-optimized version (left) and worst randomized version
(right) of the temporal merge tree map for the Benzene data set.
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Figure 10. Result for our method and two different space-filling curves for
the Ring data set by Franke et al. [11]. The data contains a single feature
(the ring) growing in size and intensity. Our method captures this well,
whereas the Hilbert and Morton curves do not keep the feature intact.

using the artificial Ring data set. We re-created the experiment in
Figure 10 for the Hilbert and Morton curves using the code of the
authors (see Figure 5a in Franke et al. [11]) and compare it to our
result. This data set has a single feature, namely a ring becoming
larger over time, but the space-filling curves fail to keep this feature
intact and scatter its footprint over the spatial axis: the coherence of
the original data is not communicated by the Hilbert and Morton space-
filling curves. On the other hand, our method keeps the feature intact
and its growth in intensity and footprint is easy to read from our result.

Visualization and graphics applications benefit from a form of “data
awareness” for domain linearizations. Zhou et al. [46] propose data-
driven space-filling curves aiming to minimize the similarity of data
values and location coherency in a neighborhood. Dafner et al. [7]
propose context-based space-filling curves to improve autocorrelation
in 2D image and video encoding. We compare them with our method in
Figure 11, where we essentially recreate Figure 6 from Zhou et al. [46]
using the code of the authors. The lineplots for the linearizations in the
top row show that the Hilbert and context-based curves do not retain
feature coherence. At first glance, the straightforward scanline method
seems to keep the feature intact, but this is circumstantial and on close
inspection one can see individual spikes. The data-driven curve of Zhou
et al. [46] manages to keep most larger data values close together, but
also exhibits distinct separate peaks. However, the Nucleon data set
consists of one large feature with two small maxima on top, which is
faithfully reproduced by our method.

The bottom row of Figure 11 visualizes the traversal order for the
different methods using a color coding scheme: blue points are vis-
ited first, yellow points are visited last. This reveals very interesting
access patterns for the space-filling curves and it also highlights again
that our linearization method does not use a space-filling curve: the
linearization index jumps through the original data domain. Because
of that, applications like image and video encoding are not likely to
benefit from our method. Instead, we target applications where feature
coherence is important such as the spatio-temporal summary views
presented in this paper.

We provide additional comparisons using other data sets in the
supplemental material.

4.4 Comparison with other Feature-based Methods

One of the goals of feature tracking methods [18, 22, 33, 45] is to
reduce the amount of data as much as possible; hence, features are
presented without their data context. We elaborate on this difference
to our method in Figure 12 where we use 4 different functions that
all exhibit the same data range −0.3 ≤ s(x) ≤ 1, but with varying
distributions and spatial patterns. Specifically, we compare our method
to approaches that use sub/superlevel sets such as Nested Tracking
Graphs of Lukasczyk et al. [22] or Temporal Treemaps of Köpp and
Weinkauf [18]. We use sa = 0.06 and sb = 0.9 to extract superlevel sets
in all four examples: the sets are identical in size, i.e., they cover the
same area in the data. Hence, methods solely focusing on these features
represent them indistinguishably. On the other hand, our method uses
merge trees instead of fixed thresholds and maps all data samples to the
linearized domain. Hence, the different data distributions (Figure 12(a)
vs. Figure 12(b)) or the different number of features (Figure 12(a) vs.
Figure 12(c)) can be distinguished with our method. However, our
method is blind to the different spatial distribution of the data between
Figures 12(a) and 12(d).

Our method can be parametrized to emulate a Nested Tracking
Graph [22] by using a discrete colormap, i.e., a few discrete colors are
distributed over the data range. They correspond to the fixed thresholds
defining the layers of a Nested Tracking Graph. Figure 13 shows this
for the Storms data set: both methods create a similar first-glance
impression, but our method clearly shows a better temporal coherence.
Methods for increasing temporal coherence of Nested Tracking Graphs
exist [18], but their computationally more demanding optimization
method is unable to deal with the complexity of this data. Our heuristic
maintains a satisfactory temporal coherence with a computational effort
of less than a second.

4.5 Discussion of Data Size and Topological Complexity

The following aspects play a role in how well our method works for a
data set: the spatial size of the data, its temporal size, and its topological
complexity. These aspects may also be intertwined, e.g., spatially large
data sets tend to be topologically complex as well, but not necessarily.

All spatial dimensions are compressed into one and displayed ver-
tically. As mentioned earlier (Section 3.3), this often leads to sub-
sampling. Depending on the spatial size of the data and the available
vertical space of the display, features with a small spatial footprint may
get lost. It is an interesting avenue for future research to investigate
adaptive sampling methods, which would need to be synchronized with
the adjacent time steps.

Temporally large data sets do not present a major issue for our
method. Since time gets its dedicated dimension, we can accommodate
many time steps before running out of horizontal space on a modern
display. Simple zooming & panning may then mitigate the issue in
most cases.

Topologically complex data sets pose a perceptual challenge for
those feature-based visualization methods aiming to show features as
distinguishable entities to the user: we can only distinguish a limited
number of features in any given visualization. This applies to our
method and the Cylinder data set (see Figure 14 and Section 5) is
an example where the topological complexity is too high to reliably
distinguish features in the later time steps of the simulation.

We study the effects of topological simplification using the Tangaroa
data set. The results of four different simplification thresholds are
shown in Figure 15: increased simplification leads to less noisy and
more distinct structures in the output images, while the overall Gestalt
of the data is retained. The unsimplified merge trees of this data set
have up to 3655 supernodes, which leads to an unreasonably long
running time for the optimization stage. We can see from Table 1 that
topological simplification significantly reduces the running times.

