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Abstract Percolation analysis is used to explore the connectivity of randomly
connected infinite graphs. In the finite case, a closely related percolation function
captures the relative volume of the largest connected component in a scalar field’s
superlevel set. While prior work has shown that random scalar fields with little
spatial correlation yield a sharp transition in this function, little is known about
its behavior on real data. In this work, we explore how different characteristics of
a scalar field — such as its histogram or degree of structure — influence the shape
of the percolation function. We estimate the critical value and transition width of
the percolation function, and propose a corresponding normalization scheme that
relates these values to known results on infinite graphs. In our experiments, we find
that percolation analysis can be used to analyze the degree of structure in Gaussian
random fields. On a simulated turbulent duct flow data set we observe that the critical
values are stable and consistent across time. Our normalization scheme indeed aids
comparison between data sets and relation to infinite graphs.

1 Introduction

Percolation theory has been initiated in 1957 by Broadbent and Hammersley [3]. It is
widely used today to characterize and model complex random systems by studying
random connectivity in a graph or lattice using statistics. Examples can be found
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in many domains such as fluid dynamics, cosmology, geology, material science,
epidemiology, and others [15].

Percolation is largely a theoretical tool to understand the topology of infinite graphs.
One of its central components is the percolation probability, which describes the
likelihood of the existence of an infinite connected subgraph under certain threshold
criteria on the vertices or edges of the original graph. Only few previous works apply
percolation theory to real data such as fluid flow simulations [11].

This paper explores the computational aspects and potential pitfalls when comput-
ing and analyzing a percolation function, closely related to the percolation probability,
for real data defined on finite lattices. We give the following contributions:

* We discuss the consequences of computing percolation functions on sampled
data. This includes how the percolation function is influenced by the dimensions
of the grid. We also describe a normalization to the input data that is crucial for
comparing percolation functions between different data sets and to the theory
(Section 3).

* We propose a method for analyzing the percolation function and its features,
combined with a comprehensive visualization for parameter- and time-dependent
data sets (Section 3.2).

* We research the sensitivity of the percolation function to the amount of structure
in data by designing a family of Gaussian random fields with varying degree of
structure (Section 5.1).

¢ Finally, we apply our framework to fully developed turbulent flows (Section 5.2).

2 Related Work and Background

Consider an infinite graph L. We define for each of its vertices to be open with
probability 0 < p < 1, and closed otherwise. Based on this, we define the open
subgraph L’ using the open vertices and their adjacent edges only. Percolation theory
studies the structure of L’ depending on the value of p. To do so, we observe the
connected components of L”: for small values of p, this subgraph consists of many
small connected components which are finite in size (remember that L. and L’
themselves are infinite). For a critical value p., large-scale structures form and the
open subgraph contains an infinite connected component pervading the entire domain:
the percolating cluster, see Figure 1.

Intriguingly, the transition from finite components to an infinite connected compo-
nent is sharp: for p < p,, the open subgraph L’ contains finite connected components
only, whereas the picture immediately changes for p > p., for which we see an infinite
percolating cluster in L’. The critical value p, is often referred to as percolation
threshold. In random media such as porous rocks, the percolation threshold denotes
the point where global physical properties of the medium change qualitatively. For
example, a porous rock is impermeable before p., but lets liquids through after p..

The percolation threshold p. depends solely on the connectivity in the infinite graph
L. Different topologies have been researched in the mathematics community [21]
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Fig. 1 Examples for site percolation on a 2D lattice with 4-connectivity for p = 0.2, 0.6 and 0.8.
The percolating cluster of open sites (black) forms approximately at p2? (middle).

such as 2D and 3D uniform lattices, triangle meshes, or bow-tie lattices. One also
distinguishes between site and bond percolation, which refers to considering the
vertices or edges of the L as open/closed, respectively. We are concerned with site
percolation in this paper, but our work transfers to bond percolation straightforwardly.

