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Towards Perceptual Optimization
of the Visual Design of Scatterplots

Luana Micallef, Gregorio Palmas, Antti Oulasvirta, and Tino Weinkauf

Abstract—Designing a good scatterplot can be difficult for non-experts in visualization, because they need to decide on many
parameters, such as marker size and opacity, aspect ratio, color, and rendering order. This paper contributes to research exploring the
use of perceptual models and quality metrics to set such parameters automatically for enhanced visual quality of a scatterplot. A key
consideration in this paper is the construction of a cost function to capture several relevant aspects of the human visual system,
examining a scatterplot design for some data analysis task. We show how the cost function can be used in an optimizer to search for the
optimal visual design for a user’s dataset and task objectives (e.g., “reliable linear correlation estimation is more important than class
separation”). The approach is extensible to different analysis tasks. To test its performance in a realistic setting, we pre-calibrated it for
correlation estimation, class separation, and outlier detection. The optimizer was able to produce designs that achieved a level of speed
and success comparable to that of those using human-designed presets (e.g., in R or MATLAB). Case studies demonstrate that the
approach can adapt a design to the data, to reveal patterns without user intervention.

Index Terms—Scatterplot, optimization, perception, crowdsourcing.
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1 INTRODUCTION

IN this paper, we investigate the design of scatterplots, one of
the most important methods for visualization of bivariate data

and widely used beyond the sciences, even in newspapers and
other non-academic contexts. Scatterplots are utilized by numerous
people who are unfamiliar with the method’s technical details.

Our goal is to support non-experts in the rapid design of
effective scatterplots. For a non-expert, designing a scatterplot
can be a complex task. Consider a meteorologist, a domain expert
but a novice in visualization, studying the correlation between
pressure and temperature for Hurricane Isabel. Using a readily
available statistical package, the scatterplots in Figure 1(a) are
quickly generated, yet the default designs often represent the data
poorly. This is mainly because they cannot adapt to the data.
Figure 1(a) shows the same data with two sampling resolutions and
yet, due to the fixed design, the scatterplots do not convey the strong
similarity in the data. Improved scatterplot designs can be obtained
by manually adjusting the marker size, marker opacity, the colors,
the aspect ratio of the plot, and other technical aspects in line with
the data and the required analysis task, but such adjustments are
difficult for non-experts. Furthermore, they depend on the task:
spotting outliers will be difficult when one uses a low marker
opacity, but estimating the density of a large number of data points
is a task that can benefit from a low opacity.

This paper presents results from an investigation of algorithmic
approaches to automatic scatterplot design – in particular, by
exploiting models and measures of human perception. With our
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approach, the plots in Figure 1(b) are automatically generated for
the meteorologist once she provides the dataset and specifies her
principal data analysis task (see Figure 2 for a system overview).

Forming a key part of our research is a set of quality metrics
and models that aid in predicting how a user might examine a
scatterplot when performing a task with it. We build a cost function
for an optimizer that can address aspects such as contrast, unit
formation (how users see groups in scatterplots), and structural
similarity. The cost function is generic and can be adapted to
various data analysis tasks. For doing so, the components of the
model are tuned by means of a set of weights. After calibration,
the optimizer can be used in different instances of the task. In this
paper, we consider three tasks often carried out through scatterplots:
correlation estimation, class separation, and outlier detection. We
consider class separation and not cluster detection because often
data analysts color-code the points of the dimensionally-reduced
data with respect to pre-existing class labels [1], [2]. Clusters are
different from classes: clusters are spatially separated groups of
non-labeled data. In contrast, classes are groups of data points
with the same label that are not necessarily spatially separated,
leading to various class-perceivability-related design challenges in
the creation of scatterplots. To set the weights for these three tasks,
we performed a series of crowdsourced user studies comparing
user performance across different weights.

We use the model in a combinatorial optimization with a
discretized search space to find a design for the scatterplot
automatically that is well suited to a given task and dataset.
Technically, this is a multi-objective optimization approach with
each weighted term describing a perceptual aspect of a scatterplot.
The idea of using predictive models in the design of displays and
interfaces is applied also in computer graphics and human-computer
interaction. The benefit of this approach is that the optimizer can
predict how users will respond to a given design.

A key component of this paper describes the construction of a
cost function, building on the long history of research into quality
metrics in visualization (Section 2). To the best of our knowledge,



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (TVCG), ACCEPTED, 2017 2

Number of dots: 1252 Number of dots: 5002

(a) The standard design loses fidelity and requires manual adjustment.

Number of dots: 1252 Number of dots: 5002

(b) Optimized designs automatically adapt to increasing dataset resolution.

Figure 1. Our method uses models of human perception for automatically determining design parameters of a scatterplot for given objectives. It can
be used for one-shot design as well as in cases wherein input data or requirements vary. Here, we plot pressure and temperature variables from the
Hurricane Isabel dataset with increasing dataset resolutions.

our approach represents the most extensive implementation of
perceptual models and measures for the algorithmic design of
scatterplots and we provide the first optimization-based formulation
of the visual design of scatterplots.

The work presented in this paper may be beneficial to users
in two distinct ways: Firstly, the proposed optimization approach
may offer a useful tool that complements the default settings over
a wide spectrum of settings. A scatterplot design can be generated
simply by supplying a dataset and specifying priorities for the
data analysis goals. Assuming that the cost function has been
calibrated (see below), the end user does not need to set visual
parameters manually. At the same time, the series of crowdsourced
user studies we carried out yielded insight into user performance
with scatterplots generated with different modeling assumptions,
which may also be useful for other approaches for automating the
design of scatterplots.

In summary, our main contribution is a model-based opti-
mization approach that synthesizes knowledge in our field in a
manner that can be readily operationalized. Instead of pooling more
empirical results, we attempt to formulate design as a mathematical
cost function that is fully scrutinizable and builds on existing work.
The main contributions are that we:
• Present a novel method for perceptual optimization of the

visual design of scatterplots.
• Adapt image quality measures and models of the human visual

system to drive the selection of optimal design parameters.
• Show how to support three common data analysis tasks by

using this framework and how it can be extended to other
tasks through a calibration procedure.

