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Figure 1: The Cars data set shown using the classic parallel coordinates plot (PCP) on the left, and our new edge-bundling layout on the right.
Our method clusters the data in each dimension, and sets these clusters in relation to each other by bundling the lines between two axes. The
bundles are then rendered using polygonal strips. This generates an abstract, clutter-reduced version of the classic PCP. We provide intuitive
interactions such as the shown axis-based selection, where all clusters of a chosen axis are automatically selected using a different color. In this
example, this has been done for the Weight axis. The colors will merge and split at other axes, thereby revealing the relations in a data set.

ABSTRACT

Parallel Coordinates is an often used visualization method for mul-
tidimensional data sets. Its main challenges for large data sets are
visual clutter and overplotting which hamper the recognition of
patterns in the data. We present an edge-bundling method using
density-based clustering for each dimension. This reduces clutter
and provides a faster overview of clusters and trends. Moreover, it
allows rendering the clustered lines using polygons, decreasing ren-
dering time remarkably. In addition, we design interactions to sup-
port multidimensional clustering with this method. A user study
shows improvements over the classic parallel coordinates plot in
two user tasks: correlation estimation and subset tracing.

Index Terms: I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1 INTRODUCTION

The parallel coordinates system arranges several dimensions as par-
allel axes next to each other in the plane [10]. In contrast, the Carte-
sian coordinates system arranges its axes orthogonally. A parallel
coordinates plot (PCP) [11, 23] of a multidimensional data set pro-
vides an overview of the relations between the dimensions. It has
become a standard tool in visualization [6].

A classic PCP renders each observation point as a line. Espe-
cially for large data sets, this often creates visual clutter which
makes it difficult to discern patterns in the data. A related issue
is that lines are getting plotted on top of each other, which can even
hide information.

An approach to mitigate these issues is data clustering. The ag-
gregated information can then be used to render the PCP in an il-
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lustrative fashion using different forms of edge-bundling [7,18, 25]
or to distinguish between major trends and outliers [19]. This often
leads to clutter-reduced and more informative visualizations.

However, these methods trade the more aggregated display of in-
formation with a loss of visual correspondence to the classic PCP.
For example, previous edge-bundling methods bent the lines be-
tween two axes towards the center of a multidimensional cluster.
But this cluster does not necessarily have an informative appear-
ance between these two neighboring axes. In fact, it may not even
reflect the relation between the two axes at all.

Our method clusters the data in each dimension independently.
These clusters are shown on each axis and the lines are bundled
to form polygonal strips between the clusters of neighboring axes.
Hence, the clustering is directly related to the shown dimensions
in every part of the plot. The result is an abstract, aggregated ver-
sion of the classic PCP with less clutter. We expect this layout to
be particularly helpful for tasks with large data sets that involve es-
timating correlations and identifying relationships across multiple
dimensions.

Instead of rendering a line for each observation point, we render
a bundle of lines as one polygonal strip. This makes the rendering
time independent of the number of observation points. Hence, our
method is responsive even for very large data sets.

Classic interactions with parallel coordinate plots include brush-
ing of subsets, axis scaling, or axis reordering. They aid in reveal-
ing the complex relations in multidimensional data sets. We provide
additional interactions with our method that make direct use of the
per-axis clustering. Most notably, it is very fast with our method to
brush subsets and form logical operations between them.

We conducted a user study comparing the classic PCP against
our visualization. Users estimated the linear correlation between
two dimensions, and they traced a subset across multiple dimen-
sions. The results show statistically significant improvements in
both tasks when using our visualization.

The paper is organized as follows: After reviewing related work
in Section 2, we present our method in Section 3. The user study is
discussed in Section 4. Finally, we discuss further results in Section
5, and draw conclusions in Section 6.



2 RELATED WORK

Since the thorough study of parallel coordinates by Inselberg [10]
and its subsequent introduction as a visualization tool [11,23], it has
become a standard for multidimensional data analysis and inspired
a large amount of research. We concentrate here on the work that is
most related to our approach and refer for more information to the
state of the art report by Heinrich and Weiskopf [6].