The 2D lattice with 4-connectivity (infinite structured grid in 2D) has a site
percolation threshold p. =~ 0.5927 [5]. The 3D lattice with 6-connectivity (infinite
structured grid in 3D) has a site percolation threshold p. = 0.3116 [5]. These values
are defined by considering the open subgraph and have been estimated through
simulations on finite grids, see Figure 2a.

Levelset percolation [1,14], which we are concerned with here, applies percolation
theory to real data by considering (seemingly) random scalar data values at the
vertices of a finite lattice. In this setup, we are looking at the superlevel set! of the
scalar field f(x) defined as the set of voxels fulfilling f(x) > p. The superlevel set
can be equated with the open subgraph L’ from before. Again, we are interested in
the threshold value p. where the connected components of the superlevel set pervade
the entire domain of the scalar field.

To determine the existence of the percolating cluster and the percolation threshold
P in this scenario, we have to define a percolation function. Similar to Moisy
and Jiménez [11], we choose a function based on the volumes of the connected
components:

Pana(p) = ~% (M)
Viotal
where Vio1a1 denotes the total volume of the superlevel set for a given threshold p, and
Vinax is the volume of its largest connected component. Figure 2b plots P, (p) for
2D and 3D random noise data sets.

The percolation function can be computed efficiently using an iterative Union-Find
algorithm whose non-iterative version has first been suggested in the context of
percolation by Hoshen and Kopelman [8]. The algorithm uses similar ingredients as
a merge tree computation [4], has been adapted to work in a distributed setting for
large-scale simulation data [7], and works as follows: We traverse all sample points
x in decreasing order of their value f(x). We set p = f(x). Let N denote the set of
components assigned to the neighbors of x. We distinguish three cases:

! Levelset percolation traditionally refers to the study of the superlevel set, but all the analysis steps
presented in this paper can be applied just as well to the sublevel set.
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e N = 0: We create a new component containing only X.
* |N| = 1: We extend the single component N with x.
e |N| > 1: We merge all of the components in N and add x to the result.

Viotal and Vinax are recorded in equidistant intervals in order to graph Pp.x(p). We will
show later in Section 3 how to normalize p with respect to the histogram of the data,
which serves a number of purposes around the comparison of percolation functions.
The computation of Pp,ax essentially gathers statistics on the connected components
of the superlevel set. Alternative statistics such as the number of components are not
as expressive, as they are rather featureless. For further exploration, see [7].

It is of interest to automatically analyze the percolation function in order to obtain
the critical value p. and other characteristics such as the width A of the percolation
transition. Stauffer and Aharony [16] suggest to set p. simply where a percolation
function ranging between 0 and 1 first assumes value 0.5. Similarly, they propose to
define the transition’s width A as the interval where the function ranges between either
0.1 and 0.9, or 0.2 and 0.8, both of which they found to yield empirically suitable
estimations. Ziff [20] proposed more involved estimation methods. In contrast to our
approach, the goal behind these estimations is to derive p. for an infinite lattice from
a number of simulations on finite lattices. We estimate p. and A by fitting a suitable
function parametrized with these values to the percolation function, see Section 3.2.

It is the purpose of this paper to provide methods and guidance for the computation,
analysis, and visualization of Py, and to discuss the shape of this curve under
varying conditions.

3 From Infinite to Finite

Percolation theory was conceived in the context of noise functions defined on infinite
domains. When applying it to measured or simulated data, we have finite domains
and not necessarily random data. These aspects affect the percolation function and
some care has to be taken when computing it.

As described by Newman and Ziff [12], an approximation for the percolation
threshold p. on an infinite lattice can be obtained through determining the value at
which the percolating cluster forms when sampling uniform random values on the
vertices of a sufficiently large finite lattice. Repeating this procedure a large number
of times and averaging over the function that is 1 where the percolating cluster exists
and 0O elsewhere yields an estimation of the percolation probability P(p), as shown in
Figure 2a.