The paper is organized as follows: After providing an overview
of the related work (Section 2), we briefly review the definition,
data requirements, design parameters, and data analysis tasks for
scatterplots (Section 3). An overview of the method (Section 4)
precedes the technical details, including the perceptual model,
which are presented in Section 5. We describe a general empirical
method to calibrate the weight factors of the perceptual model
to a specific data analysis task (Section 6). After this, we report
on an evaluation study (Section 7) and discuss characteristics of
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Figure 2. An overview of the approach, showing the end user’s view and
the visualization expert’s involvement.

our approach with reference to real data (Section 8). Finally, we
present conclusions (Section 9), along with limitations and avenues
for future work (Section 10).

2 RELATED WORK

In this brief review, we focus on three subjects: (i) empirical
studies examining the visual design of a scatterplot in relation
to user performance, (ii) visual quality metrics for scatterplots,
and (iii) optimization approaches for scatterplot design. For more
details, refer to excellent overviews by other authors such as [3],
[4], [5], [6].

2.1 Empirical Studies of Scatterplot Perception

Munzner [7] proposed a taxonomy for goals related to scatterplot
inspection, distinguishing correlation, outliers, classes, trends,
and distribution. We use this as the organizational principle for
reviewing empirical studies.

Correlation estimation was studied by Meyer et al. [8], who
concluded that correlation estimation is subject to biases and
relatively difficult for humans. Intuitive estimates are typically
lower than the statistical coefficient r and affected by visual
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characteristics. Cleveland et al. [9] found that the point cloud in
the scatterplot tends to be perceived more correlated as the scales
on the axes are increased such that the cloud’s size is decreased.
Li et al. [10] concluded that scatterplots double the number of
reliably distinguished levels compared to parallel coordinate plots.
Harrison et al. [11] compared scatterplots to other visualization
methods for correlation perception tasks, and concluded that the just
noticeable differences in correlation in all of these visualizations
can be modeled by Weber’s law. Rensink and Gideon [12] had
previously reported a similar result from their laboratory study.
Kay and Heer [13] further analyzed Harrison et al.’s collected
data and found that, of all the visualizations evaluated, scatterplots
exhibit the least inter-individual variance and the highest precision.
However, in all of this work, only one scatterplot design (with a
small marker size of ≈2 pixels, full opacity, and an aspect ratio of
1) and one type of dataset (≈100 normally distributed points) was
assessed.

Outlier detection was studied by Last and Kandel [14], who
present an automated approach to detecting and isolating outliers.
Rahman et al. [15] propose a multiple linear regression analysis
for the same purpose. Several outlier detection algorithms have
been proposed (see survey [16]), but typically properties of human
perception are not taken into account and the effectiveness of the
methods is not evaluated empirically.

Cluster separation was studied by Sedlmair et al. [2], who
list within-class factors (e.g., density and outlier) and between-
class factors (e.g., variance of density and split) affecting how
easily clusters can be found, verified, and matched to classes on a
scatterplot. They identify class separation as a between-class factor
that is dependent on and strongly influenced by all other within-
and between-class factors. These design factors were consistent
with the scagnostics (aspects of scattered points, such as outlier,
shape, trend, density, and coherence) defined by Wilkinson et al. [5].
A follow-up study [17] indicated that a 2D scatterplot is as good
as an interactive 3D scatterplot or a scatterplot matrix in showing
classes. Gleigher et al. [18] explored the visual design of multi-
class scatterplots for the task of identifying the mean value of a
set of points. Lewis et al. [19] compared grouping quality metrics
with human evaluations by using a diverse set of measures based
on a theoretical taxonomy. The authors concluded that grouping
evaluation skill is present in the general population.

2.2 Visual Quality Metrics

Visual quality metrics are typically used for automatically determi-
ning how much information a visualization provides to the analyst
[6].

Visual class separation was studied by Sedlmair and Au-
petit [20], who proposed a data-driven framework to evaluate
metrics designed to identify how separable classes in a projection
of a high-dimensional dataset would be perceived. Using this
framework, 2002 new visual separation measures were defined and
evaluated [21]. User judgment was exploited in selection of the
best quality metric for use to automatize a specific task. In contrast,
we exploit user judgment of scatterplots to calibrate the weights
used for selection of the most effective design for a specific task.

Scheidewind et al. [22] proposed automatic analysis of pixel
images produced by different parameter mappings to rank them
according to their potential value to the user. This allows reducing
the parameter space to obtain insights more quickly.

2.3 Automatic and Semi-Automatic Design

Etemadpour et al. [23] proposed perception-based evaluation of
projection methods based on empirical data but not perceptual
models and quality metrics as in our approach. Color optimization
in scatterplots was adopted by Chen et al. [24] to improve the
discernibility of multiple classes when the scatterplot is overplotted.
Mayorga et al. [25] used a similar technique to blend colors
and show color-filled regions when classes overlap greatly. Yet
these techniques optimize only one design parameter (i.e., class
color). Johansson and Johansson [26] demonstrated an interactive
technique to reduce dimensionality via quality metrics. They used
weight functions to preserve as many important structures as
possible for exploration, along with quality metrics for class
separation, outliers, and correlation in the data space – but not
in the image space as in our approach. Tatu et al. [27] used quality
metrics in the image space for scatterplots and parallel coordinates
to rank 2D projections of a multivariate dataset with the aim of
speeding up data exploration, rather than optimizing the plot design.

Matejka et al. [28] defined a model of opacity scaling for
scatterplots that is based on the data distribution and crowdsourced
responses to opacity scaling tasks. Yet they did not assess the
effect of scatterplot design or marker opacity on user performance
in accomplishing data analysis tasks. Heer and Bostock [29]
proposed a crowdsourcing-based approach for assessing visual
designs. In particular, they studied separation and layering via
luminance contrast in a scatterplot, but they did not define any
models incorporating their findings.

3 SCATTERPLOTS: DATA, DESIGN AND TASKS

A scatterplot shows the relationship between two variables x,y by
plotting a marker for each data point (xi,yi) in a 2D Cartesian
coordinate system spanned by x and y. It is a well-established tool
for inspecting potential correlations and other patterns between
variables. This is done by considering various aspects of the
shown markers, including how spread out they are, their slope,
the distribution of mass, and the existence of outliers.