Visual clutter due to overplotting is often cited as a major chal-
lenge for parallel coordinates [6]. Clustering the data is one pos-
sible approach to deal with it. Clusters can then be highlighted in
the visualization using color or edge-bundling. The original edge-
bundling method [8] uses cubic B-splines to show adjacency re-
lations atop different tree visualization methods. This has been
adapted to parallel coordinates plots by McDonnell and Mueller
[18] such that the polylines become polycurves, which are bent be-
tween two axes towards the center of the cluster. This successfully
frees up screen space and often creates clutter-reduced visualiza-
tions. The resulting curves are only C0-continuous (not smooth)
at an axis making it harder to visually trace them. This applies to
the classic PCP as well. Heinrich et al. [7] solve this using a C1-
continuous bundling. Zhou et al. [25] present a bundling method
that creates visual clusters without the need to cluster the data it-
self.

Existing work on edge-bundling concentrates on combining mul-
tidimensional clustering methods with parallel coordinates, but a
multidimensional cluster does not necessarily have an informative
appearance between two neighboring axes, nor does it necessarily
reflect the relation between two axes at all. In contrast, we create
an abstract version of the classic PCP, where we strive to retain
its visual characteristics to some extent. Our method uses one-
dimensional clusters, sets them in relation to each other between
two axes, and enables the user to create higher-dimensional clus-
ters using intuitive interactions.

Many clustering methods concentrate on the main trends and dis-
regard outliers. But since outlier detection is of interest in some
applications, Novotny and Hauser [19] consider the lines between
two axes and distinguish them into clusters of similar lines and out-
liers. The clusters are then visualized using parallelograms and the
outliers as lines. The method scales to very large data sets, since
most observation points are rendered using a few parallelograms.
Since the clustering is done in each segment separately, the paral-
lelograms and their appearance may not be visually coherent at an
axis, which makes tracing trends over several axes potentially dif-
ficult. In contrast, our method produces visually coherent results,
since the one-dimensional clustering creates a setup around an axis,
which is independent of the segment to the left or right.

In an effort to reduce visual clutter, a number of methods render
polygons instead of lines. This goes back to Inselberg [10] who
proposes to represent a multidimensional hypersurface via the en-
velope of its polylines in the PCP. The above mentioned [19] is
another example. Fua et al. [4] render the PCP envelope of mul-
tidimensional clusters. McDonnell and Mueller [18] draw the en-
velopes of edge-bundled clusters in an illustrative fashion. Visual
clutter can also be reduced by rendering into high dynamic range
textures and applying different transfer functions to reveal other-
wise hidden structures, as done by Johannsson et al. [13].

Kosara et al. [14] introduced the notion of parallel sets, where
categorical data is rendered in a PCP using parallelograms. The
thickness of the parallelogram reveals the number of observation
points that are in both of the two connected categories. In our
method, we follow [18] in using opacity to convey the number of
observation points, since we concentrate on continuous data where
the thickness of a connecting bundle or strip is strongly influenced
by the metric in the parallel coordinates plot.

Several user studies assess the effectiveness of PCP versus scat-
ter plots [9, 15, 16]. Kuang et al. [15] showed that PCP are better

Figure 2: Simple example showing the Gaussian kernel density esti-
mate for six observation points. A wide Gaussian kernel (left) leads
to less clusters than a narrow kernel (right).

than the classic scatter plot in case of a low number of dimensions
and a low density of the data set. Heinrich et al. [7] confirmed the
effectiveness of edge-bundling versus the classic PCP. Johansson
et al. [12] evaluated the capacity of humans to recognize patterns
in PCP in the presence of different amounts of noise. Siirtola et
al. [20] studied how first-time users acquired proficiency in using
PCP. PCP have been evaluated for use in practical applications such
as data base access [21] and interactive alarm filtering [1].