Based on these graphs, we can conclude that the size of the domain affects the
transition width. The location of the percolation threshold on the other hand depends
on the grids dimensionality. Similar characteristics can be observed in Figure 2b,
where the percolation function for a single sample per grid size is shown. This is
analogous to analyzing simulated or measured scalar data, as only a fixed set of data
values is available then.
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(a) Percolation probability P(p) for 2D and 3D structured grids of different sizes. All values
are estimated with 1000 random uniform noise samples of the respective size.
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(b) Percolation function Py, for a single samples per 2D and 3D structured grid size.

Fig. 2 Percolation probability P(p) and percolation function Py for uniform random noise in 2D
and 3D structured grids. The dashed lines denoted with pgD and piD mark the theoretical critical
values on infinite lattices. We can see that Pp,x features a sharp transition around these values even
for finite examples.

Note that in structured data, it is possible that the data intrinsically has different
dimensionality than the underlying lattice. Consider, for example, a data set where
the same 2D slice repeats over the third dimension. For uniform random data, we
would expect p. to be close to the theoretical two-dimensional value in this case.

As discussed next, the shape of the percolation function is further affected by
value distribution and structure in the data.

3.1 The Extremes of the Value Range

We compute Py, (p) in the interval [pmin, Pmax ] Which corresponds to the data value
range in the scalar field f(x). Only few voxels will be part of the superlevel set around
Pmax- The volume computations for Equation (1) can be rather erratic in this range,
since they depend on the connectivity between a rather small number of data samples.
For example, consider the very first voxel in our algorithm (global maximum): it
is easy to see that P (pmax) = 1 in this case, since this single voxel is the only
connected component in the superlevel set. Yet, the existence of an infinite cluster in
an infinite domain would have probability 0.

Reliable values are obtained only after having iterated over a sufficiently large
number of data points. We thus only start recording the percolation function after
having reached a value pyax — €. In this work, we set € such [pmax — €, Pmax ] amounts
to the highest 1% of all data points.



6 Kopp, Friederici, Atzori, Vinuesa, Schlatter, Weinkauf

1 % lw 3D . -0-0-0-0-0-0--0
4 0.8 1 Pmax(P) 1 Pe £
z ) 0.6 1 : ¢
04 | ! ‘
o) 0.2 1 ;
s, 0 ———b—o — : \
2 0 0.2 0.4 0.6 0.8 1
5 Normalized data value p
0
. - . 1 % 1 - ©-9-9-0-0-0-0-0-0-0-0
Sample locations for value-based equidistant sampling 0.8 1 Pmax(p) e
0000000000000 000000 No samples in 0‘6’ '
T T T T . ;
Sample locations for voxel-based equidistant sampling [ pmax — €, pmax | 0.4 1 ? 3D
. © conmmmoe o e o o o . 0.2 4 & Pe
T T 0 T +— T T d
0 5 10 15 0 0.2 0.4 0.6 0.8 1
fx) Volume fraction p

(a) Histogram of the bimodal normal distribution f(x)  (b) Value-based and voxel-based percola-
and corresponding sample locations. tion functions for f(x).

Fig. 3 Histogram, sampling schemes and percolation function for a scalar field f(x) sampled
randomly from a mixture of two Gaussians on a grid of size 1283, Both value-based and voxel-based
sampling yield a sharp transition in the percolation function. However, in case of value-based
sampling, the transition is only sharp due to a large fraction of all voxels being processed around the
transition. It is also not located near the theoretical threshold p>P . This hinders the comparison
between data sets and to known results on infinite graphs. Comparability can be achieved by
computing the percolation function over the percentage of voxels in the superlevel set.

