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The following text requires the understanding of Section 3.1 from the main paper. 

We show that f and s have the same merge tree M that was used to create the linearization. We
call this the merge tree identity property. This property is important as it guarantees that the original
features are represented well and stay intact in the linearization, i.e., they are not broken up as with
other linearization approaches. 

 
 
 

We need to make one very mild assumption for this property to hold, namely that each super node 
has at most two children, i.e. all merge trees are binary. A super node with more than two children is a 
multi-saddle, meaning more than two components merge at the corresponding vertex. This behavior 
cannot be replicated when linearizing. If this assumption is not fulflled for a particular data set, then 
the merge trees are still almost equal to one another, because only a few regular nodes are affected. Our 
treatment of multi-saddles through repeatedly grouping children means for a single multi-saddle with n 
children, (n − 1)/2 regular nodes will turn into supernodes. This models a sequence of consecutive 
binary merges instead of a single multi-way merge. 

We show the merge tree identity using a binary join tree; it works in the same way for split trees. 
We need to show that the following conditions hold: 

I. supernodes of the join tree of s are also supernodes of the join tree of f , 

II. regular nodes remain regular nodes, and 

III. supernodes and regular nodes connect in the same way. 

Recall the basics for join trees in 1D: in a one-dimensional function, each data point is adjacent to at 
most two neighbors. Supernodes of a one-dimensional function are its local minima and maxima. For a 
minimum, all neighbors are larger, for a maximum, all neighbors are smaller. A data point is a regular 
node if it has one neighbor with smaller and one neighbor with larger value. 

(condition I. root) The root of a join tree is the global maximum. Our placement of it at x = 0 
means the mapped node has only one neighbor. As all other data values are smaller, the mapped node 
is again a global maximum. It will be traversed last when building the join tree of f and is thus again 
the root node. 

(condition I. leaves) Our algorithm terminates recursion at each leaf node, placing the leaf itself 
in between the last two regular nodes of its parent superarc. Both regular nodes must be associated 
with larger data values, making the mapped node a local minimum that initiates formation of a new 
component during join tree construction. 

(condition I. inner supernodes) We placed inner supernodes in between their children and continued 
with traversal of its two child arcs. This means the supernode is adjacent to two regular nodes of 
smaller value from two different superarcs. It is thus a local maximum and causes a merge of the two 
child components during join tree construction of f . 

(condition II.) All regular nodes are placed adjacently to a node that has already been placed before 
and another node that will be placed later: the former node has a larger data value, the latter node has a 
smaller data value. Hence, these nodes are regular. The only exception is the frst regular node of the 
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root superarc (see Figure 4(a) in the main paper), which is placed at x = m − 1 and has therefore only 
one neighbor. However, it will be recognized as a regular node as well, since the join tree construction 
of f will have one single connected component when reaching this point and only the global root can 
become a supernode of that last component. 

(condition III.) The connectivity is retained, since we placed all sample points in decreasing order 
and the join tree construction picks them up in increasing order. More specifcally: all regular nodes are 
placed in the basin of their supernode to be picked up during the corresponding superarc construction. 
The superarcs merge in the same manner as in the input, since the corresponding supernode is placed 
in between merging superarcs. 

In summary, this means that s and f have the same join tree. The same exercise can be done with 
the split tree. Note however, that in general the linearization mapping function g does not preserve 
both join and split tree at the same time. The user will have to decide which merge tree to preserve. 

We note that f (x) = f (g−1(x)) holds, meaning f is a valid linearization of itself. 
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