3 METHOD

Our method clusters the data for each variable (Section 3.1), bun-
dles the polylines near each axis (Section 3.2), renders the bundles
using polygonal strips (Section 3.3), and allows for several intuitive
interactions (Section 3.4).

3.1 Data Clustering
We are clustering the observation points for each continuous vari-
able independently. One such cluster represents observation points
that are close to each other in that dimension. These points will
later be bundled on the respective axis of the PCP.

We use a Gaussian kernel density estimation [22] to compute
the density f (x) of the observation points xi for a given variable as
follows:

f (x) =
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where σ refers to the standard deviation. A good intuition behind
f (x) is that it is high in areas with many observation points, and
low in areas with few observation points.

Minima and maxima of f (x) can be used to cluster the observa-
tion points. A maximum of f (x) is a point of locally highest den-
sity. It is the center of a cluster. On the other hand, a minimum of
f (x) is a point of locally lowest density. It is the separation between
two clusters. A cluster is then defined by the 3-tuple (x−,x0,x+),
where x0 is the location of the maximum, and x−,x+ are the loca-
tions of the two minima on either side.

The standard deviation σ can be seen as a scale-space parameter:

• A higher σ leads to a wider kernel, which leads to a wider
impact of each observation point on the density f (x). Conse-
quently, f (x) has less minima and maxima, and therefore also
less clusters.

• A lower σ leads to a narrower kernel, which leads to a nar-
rower impact of each observation point on the density f (x).
Consequently, f (x) has more minima and maxima, and there-
fore also more clusters.

Note that this is a hierarchical clustering: we start at a single cluster
for a high σ1, i.e., f (x) has one maximum and two minima to its left
and right. Some σ2 < σ1 triggers a topological change of f (x) by
introducing a pair of one minimum and one maximum. This splits
the previous cluster into two clusters. Figure 2 illustrates this. The



Figure 3: Normalized Gaussian kernel density estimations for dif-
ferent σ creating different numbers of clusters k for the Horsepower
variable of the Cars data set.

process continues with σ3 < σ2, which splits one of the two clusters
and leaves the other intact, i.e., we have three clusters for σ3.

We use this in our user interface (see also Section 3.4): the user
is able to choose the number of clusters k for each variable, thereby
effectively varying the level of detail used to represent a variable.

For each variable, we precompute the clusterings for k =
1, . . . ,kn number of clusters. To do so, we densely sample σ to find
the σk at which a cluster splits (let k denote the number of clus-
ters for a given σk). This is done until we computed σ1, . . . ,σkn .
For most data sets we found it sufficient to sample σ 2000 times
between 25% and 1% of the data range.

The precomputation is the most expensive part of our method,
but still feasible. One variable with 105 observation points needs
less than a minute on current desktop hardware in a single comput-
ing thread (for kn = 99). We use OpenMP to precompute the clus-
tering for several variables in parallel. For the well-known Cars
data set [24] (5 continuous variables, ≈400 observation points), the
precomputation is done in half a second. Figure 3 shows the density
functions for σ1, . . . ,σ4 for a variable of this data set.

Categorical variables are not clustered using the above method.
Instead, we treat each category as a cluster.

We could also use any other clustering method, since the visual
layout of the plot is independent of that (see next section). We
chose this particular method for two reasons: (1) its hierarchical
nature is intuitive, since the clusters for k and k+1 are nested. This
makes the effects of increasing/decreasing the number of clusters
predictable to the user. And (2), the density estimate will be used
later for rendering (Section 3.3).

3.2 Visual Layout using Edge-Bundling
In a classic parallel coordinates plot, the observation points are
drawn as polylines. Our new layout treats them as cubic Bézier
splines. The purpose is to bundle them according to the clustering
in the vicinity of each axis, and to provide smooth curves that are
easy to follow with the eyes. In this section, we describe our edge-
bundling layout by means of actually drawing a curve for each ob-
servation point. In the next section, we will see how this can be
simplified to drawing a small number of polygonal strips.