3.2 Histogram Distribution

Percolation thresholds in infinite domains are known for different random distributions
such as uniform and Gaussian noise. See for example Figure 2. However, a measured
or simulated scalar field will feature an arbitrary value distribution. This leads to
different percolation functions shapes. Is it possible to align these cases such that
we can utilize the theoretical knowledge? For example, it would be interesting to
compare percolation thresholds as a way to judge the amount of randomness in data.

To this end, we propose a simple normalization scheme. Remember from Section 2
that the parameter p refers to the percentage of open sites/vertices in a lattice. This
relates directly to the number of vertices in the superlevel set while computing the
percolation function. Hence, instead of setting p = f(x) as it is done in previous
work such as by Moisy and Jiminéz [11], we set p in relation to the number of voxels
in the superlevel set, which also corresponds to Viota1. More precisely, from now on
p will denote the percentage of voxels in the superlevel set. Computation-wise, this
corresponds to the position of a given data value in the sorted data list. Meanwhile,
the symbol p will refer to the scalar data value f(x). We also normalize this value to
the range [0, 1] to ease comparisons between different percolation functions.

Essentially, this procedure shifts the data values such that the histogram matches a
uniform distribution. This allows us to relate the level of structure in a given data set
to uniform random noise via their percolation functions. An example for how this
affects sampling locations and percolation function in given in Figure 3.



Notes on Percolation Analysis of Sampled Scalar Fields 7

4 Analysis and Visualization of Percolation Curve Ensembles
4.1 Analysis of a Single Percolation Curve

We are interested in analyzing the percolation function in Equation (1) to determine
the critical value p. and the width A of the percolation transition.

The percolation function in purely random data follows an S-shape. Suitable
candidates for approximating curves of this shape come from the family of sigmoidal
functions, which include the logistic function, the hyperbolic tangent and the error
function. Due to its prevalence in the analysis of percolation curves from Monte-Carlo
simulations [13, 19], we use an adapted version of the error function, defined as

erf(x) = % /0 S, 2)

/e

Note that the error function is related to the normal cumulative distribution function
for mean y and variance o

D(x, 1, 07) = % (1 +erf(%)). 3)

As such, it ranges between -1 and 1, is monotonically increasing, symmetric with
respect to the y-axis and has its point of maximal slope at x = 0. By inserting our
two parameters p. and A we get:

1 — FPc
Perf(p,pc,A)zz(1+erf(p Ap )) with A > 0. @)

By design, Pe,f has an inflection point and maximal absolute slope at p.. Furthermore,
the values obtained at p., p. — A and p. + A are close to the ones suggested by
Stauffer and Aharony [16] for the analysis of percolation functions:

1 1
Peri(pe, pe, A) = 3 (1 +erf(0)) = 3 6))
1 -A
Pert(pe — A pe, A) = 3 (1 +erf (f)) ~ 0.07865 (6)
1 A
Perf(pc"'A,PCsA): E (] +Crf(z)) ~ (0.92135 @)

In order to fit the function Pe;¢, we use a non-linear least squares fitting algorithm
available in SciPy [9]. We obtain an initial guess for p. and A by estimating p. as the
point of maximal slope for a fitted polynomial and A as the half of the interval where
that polynomial ranges between 0.1 and 0.9. While a polynomial of any degree is not
able to capture the asymptotic behavior of the percolation function, estimates based
on polynomials serve well as initialization to the actual curve fitting. Figure 4 shows
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Fig. 4 A fit of function P (gray) to the percolation functions Pp,x (green) for uniform random
noise in 2D and 3D structured grids estimates percolation threshold p. and transition width A.

the fitted function Pes for the 2D and 3D examples from Figure 2. In both cases, the
fitted curve nicely resembles the shape of the sampled percolation function.