Scatterplots are typically used with numeric variables. The data
points can be assigned a class label and color-coded on the basis
of their class. Outliers represent another interesting characteristic
of the data. The definition of outliers is application-dependent and
often difficult to formalize, but the general idea is that outliers
deviate from the main distribution. The two variables shown in a
scatterplot can be part of a higher-dimensional multivariate dataset,
in which case, the scatterplot represents a 2D projection. If grouping
occurred in the higher-dimensional space, it is likely that there is
overlap in the 2D projection also. Similarly for outliers, they may
not appear isolated in the 2D scatterplot.

The design of a scatterplot consists of several interrelated
choices of: (i) marker size, (ii) marker opacity, (iii) marker color,
(iv) marker shape, (v) aspect ratio of the plot, (vi) width of the plot,
(vii) drawing order of points or classes, and many more aspects.
These items not only are interrelated but depend on the data and
the analysis task. Consider as an example the size of the markers:
it depends on the overall size of the plot, the varying density of the
data points in the plot, and whether or not the analysis task requires
the user to identify individual points. Furthermore, the visual
impact of a marker is affected by its opacity. Overlapping markers
and overplotted images may be beneficial for some tasks but not
others. In short, the design possibilities can be overwhelming,
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Figure 3. The design possibilities for scatterplots vary greatly. Different designs support different tasks for the same data: (a)-(c) show two variables
from the out5d dataset in radically different designs, thereby differing in the information they reveal: the discretization of the variables, the density of
the data points, and the outlier. Plots (e)-(f) show variations in color, marker size, and shape.

particularly for novices. Figure 3 illustrates the wide variety of
design possibilities for scatterplots.

Scatterplots are used for many purposes. These are the most
common user tasks reported in the literature (see e.g. [7]):
• Correlation estimation: Assessing the linear correlation

between two variables by considering the spread of the points
and the slope of the point cloud [9], [10], [11], [12]. The
design influences the perception of correlation – in particular
the aspect ratio of the plot – as demonstrated in Section 6 for
sub-study CorrAR.

• Class separation: Finding all classes [1], [2], [21]. These
might be visually separated or overlapping; it depends on how
the grouping was performed. We assume that different classes
are shown with different colors. Many design parameters can
influence this task. If nearby or overlapping classes are shown
with very similar colors, it may be difficult to distinguish
between them. High opacity may make the borders of a class
pronounced but also hide other classes underneath.

• Outlier detection: Finding all outliers [14]. Since outliers are
singular points, designs with low opacity and small marker
sizes render it difficult to find them.

• Distribution detection: Assessing the varying density of the
points [28].

• Point value reading: Being able to read the x,y-values for
specific points [29].

We note that there are a myriad tasks, imposing different
requirements on the design of a scatterplot. In the following
sections, we present our approach to automatic determination of
a design suitable for a specific task and dataset on the basis of
perceptual models and measures.

4 OVERVIEW OF THE APPROACH

Figure 2 provides an overview of how the approach can be deployed.
After initialization (calibration to a task), the system can be used for
any instance of that task. In our case, we calibrate it to three data
analysis tasks, thereby allowing optimization of any dataset for any
of the three tasks. Figure 1(b) was generated with an optimizer that
was pre-calibrated for correlation estimation, class separation, and
outlier detection, as discussed in Section 6. To then use a calibrated
system, the user inputs a dataset, specifies task objectives, and a
scatterplot with a design optimized for that data and task is returned.
For instance, Figure 1(b) is returned for the Isabel data and for the
user’s correlation task objective.

The system implements several models and measures of human
visual perception to predict user performance of common tasks with
scatterplots. This allows the optimizer to search numerous candidate

designs (or even all of them) in order to find one that best meets
the task objectives. The approach is easy and especially meaningful
for non-experts who may not have the time or skills to explore
large design spaces manually. This approach builds on model-based
optimization such as that adopted for view optimization (e.g., [6]),
user interface optimization (e.g., [30], [31]), layout optimization
using metrics and heuristics (e.g., [32]), and perceptually optimized
graphics (e.g., [33]).

The following sections describe how this approach can be made
to work with three common design parameters and three common
tasks. We address the design parameters marker size, marker
opacity, and aspect ratio. This design space is challenging, since
it can produce results that vary greatly; compare between figures
3 and 4. Other design parameters, such as image width, colors,
marker shape, and the drawing order of classes, are fixed. In further
specification, we select the following three tasks: (T1) correlation
estimation, (T2) class separation, and (T3) outlier detection. As
discussed above, these are among the most common data analysis
tasks with scatterplots. We assume that classes and outliers have
been precomputed, since data points can be grouped in various
ways and the definition of outliers is application-dependent (see
Section 3).

A key part of our work is the design of a novel cost function (see
Section 5.1). It implements several perceptual models and measures.
To model how users perceive correlation from a scatterplot, we
predict how sparsely scattered points constitute a perceived entity.
To do so, we adapt a model of unit formation [34] previously used to
predict perception of objects in dot lattices. We use the Canny edge
detector [35] and ellipse fitting to identify the perceived entities in
a scatterplot. To model the perception of classes and outliers, we
propose using the highly reliable image quality assessment model
structural similarity [36], which assesses perceived differences
between two images. In addition, we compute several generic
perceptual measures such as contrast, the average amount of opacity,
the amount of overplotting, and the overlap between markers.
To our knowledge, this is the most extensive implementation of
perceptual models and measures for the algorithmic design of
scatterplots. Subsection 5.2 provides details.

These models and measures are combined in our cost function
through weight factors. Different weight factors support different
tasks. To determine how to weigh these factors for a given task,
we carried out a series of crowdsourcing-based studies wherein we
compared pre-defined weight sets to ascertain the best settings for
each task. We chose the best weight factor settings using statistical
testing.

The resulting cost function can be solved with any black box
method [37] for discrete optimization – e.g., ant colonies [38]. After
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discretization of the design parameters, the size of our design space
is 4,851, but this can be easily changed in the code by adding or
removing levels. Since our interest is not in real-time performance
but in assessing the result quality that can be obtained, we used
exhaustive search to find the global optimum.