Consider two neighboring axes A and B of a parallel coordinates
plot and the area between them. We place a virtual bundling axis
nearby each data axis, as illustrated in Figure 4. Let us denote them
as A′ and B′. Note how this segments the area between the data axes
into three different parts. The distance between a data axis and its
bundling axis is a parameter in our software, but we keep it fixed to
10 percent of the distance between the data axes for all screenshots
in this paper.

Figure 4: Visual layout between two data axes A and B. Edges are
bundled near each data axis according to the clusters in each dimen-
sion. To do so, we form a cubic Bézier spline out of three segments.

(a) Classic Parallel Coordinates Plot.

heavy carsstrong engineshigh displacement

(b) Parallel Coordinates Plot using our edge-bundling layout.

(c) Parallel Coordinates Plot using our edge-bundling with strip rendering.

Figure 5: Comparison of the different PCP layouts. Shown are three
dimensions from the Cars data set.



(a) Two bent Bézier curves do not
keep a constant distance from
each other.

(b) Polygonal strip with constant width
between two clusters constructed
by offsetting a Bézier curve.

Figure 6: Construction of polygonal strips between clusters, which
eliminate the need to draw a Bézier curve for each observation point.

Recall from the previous section that a cluster is represented on
the data axis by the 3-tuple (x−,x0,x+). On the bundling axis, we
represent a cluster as well, but with a smaller segment:(

x0 + s(x−−x0) , x0 , x0 + s(x+−x0)
)

(2)

where s is a scaling factor, which we keep constant throughout the
paper at s = 0.15. Clusters are shown in Figure 4 as colored seg-
ments on an axis. A point xA on the data axis is represented in its
cluster on the bundling axis at xA′ = x0 + s(xA−x0).

Consider an observation point (xA, xB). The classic PCP repre-
sents it using a straight line. In our layout, we create three cubic
Bézier spline segments (Figure 4). The first segment starts from the
data axis A at xA and ends at the bundling axis A′ at the point xA′ .
The second segment starts at xA′ and ends at xB′ . The third segment
runs from xB′ to xB.

The two additional Bézier points per cubic segment are defined
such that we obtain a G1-continuous spline. As illustrated in Fig-
ure 4, this can easily be done by horizontally offsetting the start
and end point of each segment. Note how this setup creates Bézier
splines that are not only smooth between two data axes A and B, but
also across a data axis. This way, the curve of an observation point
is easy to follow with the eyes.

Figures 5a–b visualize the Cars data set using the classic PCP
and the PCP with our edge-bundling layout. Loosely spoken, we
bundle the curves near a data axis, then we bring these bundles to
the next data axis, where we un-bundle them. Note how this imme-
diately reveals the relationships in this data set: engines with a high
displacement create lots of horsepower, which is in turn needed to
drive heavy cars. The bundled lines are easy to follow and they
elucidate the relationships between the clusters on each axis.

3.3 Representation using Polygonal Strips
It is easy to see that our edge-bundling layout has a smaller visual
footprint than the classic PCP, i.e., less pixels are filled. This leads
to less visual clutter for many data sets. However, drawing a curve
for each observation point has three disadvantages:

• The bundling brings the curves closer to each other, which
actually increases the amount of overplotting within a bundle.

• The rendering performance depends on the number of lines.
This is also true for the classic PCP. Hence, data sets with a

Figure 7: Construction
of the polygonal strip be-
tween a data axis and its
bundling axis. This de-
fines the appearance of
the clusters around each
axis.

very large number of observation points cannot be explored
interactively.

• Two Bézier curves starting and ending with the same vertical
offset do not have the same distance from each other over the
course of their run: the more they are bent, the closer they
come to each other in the middle (Figure 6a). In other words,
a highly bent line bundle may become very thin.