Note that for the 3D example, the estimated p. = 0.33533 does not quite reach
p3P ~ 0.3116. We attribute this to the approximate nature of the percolation function
in Equation (1). To confirm this, we conducted another experiment in this data set
testing for each threshold whether there exists an actual percolating cluster defined
as a connected component of the superlevel set spanning the entire domain in any
dimension. Indeed, we find the percolating cluster at p = 0.311294, which is much
closer to the theoretical p>P ~ 0.3116. We further observe that the percolation
function is more asymmetric in the 3D case. While the current estimation scheme
cannot capture the asymmetric nature of the curve, it yields sufficiently indicative
values. An investigation of alternative estimation schemes is left for future work.

4.2 Analysis of Percolation Curve Ensembles

For the analysis of multiple percolation curves for a data set varying over a parameter ¢,
such as time or dimension, the procedure in Section 4.1 is simply repeated for every
sample of . To then easily assess the development of p. and A over parameter ¢ while
still being able to see the connection to the sampled curves, we visualize all three
together in a heatmap. The heatmap consists of texels, one for each sample (p, t) with
its color encoding the function value Ppax(p). The x-axis of the heatmap corresponds
to threshold p, and the y-axis varies over parameter ¢. Figure 5 shows an example:
Random uniform noise is sampled on a structured grid of size 128 x 128 x L,. The
row of colored squares for L, = 1 at the very bottom of the plot corresponds to the
curve in Figure 4a, whereas the top row with L, = 128 is shown in Figure 4b. The
estimated values for p. and A are graphed on top of the heatmap.
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Fig. 5 Percolation function for random uniform noise of dimension 128 x 128 x L. The estimated
value p. for L, = 1, i.e. the 2D case, is close to the site percolation threshold for the infinite square
lattice pﬁD ~ (0.5927. As we increase the dimensionality, p.. moves quickly towards the threshold
for the infinite cubic lattice p2P ~ 0.3116.

5 Experiments

In the following, we discuss the shape of the percolation curve under varying conditions.
We examine a family of synthetic data sets with varying degree of randomness in
Section 5.1 to understand how the interplay of structure and randomness caries over
to the shape of the percolation function. A simulated flow data set is analyzed in
Section 5.2, where we showcase the utility of percolation analysis and observe the
effects of our algorithmic choices such as histogram normalization.

5.1 Randomness and Structure: Gaussian Random Fields

The original percolation theory [3] is built on homogeneous and isotropic randomness
without correlation between data values. We want to explore the impact of structure
in a data set on the resulting percolation function. To this end, we employ Gaussian
random fields (GRF). which allow us to construct a family of fields with varying
degrees of randomness. A GRF is stochastic process defined by a mean and a
covariance function and can be understood as a probability distribution over functions,
just like its one-dimensional version, the Gaussian process. The unique property of a
GREF is that the values in every finite subset of sample locations have multivariate
Gaussian distribution. There are many ways to sample from GRFs. We choose a rather
efficient method using a fast Fourier transform, which computes a GRF in O(n log n)
for a grid with n points. Gaussian white noise has a constant power spectrum. To
introduce more structure into the field, lower frequencies need to be more pronounced.
This is achieved by multiplying the power spectrum P(k) = k= for frequencies
k with the power spectrum of generated Gaussian noise. Using an inverse Fourier
transform, we get our desired scalar field with a level of structure depending on «.
We analyze the percolation for varying levels of structure @ in Figure 6a, where
the percolation function is shown over the threshold p for increasing structure
parametrized by @. We focus on the percolation threshold p. and the width of the
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Fig. 6 Percolation function for generated GRFs with power spectrum P(k) = k% of dimension
1283. Three samples of a € {0, 3.5, 10} are shown separately. We observe the transition until about
@ ~ 3, at which point Py, (0) does not start from zero anymore, large discontinuities form and the
width A of the fitted function increases considerably.
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percolation transition A, which both change over @. The percolation function and a
rendering of the scalar field are shown for three values of « in Figures 6b to 6g.