The approach we describe here can be extended to cover
additional design parameters and tasks. To add a design parameter,
we do not necessarily need to add new terms to the cost function,
since it already captures a wide range of perceptual aspects. For
example, the impact of new design parameters such as image width
or the drawing order of classes is already captured by the cost
function. On the other hand, adding a new task requires a weight
calibration following the procedure described in Section 6.

5 PERCEPTUAL SCATTERPLOT OPTIMIZATION

This section first describes the cost function and then introduces
the constituent cost measures. In the latter part of the section, we
describe the implementation of the optimizer.

5.1 Cost Function

Let us take two variables x,y for a dataset to be visualized by
means of a scatterplot. The set of all possible designs is

D= S×O×A (1)

where S denotes the set of marker sizes considered, O is the
set of marker opacities considered, and A is the set of aspect
ratios considered for the plot. Certain designs d ∈D will be better
suited than others to quickly and accurately perform a particular
data analysis task t ∈ {T1,T2,T3}. We quantify this by using a
cost function, C(x,y,d, t), which has a low value when the design
is deemed well suited to the data and task, and a high value
otherwise. The cost function is a weighted sum of cost measures
∑w(t)M(x,y,d), where weights w depend on the task and the cost
measures M are determined by the data and the design. Each of
the three terms in the cost function addresses a distinct perceptual
aspects:

C(x,y,d, t) = E(x,y,d, t)+ I(x,y,d, t)+S(x,y,d, t). (2)

With these terms, we assess the perception of linear correlation
E(x,y,d, t), image quality measures I(x,y,d, t), and the perception
of individual classes and outliers in terms of structural similarity
S(x,y,d, t). Each of these terms is a weighted sum of cost measures:

E(x,y,d, t) = wα Eα +wrEr (3)

I(x,y,d, t) = wµ Iµ +wσ Iσ +wµ̄ Iµ̄ +wσ̄ Iσ̄ +w`I`+wpIp (4)

S(x,y,d, t) = wcSc +woSo (5)

An overview is presented here, with details further on and a
discussion of limitations saved for the end of the paper. All cost
measures are functions of the form (x,y,d)→ [0,1]; i.e., they are
normalized and do not depend on the task. They have the following
meanings:
Eα : angle difference between covariance and perceived ellipse
Er: axes length ratio diff. between cov. and perceived ellipse
Iµ : average amount of opacity
Iσ : image contrast
Iµ̄ : distance from a desired average amount of opacity
Iσ̄ : distance from a desired image contrast

I`: amount of overlapping of the markers
Ip: amount of overplotting
Sc: perceivability of classes
So: perceivability of outliers

We balance the weight of these measures in Equations (3)-(5) with
the set of factors

W(t) = {wα , wr, wµ , wσ , wµ̄ , wσ̄ , w`, wp, wc, wo}. (6)

We support different tasks by means of different weight factors.
For a particular task t, the weight factors are constant values in the
range [−1,1]. Negative weights allow us to reverse the meaning of
a cost measure. For example, wp < 0 denotes that we want to have
a low amount of overplotting, whereas wp > 0 indicates that we
allow for a large amount of overplotting. By setting a weight factor
to 0, we omit it from consideration. The non-zero weights are set
empirically in the manner described in Section 6.

In summary, with a given dataset and task, our goal is to find
the design for which the value of the cost function C becomes
minimal; i.e., we want to solve the following optimization problem:

arg min
d

C(x,y,d, t). (7)

5.2 Perceptual Metrics

In the following three subsections, we discuss the three terms in
our cost function from Equations (3), (4), and (5).

5.2.1 Perception of Linear Correlation

Pearson’s coefficient and covariance: Linear correlation
between two variables x,y can be described via Pearson’s coefficient
as

r(x,y) =
cov(x,y)

σx σy
=

cov(x,y)√
cov(x,x)cov(y,y)

, (8)

which is closely related to the covariance matrix

C(x,y) =
[

cov(x,x) cov(x,y)
cov(y,x) cov(y,y)

]
. (9)

C is a real, symmetric matrix. Hence, it has two real eigenvalues
and two orthogonal eigenvectors, which uniquely describe the
shape of the covariance ellipse, ec. The length of the major axis
of the ellipse is two times the larger eigenvalue, and its direction
is given by the corresponding eigenvector; the equivalent is true
for the minor axis. Figure 4a shows an example. We describe the
covariance ellipse as a tuple ec = (αc,ac,bc), where αc denotes the
angle of the major axis to the x-axis and ac,bc the lengths of the
major and minor axis, respectively.

The covariance matrix and ellipse depend on the scaling of the
variables. Consider scaling variable x with a constant factor s; in
this case, the covariance matrix changes as follows:

C(sx,y) =
[

cov(sx,sx) cov(sx,y)
cov(y,sx) cov(y,y)

]
=

[
s2 cov(x,x) scov(x,y)
scov(y,x) cov(y,y)

]
. (10)

For example, changing the aspect ratio of a scatterplot essentially
constitutes such a scaling operation and can dramatically alter the
shape of the covariance ellipse. Figures 4b–c demonstrate this.
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αc

ac

bc

(a) Covariance ellipse ec (in red) can be
computed from the covariance ma-
trix. We describe it by using the an-
gle to the x-axis αc, and the lengths
of the major and minor axes: ac,bc.

(b) Data from subfigure (a) scaled in the
y direction with a factor of 1/2.

(c) Data from subfigure (a) scaled in the
y direction with a factor of 2.

Figure 4. Covariance ellipses for a dataset that has been scaled with
different factors in the y direction. The shape of the ellipse depends on
the scaling of the axes.

Yet Pearson’s coefficient does not depend on the scaling of the
variables.

r(sx,y) =
cov(sx,y)√

cov(sx,sx)cov(y,y)

=
scov(x,y)√

s2 cov(x,x)cov(y,y)
= r(x,y) (11)

We will return to this shortly.
Unit formation: To model how users perceive objects in

a scatterplot, we need to predict how sparsely scattered points
constitute a perceived entity. To do so, we adapt an existing model
of unit formation [34]. that has been used to explain the perception
of objects in dot lattices. The basic premise is that points are
perceived as a single unit if they are sufficiently close and might
form a Gestalt, or a shape with a contour. Objects can be identified
as a unit even if they are partially occluded.