We solve these issues by rendering a small set of polygonal strips
instead of the large number of Bézier curves. This is based on the
observation that our edge-bundling layout creates a maximum of
kA×kB bundles between two axes, where kA,kB refer to the number
of clusters on either axis. Hence, we draw a strip between two
clusters if there is at least one observation point in both clusters.

The polygonal strip is created using two offset curves as illus-
trated in Figure 6b. First, we compute a Bézier curve between the
centers of the two clusters on either bundling axis. For each sample
on the Bézier curve, we create a point on an offset curve by moving
perpendicular to the tangent of the Bézier curve. The offset distance
in Figure 6b is constant, since both clusters have the same size. If
they do not have the same size, then we linearly interpolate between
them to get the offset distance along the strip. Note that these offset
curves guarantee that the width of the strip depends only on the size
of the connected clusters, but not on how much it is bent. Further-
more, note that the offset curves cannot be represented as Bézier
curves, in general.

It remains to draw the actual cluster between the data axis and
its bundling axis. We use the setup shown in Figure 7 where the
outermost Bézier curves define the strip.

We triangulate the strips and render them using OpenGL. This
provides fast performance and hardware antialiasing. Furthermore,
we make use of the following graphical attributes:

• The grayscale value of the rendered strip reflects the number
of observation points in that strip.

• The strips can only intersect between two bundling axes. We
render them in the order of increasing number of observation
points.

• We render halos around the strips for a better disambiguation
at intersections.

Figure 5c shows an example from the Cars data set.
Note how the issues from the beginning of this section are ad-

dressed by our solution:

• There is no overplotting of lines anymore. Of course, the
problem has been shifted to the grayscale values of the strips
(number of observation points), which may have a large vari-
ation, i.e., a high dynamic range. We provide simple tools
such as gamma correction in our software to mitigate this is-
sue. Our experience shows that it is easier to deal with that
than with overplotting lines.



Figure 8: Arbitrary selections specified in
other visualizations are shown coherently by
our polygonal strips using color blending. This
way, our method can be applied in Linking &
Brushing scenarios.

(a) Hovering over a cluster creates a selection of all
its observation points. This quickly reveals their
distribution on other axes.

(b) Hovering over an axis automatically selects all its
clusters with a different color. Here, we hover with
the mouse cursor over the weight axis. Note how
the colors merge in other regions, e.g., the violet
color at the left.

Figure 9: Interactive quick selection modes. Hovering with the cursor over a cluster or axis
automatically highlights parts of the data set.

• The rendering performance depends on the number of strips,
which in turn depends on the number of clusters. Even data
sets with a very large number of observation points can be
explored interactively.

• The strips between the bundling axes have a well-defined
width due to the offset curves.

In a classic PCP, a selection of observation points can easily be
highlighted by drawing the corresponding lines in a different color.
We can also highlight selections with our setup. To do so, we need
a representation of the observation points at each cluster: a bitset
records for each observation point whether it is in this cluster or
not. A selection of observation points can also be given as a bitset.
A simple logical AND combination between the cluster bitset and
the selection bitset gives a new bitset with the selected points in that
cluster. This result is further used to obtain a bitset describing the
selected points in the strip between two clusters (again, a simple
AND combination). Finally, we colorize the strips according to the
fraction of selected / total number of observation points in that strip.
In case of more than one selection, we blend the colors accordingly.

Hence, our method can be used in Linking & Brushing scenar-
ios [2] to show arbitrary selections specified in other visualization
techniques such as scatter plots (Figure 8). Since we use boost’s
bitset implementation, we have a rather small memory overhead (1
bit per observation point and cluster) and very fast logic operations.
We found this setup to be very responsive, even for very large data
sets. Please see the supplemental material for screen capture videos
showing this.

Our current implementation does not support smooth selections
[3, 5, 17], but it is principally possible at the expense of doing the
slower fuzzy logic.