First, while all curves end with Pp,x(p) = 1, not all of them start with the minimal
value 0. When looking at the curve and scalar field at perfect white noise, @ = 0,
we have several small connected components in the data for a low value of p. When
increasing p, more of them will form and slowly grow larger, keeping the highest
relative volume (cf. eq. (1)) close to 0. Only once a certain point is reached, we
observe a sharp increase in Py« (p) as more and more of them merge, rapidly forming
a percolating connected component at approximately p.. For @ > 0, the non-zero
value at p = 0 stems from the existence of at least one large connected component
for the superlevel set of the largest percent of scalar values. This indicates a high
level of structure. Indeed, in Figure 6a we can observe that the percolation function
begins below 5% for all @ < 3, but not at any a above that. At approximately that
point, no classic sharp percolation transition is visible anymore. Another interesting
change is observed at around @ = 3: where the function was very smooth before,
large jumps can be seen to appear in the individual percolation functions at higher
levels of structure. They begin to form as several small discontinuities as can be seen
in Figure 6e at @ = 3.5 and develop into large disconnected segments for & = 10 in
Figure 6g. Each such visible discontinuity marks the merging of the largest connected
components with another large one. After a merge, the volume of that component
decreases in relation to other structures growing, before merging again.

In the heatmap, we can see that the size of these segments grows with increasing
@, as fewer and larger connected components form early on. At that point, with no
values around zero and considerable jumps in the function, the percolation value p,
loses its meaning as the "point of steepest decrease" and the width A of the fitted
function grows.

All these observations indicate that there is a strong correlation between the level
of structure and the shape of the percolation function. While it is up to definition to
pinpoint the exact value of @ where no percolation transition occurs, several indicators
point to the region of @ =~ 3.

5.2 Turbulent Flow: Duct Data Set

One common application for percolation analysis is the study of turbulence in fluid
dynamics. It has, among other applications, been employed to study the impact of
the Reynolds number on the transition from laminar to turbulent flow [10] and to
find optimal thresholds to separate highly turbulent structures from the surrounding
flow [11].

We analyze a duct flow simulated to investigate intense Reynolds-stress events in
fully-developed turbulent flow [17]. It is sampled over 193 x 194 x 1000 data points
at an approximately square cross-section and is periodic in the stream-wise direction.
As an indicator of Reynolds stress, the scalar combination uv has been employed [2].
Here, u = u;r“% denotes the normalized stream-wise directional component of the
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Fig. 7 Percolation function for the Reynolds-stress field of the duct data set. The first visualization
gives an overview of all 2000 time slices, while the following plots are depicting the first 200 times.
In the second row, the percolation function is displayed for both the volume-normalized (left) and
the original scalar values (right). Below them, the same function is plotted after permuting the scalar
field. We observe that the normalization of the original scalar values does have an impact on the
percolation function, but mostly keeps the shape intact. Permuting, on the other hand, removes all
variation between the individual time slices.

flow, perpendicular to the normalized cross-stream component v. This average u,¢
and the root mean squared deviation u,,,,s are accumulated over a large number of
stream-wise slices and time samples. The data points close to the wall are disregarded,
as turbulence does not show in that region. Percolation analysis aids in finding the
exact wall distance in which to disregard values, see [6].

5.2.1 Stability of the Percolation Function

To find a sensible threshold for intense Reynolds stress events, it is common to
compute the percolation function for n, time slices and average all function values

1 &
Pmax(p) = n_t ; Pmax@’ t)' (8)
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The final analysis is applied to this rather smooth averaged curve. However, we are
not aware of any work assessing the temporal evolution of the percolation function
for real simulated data, which we will do in the following.

We compute the percolation function for a number of n, = 2000 time slices and
visualize them in Figure 7a. All time slices have highly similar statistics and are
normalized with the same average and root square error. Note that the heatmap plot
is rotated by 90 degrees as time ¢ is plotted horizontally. This full range visualization
gives an overview for a long time span, which shows us that the percolation function
is rather stable.