In our adaptation, we use the Canny edge detector [35] with
σ = 4 px to detect edges in the scatterplot image, which we
consider to be part of perceived object borders. The output is a
set of perceived border points. If there are several classes in the
data, we have a different set for each class. See the supplemental
material for a justification of our σ and several examples.

Correlation cost measures: If two variables x,y are linearly
correlated, then we fit an ellipse to the set of perceived border points
in the scatterplot. We call this the perceived ellipse ep(αp,ap,bp).
If the variables are faithfully represented by the visual design of
the scatterplot, the perceived ellipse coincides with the covariance
ellipse computed from the actual data. We assess the difference
between ellipses ec and ep with an angle difference Eα and an axes

length ratio difference Er:

Eα = |αc−αp| Er =

∣∣∣∣bc

ac
−

bp

ap

∣∣∣∣ . (12)

As seen before in (10), the scaling of the variables is a degree of
freedom and can dramatically change the shape of the covariance
ellipse. To eliminate this degree of freedom and give users
a fixed frame of reference, we scale the variables such that
xmax−xmin/ymax−ymin = 1. Therefore, our error measures are minimal
when x and y have the same amount of visual space. This scaling
disregards outliers, which can be identified through, for example,
the Mahalanobis distance [39]. The supplemental material presents
an example for which Eα ,Er have been maximized and minimized.

We are aware of the recommendation by Cleveland et al. [9]
and Li et al. [10] to scale the variables such that σy/σx = 1. This
fixes the major axis of the covariance ellipse to be close to parallel
to the line y =±x and leaves the ratio b/a as the sole varying aspect
for judgment of the correlation. In our setting, however, we want to
be able to compare the computed-from-the-data covariance ellipse
to the perceived-from-the-image ellipse. The latter is not always
parallel to the line y =±x, especially when the optimizer tries to
find a compromise between several classes. Hence, considering the
angle difference Eα is necessary in our application in any case. As
we will show with our sub-study CorrAR in Section 6, an aspect
ratio of 1 : 1 is beneficial for correlation estimation when compared
to other aspect ratios, and this is what we strive for in our method.

Note that if two variables are not linearly correlated, as with
|r(x,y)|< ε , we do not compute border points by using the Canny
edge filter, nor do we attempt to fit an ellipse. The cost measures
Eα ,Er are ignored in those cases.

5.2.2 Image Quality Measures

We define six measures for assessing the image quality of the
scatterplot. They are computed from the pixel image. We consider
only those pixels that have actually received marker ink. This
allows a meaningful definition of concepts such as contrast for
different numbers of data points. In our implementation, we use
the alpha buffer of the scatterplot for computing the image quality
measures; i.e., we assess them in terms of the density of the plot.
This coincides with a grayscale scatterplot. All values are in the
range [0,1].

Let P denote the set of pixels with non-zero opacity. The
average amount of opacity per pixel and the contrast of the
image are obtained as arithmetic mean and standard deviation,
respectively:

Iµ =
1
‖P‖ ∑

p∈P
p Iσ =

√
1
‖P‖ ∑

p∈P
(p− Iµ)2 . (13)

The image is fully black (or fully opaque) if Iµ = 1. The image
is brighter1 (or less opaque) as Iµ approaches 0. Similarly for the
contrast, Iσ , a low value indicates low contrast and a high value
indicates high contrast.

Just using Iµ and Iσ in an optimization leads to images with
extreme opacity and contrast. To obtain well-balanced images,
we prescribe a desired average opacity µ̄ and contrast σ̄ (in our
implementation, µ̄ = 0.5 and σ̄ = 0.1), and define

Iµ̄ = |µ̄− Iµ | Iσ̄ = |σ̄ − Iσ | (14)

1. Note that (1− Iµ ) can be interpreted as image brightness.
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as the distances from the desired average opacity and contrast,
respectively. In essence, using positive weights for Iµ̄ and Iσ̄ yields
a well-balanced image, which can be nudged into versions with
less/more opacity and less/more contrast by decreasing/increasing
the weights for Iµ and Iσ .

To assess the amount by which markers overlap with each other,
we denote the set of pixels covered by a single marker with M.
The amount of overlap is then computed as

I` = 1− ‖P‖
n‖M‖

, (15)

where n is the number of data points plotted. If no markers overlap,
then ‖P‖ = n‖M‖ and I` = 0. Increased overlap causes I` to
approach 1. Maximal overlap would be reached when all markers
are to be plotted to the same pixel location; then, ‖P‖ = ‖M‖
and, consequently, I` = 1− 1/n, which is approximately 1 for the
practically relevant values of n.

Overplotting occurs in a scatterplot at pixels where markers
overlap and their opacities accumulate to a value higher than the
maximum opacity (255 in our implementation). Hence, the opacity
has to be clipped for these pixels – fundamentally, this means that
we loose information. The amount of overplotting is estimated
using

Ip = 1−
∑

p∈P
p

n ∑
p∈M

p
(16)

where the nominator adds up the actual opacities in the image,
and the numerator computes the sum total of all marker opacities.
The supplemental material provides examples for overlap and
overplotting.

5.2.3 Perception of Classes and Outliers
We want to quantify how well certain groups of data points in
the scatterplot are perceived. This could be relevant for any group
of points, or even for individual points. Here, we concentrate on
classes and outliers. As already mentioned, we know the classes
and outliers before starting the optimization.

We employ structural similarity [36] to measure the perceivabi-
lity of a group of points. Structural similarity is a highly reliable
image quality assessment model often applied to measure the
similarity between two images. Please consult Wang et al. [36]
for details of the algorithm. Our code uses the mean structural
similarity as implemented in scikit-image [40], applied to the parts
of the scatterplot with non-zero opacity. In our case, for mean
structural similarity SSIM(a,b) the results returned are between 0
and 1, where 1 denotes that images a and b are identical.

Consider a group of points (class or outliers) and two scatter-
plots p0, p1, one without the group of points and one with the group
of points. We use structural similarity to measure the perceived
similarity between these two scatterplots. If the scatterplots are
rather similar, the group of points is difficult to perceive. If, on the
other hand, the two scatterplots are rather different, then the group
of points is easy to perceive.