3.4 User Interactions

Our method allows for the typical interactions of classic PCP: scal-
ing an axis, changing the order of the axes, or brushing (selecting)
the observation points in a range of a variable.

Due to the clustering and the rendering of strips, we can provide
some additional interactions:

• A quick selection mode is available, where hovering with the
mouse over any cluster or bundle strip selects the respective
observation points. They are then highlighted in the entire plot
as discussed in the previous section. Figure 9a shows this.

• An axis-based selection mode is available, where hovering
over an axis creates several selections at once: each cluster
on that axis is automatically selected with a different color.

Figure 9b shows this. Note how the colors blend at loca-
tions where the observation points from two different clusters
merge.

• It is also straightforward to create logic combinations of clus-
ters. To do so, one simply clicks on the clusters in the desired
order. Holding down the Shift- or Ctrl-key determines the
type of the logic operation (AND, OR).

• The user can interactively change the number of clusters per
variable. In our implementation, this is done using the mouse
wheel.

Please see the videos in the supplemental material for an impres-
sion of these interactions. Note that the above interactions limit the
definition of selections to clusters, bundle strips, and their combi-
nations. To define arbitrary selections, we use the typical brushing
on an axis known from classic PCP.

4 USER STUDY

We conducted a comparative user study to assess the user perfor-
mance in two visualization tasks that are typical to PCP. The study
was done using static images shown on a web questionnaire. For
comparison, each respondent did each task with both our method
and the classic PCP. Two tasks were used:

• Task 1: Correlation estimation
This task asks users to identify the linear correlation of two
variables, which is a value that varies continuously in the
range [−1,+1] as follows:

– +1 denotes a positive correlation. Example: Earning
more money leads to more money in the bank.

– 0 denotes that there is no correlation. Example: Earning
more money has no effect on the outside temparature.

– −1 denotes a negative correlation. Example: Spending
more money leads to less money in the bank.

• Task 2: Subset tracing
This task asks users to follow some observation points over
several axes in the plot. This task was done in two conditions:
with and without color for selection. While we did not test
user interactions directly, highlighting a selection using color
shows the effect of an user interaction.
For an example of this task, consider a data set that tells us
where each student and each professor have lunch at the uni-
versity: in the canteen, in a restaurant, or in the office. We
asked the participants to estimate the percentage of students
that eat in the canteen, in a restaurant, or in the office. To do
so, they had to follow the lines or polygons in either visual-
ization.
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(b) Task 2: Tracing a subset,
without color.

11.78 8.15 
0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

Classic Bundled

Er
ro

r 

(c) Task 2: Tracing a subset,
with color.
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(d) Task 2: Main effect of color
presence.
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Figure 10: The results of our user study show that our bundled PCP increases the users’ accuracy in complex visual data analysis tasks. The
plots show error measures: lower values are better. The vertical bars denote the 95% confidence interval. See the text for details.

4.1 Method
The link to the questionnaire was sent to computer science students
and researchers at a local university. Task 1 has 82 valid respon-
dents, Task 2 has 55.

Task 1 has one independent variable, Visualization, with two lev-
els: classic PCP vs. bundled PCP. Task 2 has two independent vari-
ables: Visualization (2 levels) and Color (color/black-white).

The Cars data set and some synthetic examples (e.g.,
with a fully positive/negative correlation) have been used.
In Task 1, the participants had to judge the correlation
of two variables and make a decision on a discrete scale
(−1,−0.75,−0.5,−0.25,0,0.25,0.5,0.75,1). In Task 2, we asked
the participants to trace a subset of the data over several dimen-
sions. Start and end axes were categorical. The subset to follow
was defined as a category. There were two metric axes between
the left and right categorical axes. The right categorical axis had
always three categories, i.e., we asked for three numbers summing
up to 100%.

Every task was carefully explained to the participants. Further-
more, the actual task was preceded by a simple toy example that
was used as a screening criterion. An incorrect answer implies that
a participant has either a poor understanding of parallel coordinates,
or is not motivated to complete the task. To avoid learning effects,
a specific data arrangement was never shown twice. The order in
which the methods were presented to the user was randomized for
each task.