5 RESULTS

The Storms data set visualized in Figure 1 and Figure 13 is a time-
dependent scalar field derived from atmospheric pressure, which gives
us cyclones as low-pressure regions moving over time. It describes the
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Figure 12. Some feature tracking methods use fixed thresholds to ex-
tract sub/superlevel sets and depict them in a tracking graph scaled by
size. These four different scalar fields cannot be distinguished by those
methods. Since our method uses merge trees to map all data samples, it
can distinguish between different data distributions (a vs. b) or a different
number of features (a vs. c). It is however blind to changes in the spatial
distribution (a vs. d).

storm activity over Europe for the entire month of December 1999 in
1-hourly intervals. This is our data set with the most time steps.

December 1999 was a disastrous month for Europe: cyclone Lothar
killed 110 people and caused the highest storm damages in recent
European history (11 billion Euro), overshadowing the other violent
storms in that month such as Anatol and Martin.

Our temporal merge tree map in Figure 1 shows low pressure sys-
tems with blue colors. This reveals the individual storms as dark blue
curves very well thanks to our feature-preserving linearization and the
optimization of the temporal coherence. The temporal merge tree map
facilitates data analysis tasks such as counting storms, comparing their
life time or the size of their footprint, and so on.

We ask the reader to pay attention to December 26 where almost all
of the visualization turns blue, indicating a dominance of low-pressure
systems at that moment. Similarly, almost the entire map turns red for
December 23. These fleeting moments in time are easy to miss in an
animation, but are prominently revealed through our visualization. A
mere feature tracking would also not be able to reveal these moments
as the data context would be discarded.

The 3D flow around a Cylinder shown in Figure 14 exhibits periodic
vortex shedding leading to the well known von Kármán vortex street.
The simulation is initiated from an impulsive start-up and the periodic
vortex shedding develops with time. This means, the flow becomes
increasingly unsteady over time. This is our topologically most complex
data set.

Our temporal merge tree map is able to reveal the different phases

(a) Nested Tracking Graph with 9
layers.

(b) Temporal Merge Tree Map with a
9-step discrete colormap.

Figure 13. Using a discrete colormap with our method is similar to
defining thresholds for Nested Tracking Graphs [22]. The results bear a
resemblance, but our method shows better temporal coherence due to
our explicit temporal optimization. Compare these results to our original
result for the Storms data set from Figure 1.

of the simulation. The fluid is at rest at the beginning of the simulation
and a recirculation region slowly builds behind the cylinder. This
is the startup phase in which no vortex shedding occurs. Once the
recirculation region is large enough, vortices separate from it and are
transported downstream. We only see primary vortex structures with
almost 2D behavior in this second phase, i.e., their profile remains
constant in spanwise direction and they are almost straight tubes parallel
to the z-axis. The von Kármán vortex street is fully developed in the
third phase. Primary and secondary vortex structures with varying
profiles and geometries appear in this phase.

Note that we are transforming the 4D space-time domain of this data
set to a 2D domain for the visualization. There is no such thing as a
free lunch. This example reveals that our ability to see the evolution
of features is closely correlated to the topological complexity of the
data. The more superarcs we have in the merge trees, the harder it is
to identify these individual regions, establish their temporal coherence,
and follow them over time. The average amount of superarcs for the
three phases is 14, 37, and 241, respectively. Nonetheless, having a
static visualization of this data set is highly informative and a very good
companion to a spatial volume rendering.

The 3D flow behind the research vessel Tangaroa shown in Figure 15
captures how a side-on airflow is affected by the vessels’ geometry.
This is of interest, as the several instruments mounted on the Tangaroa
take meteorological measurements which can be influenced by airflow
distortions. Our temporal merge tree map reveals one large-scale struc-
ture persisting throughout the entire time range. This is the structure
right behind and around the vessel. Several structures of various sizes
split of and eventually disappear. The largest of these is a feature group
detaching from the main one around t = 25 and disappearing through
leaving the domain around t = 145. Since our method provides a static
overview of all time steps, we can confidently state that this process
happens only once and is not akin to a periodic vortex shedding, but
rather most likely caused by the initial flow conditions.
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Figure 15. Topological simplification leads to a smoother temporal merge tree map for the Tangaroa data set, while retaining the overall Gestalt. Our
method reveals two large feature groups splitting from each other at around t = 25, which can also be seen in the volume rendering at t = 100.

6 CONCLUSIONS AND FUTURE WORK

We introduced temporal merge tree maps as a static visualization for
time-dependent scalar fields. It is based on a feature-based domain
linearization which allows us to compress all spatial dimensions into
one, while keeping features intact and preserving the data context.
We use this in a 2D layout where the temporal dimension is placed
orthogonally to the linearized spatial dimension. We developed a
scheme to optimally preserve temporal coherence. We compared our
method to related work and applied it to several data sets.

While our results show astonishing temporal coherency compared
to previous work and taking into account the dimensionality reduction,
we can clearly see some temporal discontinuities in the final results. In
some cases, there are simply big changes in the data between two time
steps. A higher resolution of the data could help in those cases. In other
cases, the number of superarcs spikes for some time steps. Currently, we
apply topological simplification to each time step individually, which
could be responsible for such spikes between time steps. We will leave
it to future research to devise a global topological simplification scheme
that incorporates all time steps at once. Similarly, it would be interesting

to try out other heuristics for solving the discrete optimization problem
and to study if the heuristic presented here could improve layouts
in feature-based methods. Other avenues for future research include
the usage of contour trees instead of merge trees, and context-aware
subsampling [1] for the creation of the final image.

It is highly interesting to investigate how our concept can be applied
to other kinds of data, e.g., vector fields or point clouds, such that we
can get the same kind of spatio-temporal insight for that data as we
have now for scalar fields with temporal merge tree maps.
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