Hence, we define the perceivability of a group of points as

S = 1−SSIM(p0, p1) (17)

When dealing with several classes ci, we compute S for each class
and define the total class perceivability on the basis of the lowest
result:

Sc = min(S(ci)) (18)

We consider outliers as one group o and compute the outlier
perceivability straightforwardly as

So = S(o). (19)

The supplemental material provides examples with minimized and
maximized perceivability of classes and outliers.

5.3 Combinatorial Optimization Approach
Since our primary interest lies not in efficient optimization but in
assessing a proof-of-concept, we opted for exhaustive search as the
optimization method. It is slow but guarantees finding the global
optimum. A practitioner using this approach might want to choose
a black box method by considering the desired trade-off in terms
of speed and probability of finding the global optimum.

For exhaustive search, we needed a design space that is not
so small as to be trivial, but not too large and hence practically
unsolvable. Our goal was to obtain a solution in a matter of minutes
with a regular laptop. Moreover, we aimed at covering a wide range
of permissible values for the design parameters in order to ensure
that the optimizer can consider also “radical” options.

Given these considerations, we chose the following discretiza-
tion of the design variables:
• Marker size: S= [3,5.5,8, . . . ,48,50.5,53],
• Marker opacities: O= [5,17.5,30, . . . ,230,242.5,255],
• Aspect ratio: A= [0.5,0.6, . . . ,1.4,1.5].

This yields a design space with ‖D‖= 4,851 possible designs. Note
that we used a fixed image width. For example, most scatterplots
shown in this paper have been optimized with an image width of
1,000 pixels, for obtaining images that have a reasonable resolution
for publication. Addressing image width as part of the optimization
would necessitate an acuity model. This would inform us about the
permissible marker sizes given a set viewing distance. We leave
this for future work.

Our optimization was implemented in Python with matplotlib,
numpy, scipy, and parallel python. While these libraries offer
significant speedups over classic Python code, the runtime is still
far from that of a dedicated C++ CPU/GPU implementation. Our
code evaluates around 220 designs per minute for a dataset with
10,000 data points and the selected weight set for correlation (see
Table 1) on a Dell XPS 15 laptop with an Intel Core i7-4712HQ
processor (4 cores).

With exhaustive search, the effectiveness of each design in
the space for the given dataset and task objective is quantified
by means of our cost function with specific weight factors. The
visualization expert implementing the optimization framework must
tune these weight factors for various tasks. To do this, we devised
a visualization tool that allows the expert to change these weight
factors interactively and create candidate weight sets that produce
designs with different characteristics. These candidate weight sets
can then be evaluated using the calibration procedure discussed in
the next section.

6 CALIBRATION OF WEIGHT FACTORS

Weights W(t) are specific to each data analysis task and must be
calibrated accordingly. However, once a valid weight set has been
identified, it can be used in varied instances of the respective task,
so re-calibration is needed only upon a change in task.

We approach the calibration of weights by using both expert
judgment (to set priors) and empirical data (to select best weight
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Figure 5. Plots for the same data (except that the left and middle plots
show only one of the three classes in the data) optimized using the weight
sets in Table 1 for different tasks: CorrAR and Corr (left), Outl (middle),
and Class (right).

sets). Because the terms in our cost function are normalized, it
would be tempting to use equal weights with no data. However,
this disregards the fact that improvements in objectives are
incommensurable and task-specific. For example, are improvements
of 1% in overplotting and contrast equally valuable for, say, outlier
detection? Alas, it is not known whether visualization experts can
reliably predict how subtle changes in scatterplot design affect user
performance. A weight must be set relative to other weights and to
the cost function [41]. In the field of optimization, expert ratings,
rankings, or paired comparisons are commonly used for weight
selection [41]. For these reasons, we opted for an empirical weight
acquisition procedure.

We designed a protocol that relies on user performance in
realistic tasks and used it to calibrate weight sets for the three
common data analysis tasks chosen. However, experts (co-authors
of the paper), however, decided the priors: the candidate weight
sets for the studies. Candidates that produce designs with different
characteristics were chosen through an extensive visualization of
the weight space. To ascertain the best weight set, we carried out
statistical testing on objective measures of performance (judgment
accuracy and task completion time).

Because weight calibration is task-specific, the calibration
experiment was run separately for each task. To avoid overfitting the
weights, we explored a wide range of dataset types and of numbers
of data points, classes, outliers, aspect ratios, and correlation
coefficients. We deemed crowdsourcing preferable to laboratory
studies, because it allows a larger, more diverse and representative
participant pool. However, crowdsourcing-based experiments have
to be short and participant pools large if one is to achieve sufficient
statistical power. Hence, only a few candidate weight sets per task
could be evaluated.

6.1 General Method

In all, four sub-studies were conducted:
• CorrAR: Correlation estimation with aspect ratio only
• Corr: Correlation estimation without aspect ratio
• Class: Class separation
• Outl: Outlier detection

Sub-study CorrAR justifies the definition of our measures Eα ,Er,
which are targeted at optimization of the aspect ratio, whereas
sub-study Corr applies these measures.

All the sub-studies used judgment tasks wherein the ground
truth is known. A question appeared on a page, with a scatterplot
on the left and text and response buttons on the right. A “no
clue” button was offered also. Every sub-study contained 36 or 54
questions in total, with each plot generated by means of one of the
weight set candidates.

Task / Superior Weight Variables
Sub-study Weight set wα wr wµ wσ wµ̄ wσ̄ w` wp wc wo

CorrAR AR 1.0 n/a n/a -1/2 0 1/2 1/2 -1/2 1/2 0 0
Corr RSMV2 1/2 1 -1/2 0 1/2 1/2 -1/2 1/2 0 0
Class CB 1/2 1 -1/2 0 0 -1/2 -1/2 0 1/2 0
Outl OSMV1_OP 0 0 0 0 1/2 1/2 -1/2 1/2 0 1

Table 1
The superior weight sets found in the calibration study for each task

(variable names for weights are given in the text).

Each participant was introduced to the task with a textual
explanation and example plots. Four easy screening questions,
similar to the questions in the study proper, were shown, one by
one. After the subject‘s commitment to a response, the correct
answer was shown. If more than two responses were incorrect, the
participant was disallowed from continuing; this ensured that all
participants understood the task.