For a more detailed view, Figure 7b shows the first n, = 200 time slices. The
approximated percolation threshold p. and the transition width A are shown as well.
The visualization reveals only minor variations in the percolation function, showing
that the analysis is stable for temporal development.

5.2.2 Effect of Histogram Normalization

As discussed in Section 3, all visualizations of the duct shown so far are plotted for
a normalized histogram of p, which is in practice the volume of the sublevel set.
We compare this to working on the values of the scalar field itself. Especially in the
case where percolation is used as an indicator for an optimal threshold, it becomes
necessary to analyze the function by value. On the other hand, in order to connect
these results to percolation theory, the comparison should always be voxel-based.

Figure 7c shows the visualization for Pp,x(p) with ¢ € [1,200]. Figure 7b and
7c are overall very similar. Note that also in the value-based plot, the percolation
transition p. is very stable. However, the respective values of p. and the width A are
rather different. This shows that a percolation transition can appear in an irregularly
distributed scalar field, but that normalization of these values has a huge impact on
the actual function parameters.

We explore this further using an isotropic turbulent flow kindly provided by
Yeung et al. [18]. This is a 5123 sub-volume of a 40967 vorticity magnitude field. A
visualization is provided in Figure 8a. The histogram reveals the non-uniform data
value distribution in this data set. The effect on the value-based percolation function
Ppnax(p) is drastic: contrary to previous examples, the typical sharp transition between
0 and 1 is lost (Figure 8b, top). However, we can recover the sharp transition with the
voxel-based percolation function Pp,x(p) (Figure 8b, bottom). When comparing it to
uniform random noise as shown in Figure 2b, we can see that the transition happens
at much larger values of p. This indicates that this data is not random and has indeed
some structure.

5.2.3 Effect of De-Correlation

To look deeper into the role that structure plays on the shape of the percolation
function as opposed to the value distribution, we remove all structure from the field.
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Fig. 8 Percolation functions, rendering and histogram of the vorticity magnitude of an isotropic
homogeneous turbulence data set provided by Yeung et al. [18]. Comparing this with Figure 2b, we
can conclude that this data structurally differs from uniform noise, but is still random enough to not
show any larger discontinuities.

By randomly permuting the input scalar field values, we keep the histogram intact,
but remove any correlation.

The results for the duct data set are shown for both the volume-based sampling
scheme in Figure 7d and the original data values in Figure 7e, which were permuted
via the same random seed. As a histogram normalization for permuted values is the
same as sampling a uniform random distribution for each point, the results are very
close to the theoretical 3D percolation function shape shown in Figure 2a. Also, the
variation between time slices is virtually zero. When permuting the original scalar
values p, the function is again stable over time slices, but the percolation transition
pc is shifted notably compared to the theoretical values. The latter confirms that the
histogram normalization is effective in enabling the comparison of real data with the
theoretical results.

6 Conclusions and Future Work

In this work, we presented a framework for analyzing the structure of existing scalar
fields with the help of percolation theory. It was established that a normalization
of the scalar values is needed in order to compare the translation and spread of
the percolation function to the theoretical values of uniform white noise or other
scalar fields. These parameters are obtained by fitting a Gauss error function. To
visualize the results, we have shown curve plots of 1D percolation functions and



Notes on Percolation Analysis of Sampled Scalar Fields 15

a colormap-based representation of the evolution of percolation across a smoothly
changing field.

The analysis was applied to two main data series, a Gaussian random field of
increasing correlation and the time series of a fully turbulent duct flow. We could
show that for an increase in structure and correlation, three main features point to the
existence of a percolation transition: the percolation function assuming a value of
almost zero for small p, the absence of large jumps in the curve and a low transition
width A. For a time series of a statistically stable scalar field on the other hand, we
observe a very consistent percolation function.

This work has made a first step in gaining insight into the underlying structure
of scalar fields by means of their percolation function. However, more experiments
need to be made to determine an arithmetic correlation between different kinds of
structure and the parameters of the resulting percolation curve.
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