In the experiment, questions were shown one at a time in
random order. The next page was loaded after one of the buttons
was clicked, or automatically after 15 seconds. Previous pages
could not be visited again.

To identify inattentive participants, an easy problem that
participants who succeeded in the training phase could be expected
to solve (a “catch question”) was assigned after every 8–9 questions.
Participants were informed that an award would be given only if
certain questions were answered correctly and a certain percentage
of correct answers was reached. The percentage of correct answers
and the number of remaining questions were shown during a break
halfway through and at the end of each problem page. Data of
participants who answered under 30% of the questions correctly or
got any of the catch questions wrong were discarded, to ensure the
validity of the data collected.

We used CrowdFlower as the crowdsourcing platform.2 Each
experiment took about 20 min, for which a worker was paid
1 USD.3 Only English-speaking participants with the highest level
of performance and reliability on CrowdFlower, who had not
previously participated in our experiments, and who reported not
to be color-blind were permitted to the study. All workers reported
using scatterplots at least occasionally and being at least somewhat
familiar with them. They had a high-school education at minimum.
All of these measures were taken to ensure the validity of the
crowdsourced results. At the end of a study, the participants filled
in a demographics’ questionnaire.

We used pseudo-random synthetic data to (1) obtain ground
truth and (2) avoid effects due to semantics. Points were pseudo-
randomly generated using a multivariate normal distribution with
a bivariate correlation in [-1,1]. In the class separation and outlier
detection sub-studies, points were evenly distributed among k
classes with k ∈ [2,5]. The Euclidean distance between each pair
of colors in a qualitative five-data-classes color scheme from
colorbrewer2.org was computed in CIELAB space, and pairs of
classes with greater overlap were assigned colors with a greater
distance. Other color optimization techniques could also be used
(e.g., [24], [25]).

Our key dependent variables were Success (proportion of
correct responses) and Time (completion time). For the correlation
task, we could also compute Error (distance from ground truth).
In all sub-studies, fewer than 5% of responses were discarded for
reason of “no clue” answers and timeouts.

2. http://www.crowdflower.com; alternative platforms can be used [42]
3. consistent with similar crowdsourcing-based experiments [29]
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Details about the calibration sub-studies, such as the candidate
weight sets tested, the number of participants and all results, are
given in the supplemental material.

Table 1 presents the weight sets selected for the optimizer, all of
which were superior to the other evaluated weight sets for at least
two of the dependent variables for the task in question. Different
weight sets lead to different designs for the same data. Hence, some
weight sets support a particular data analysis task better than others
(Figure 5).

7 EVALUATION STUDY

Three controlled evaluations were carried out on a crowdsourcing
platform, one per data analysis task. The goal was to assess
whether the optimizer can attain design quality approaching that
of two plotters offered in widely used statistical packages and
one presented in a previous study. We obtained several real-world
datasets and compared user performance against the three baselines.
Examples of the optimized plots and baseline designs are given in
the supplemental material.

7.1 General Method

We used the same tasks (involving correlation, classes, and outliers)
as in the calibration study, completing one study per task. We
chose the following three baselines for comparison: two plotters
in widely used statistical software – MathWorks MATLAB and
R: The R Project for Statistical Computing – and plots from a
study of scatterplot perception [12]. We denote these conditions as
T (presented in this paper), M (MATLAB’s), R (the R Project’s),
and S (for the earlier study’s). The baselines use fixed, human-
defined design parameters for all tasks. We chose these baselines
to cover a wide range of such parameters.4 Note that S is
slightly disadvantaged, because its original width (300 px) is
significantly less than that of the others. We included it in the
set of baselines because it has been used in previous studies of
correlation perception [11], [12].

The three studies followed a one-way within-participants design
with design method (T, M, R, S) as the factor.

We obtained 3–4 realistic datasets for each task. For the
correlation task, we used Cars [43], Out5D [43], Poverty [43],
and Shock [44]. For the class task, we used actg320ncc [44], Cars
[43], iris [43], and PBC [44], and SenseYourCity [45]. For the
outlier task, we used Bank [46], NHanes [44], Shock [44]. Sizes
ranged from 150 to 45,211 data points. We included real labels
in the rendered plots to make the task as realistic as possible. To
generate the optimized plots, we used the superior weights from
the calibration study (see Table 1).

In other key respects – i.e., in the task instructions, crowdsour-
cing platform, measures to ensure validity of the crowdsourced
results, dependent variables, and class coloring – the method
followed that of the calibration sub-studies. Two breaks were
given per participant. Data from participants who got any of the
three catch questions incorrect was discarded.

The participants all reported not being color-blind, and the
distribution of educational backgrounds was similar to that in the
calibration study. Familiarity with scatterplots ranged from 2.8 to
3.0 out of 4. The samples are characterized as follows:

4. Design parameters: M: marker size 6 px, opacity 255, aspect ratio 0.75,
width 1120 px; R: marker size 6 px, opacity 255, aspect ratio 1, width: 480 px;
S: marker size 2 px, opacity 255, aspect ratio 1, width: 300 px.

Study DV mean sig. Post hoc comp.
1. Correlation Error 0.19 T = M = R = S
1. Correlation Time 4.57 T = M = R = S
2. Classes Success 0.71 T = M = R = S
2. Classes Time 6.92 ** S < M, S < T
3. Outliers Success 0.78 ** M = R > T > S
3. Outliers Time 3.81 ** T < M = R < S

Table 2
Post hoc test results from three evaluation studies, where DV =

dependent variable; T = the present work, M = MATLAB, R = Project R,
S = previous study [12], and “sig.” = statistical significance: ** p < .01

Correlation: N=127 (95 males, mean age 32.6 years), 39
countries.
Class Separation: N=107 (82 males, mean age 31.7 years), 44
countries.
Outlier Detection: N=119 (89 males, mean age 33.7 years), 35
countries.

7.2 Results
Table 2 provides an overview of the data and tests for the T
condition across all three studies. The proportion of responses
discarded because of “no clue” answers and timeouts was 6.2% or
below in all studies.

We report the results of omnibus tests below and refer to Table
2 for post hoc comparisons. Post hoc comparisons were carried out
with the Wilcoxon signed-rank test and Holm’s correction.

Correlation: There was no statistically significant difference
among the four design methods for either of the dependent
variables, with all χ2(3)< 4.86 and all p > 0.182.

Class Separation: There was a statistically significant effect
for time, with χ2(3) = 18.40, p < 0.01. There was no effect for
success rate: χ2(3) = 2.98.

Outlier Detection: A statistically significant effect was seen
for success rate, with χ2(3) = 255.15, p < 0.01, and for time,
χ2(3) = 154.75, p < 0.01. Following widely accepted scientific
practice [47], we report non-parametric statistics. However, since
recent work [48] points to issues with practices in inferential
statistics, we provide box plots also, in the supplemental material.

7.3 Summary
In summary, the optimizer produced plots that achieved a level of
end user performance comparable to the baseline levels. For the
correlation estimation task, no differences were observed among
the methods. With the class separation task, plots in the S condition
were linked to the fastest performance, but the methods were
otherwise equal. The reverse was seen for the outlier detection task:
MATLAB and R produced the best plots in terms of success rate,
while our method was the best in terms of task completion time. In
that task, the S method produced the worst plots.

Given that (i) some of the human-designed presets produce
worse plots than our optimizer for certain tasks (e.g., S for outlier
detection), (ii) the performance of our optimizer is comparable
to that of human-designed presets (e.g., M, R, and S) across
the three tasks considered, (iii) there is a large number of poor
scatterplot designs in the design space and yet our optimizer picked
up reasonably good designs solely on the basis of perceptual
models, (iv) the performance of our optimizer can be improved
further (see the discussion in Section 10), non-experts can already
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(a) The optimized design maintains the general appearance.

(b) The fixed design changes the general appearance.

Figure 6. The Out5d dataset with Thor-Uran scatterplots in decreasing
image widths (from left to right: 1,500 pixel, 1,000 pixel, and 500 pixel).

use our optimizer with acceptable performance for any data and
tested tasks. Furthermore, this is indicative of such a method’s
potential for creating effective and efficient designs of any other
visual idiom, and it should add impetus to future work to improve
on our current method and address the limitations noted through
our study as discussed in Section 10.

8 CASE STUDIES IN ADAPTABILITY

This section examines the adaptability of our approach to varying
conditions. The evaluation study focused on “one-shot design” and
comparison with default settings of existing software. In real-world
activities, however, input data and conditions for presentation of
the results may change over time, and some plots might be needed
for multiple purposes. The two cases here entail varying (1) the
number of data points and (2) the image width.

Figure 1, at the start of the paper, shows scatterplots from a
2D slice of the pressure and temperature fields of the Hurricane
Isabel dataset from the IEEE Visualization 2004 contest, produced
by the Weather Research and Forecast (WRF) model [49]. The
original data are supplied on a 500×500 grid (250,000 data points),
and we lowered the resolution to 125× 125 to obtain a smaller
dataset that still contains comparable information. We optimized the
scatterplots in Figure 1(b) by using the superior weight set from the
Corr calibration sub-study (in Table 1). The results show that our
method adjusts the marker size and opacity to compensate for the
different dataset sizes without obscuring the interesting structure in
the data. This stands in contrast to Figure 1(a), for which a fixed
design is used, similar to what MathWorks MATLAB produces,
which requires manual adjustment by the user. This example shows
that our optimization approach is useful for obtaining insightful,
structure-revealing visualizations right from the start.

Our second case, illustrated in Figure 6, involved depicting
scatterplots from the out5d dataset with decreasing image width.

The optimized plots (with the Corr weight set in Table 1) are able
to adapt via decreased the marker size and opacity. Note how the
overall appearance of the plot stays the same, while the fixed design
is not able to maintain its initial appearance.

In summary, the optimizer adapted to these varying conditions
in a sensible manner, whereas the default-driven approach was
limited to a much narrower range of operation.

9 CONCLUSION

In this paper, we have investigated a novel optimization-based
approach to scatterplot design. The contribution is to implement
several models and measures of human perception in a cost
function and calibrate its weight factors empirically for a given
data analysis task of interest. The result is an optimizer that can
decide design parameters automatically for the input task and
dataset. We see great potential, especially for users who are not
trained in visualization. This simplifies design activity. Instead of
manual exploration of design parameters, one need only specify
the objectives for an optimizer, which does the rest.

Nevertheless, perhaps the most exciting aspect of this approach
is that it allows synthesizing research findings that have been
scattered across the literature and make them more readily operati-
onalized. Our present implementation includes perception models
and measures to address three common data analysis tasks and
three common design parameters: marker size, marker opacity,
and aspect ratio. This version can already attain the level offered
by widely used software for these cases. Given that there is
a very large number of poor scatterplots for any given design
problem, it is encouraging to observe that the algorithm was able
to pick reasonable and good designs with no other instruction than
perceptual models. Furthermore, we showed that this approach
can intelligently adapt design parameters to changes in input data,
automatically revealing patterns for which non-adaptive approaches
require user intervention and technical knowledge.

10 LIMITATIONS AND AVENUES FOR FUTURE
WORK

Future work will need to resolve the issue of how to balance
existing and new terms in the cost function. The terms employed
in the cost function should be well-balanced, such that it is easy to
weigh them against each other. For example, our current definitions
for Sc,So tend to force the design towards large and opaque markers,
which has proven beneficial for tasks of outlier detection and class
separation, respectively, but makes it difficult to find compromises
with other tasks. Similar issues have been noted previously in
heuristic optimization of layouts [32].

We should also try to expand the set of supported data analysis
tasks. Density estimation is especially interesting, since it may
benefit from semi-transparent, medium-sized markers; this is a
state that our system balances especially well against conflicting
constraints. Furthermore, to support differences in user abilities,
we could incorporate color models addressing dichromacy or
monochromacy. Displays with a low dynamic range could be
supported by adapting the design space. For expansion of the
design space, we highlight two design parameters: the color of
the classes and their rendering order. Both influence perceivability.
However, the inclusion of color as a new design parameter should
be accompanied by new terms for assessing, for instance, color
contrast, in future work. We also plan to extend this work to visual
idioms other than scatterplots.
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