4.2 Results
To preprocess the data, we removed the data of respondents who
completed the tasks only partially.

For the remaining respondent pool, we calculated the mean error
in each task (see below) and in each condition. We then screened
out participants with a mean error larger than the mean +2 standard
deviations of the whole population.

The dependent variables were computed for the two tasks as fol-
lows:

• Task 1: As error measure, we calculated the absolute differ-
ence between the response and the ground-truth correlation
(Pearson correlation coefficient). 95 participants have com-
pleted Task 1. 8 of them were outliers, and 5 failed the screen-
ing questions with a mean error larger than 0.5.

• Task 2: The error measure was calculated as Euclidean dis-
tance between the responses and the ground-truth percent-
ages. 61 participants completed this task, out of which 6 were
outliers.

4.2.1 Task 1: Correlation estimation
To test the effect of Visualization, we performed a paired t-test.
The error was by 0.16± 0.04 (31%) smaller for our bundled PCP
(µ = 0.36) than for the classic PCP (µ = 0.52). This difference was
statistically significant: t(81) = 7.57, p < 0.001. See Figure 10a.

4.2.2 Task 2: Subset tracing
Figures 10b–c show the mean and the standard deviation for this
task for all four conditions.

To test the effects of Visualization and Color, we carried out
a two-way ANOVA with the two independent variables. There
was no main effect of Visualization: F(1,54) = 0.0035, p = 0.95.
However, the presence of color decreased the average error by
24.54± 3.33 (71%) from 34.51 to 9.96, as shown in Figure 10d.
The main effect of Color was statistically significant: F(1,54) =
215.36, p < 0.001.

Interestingly, there was a significant interaction effect between
Color and Visualization: F(1,54) = 4.68, p = 0.035. As it can
be seen in Figure 10e, our bundled layout benefits more from the
presence of color than the classic PCP. User’s error decreases 78%
with our technique and only 64% with the classic PCP.

4.3 Interpretation
To sum up, the bundled PCP increases the users’ accuracy in com-
plex visual data analysis tasks. The users had a statistically signifi-
cant lower error for judging the correlation between two variables,
and for tracing a subset when color was present. When color was
not available for tracing a subset, the performance was at the same
level as with the classic PCP. The use of color is particularly useful
for tracing in the bundled PCP.

5 FURTHER RESULTS AND DISCUSSION

Figure 11 shows the out5d data set [24], which contains remote
sensing data from a region in western Australia. The data set con-
tains 16384 observation points and is an example for the overplot-
ting issue of the classic PCP. The top row of Figure 11 shows the
classic PCP and our method without a selection, i.e., as grayscale
visualizations. Here, the overplotting in the classic PCP hides im-
portant relations. An example is the relation between thorium and
uranium shown as the two right-most axes. The classic PCP is al-
most entirely black between these axes, and makes it therefore im-
possible to draw conclusions about the data. Our method, on the
other hand, clearly shows a positive correlation between thorium
and uranium. This can be attributed to the explicit aggregation
when converting to the strip-based representation.

Using color to highlight single selections reveals more informa-
tion for both methods – as we already found out in our user study



Figure 11: The out5d data set with 16384 observation points shown
without selection, with single selections, and with several selections
at once. Left: classic PCP. Right: our method.

–, but showing all three selections at once (last row of Figure 11)
works better for our method due to the explicit merging of colors
instead of the simple overplotting in the classic version. In this ex-
ample, the three clusters on the left-most axis have been assigned
the primary colors.

The Iris and the netperf data sets [24] are shown in Figure 12.
They are quite small data sets with 150 and 179 observation points,
respectively. They show that our method creates an abstract version
of the classic PCP – thereby retaining some of its visual character-
istics. For example, note the large empty space between the two
right-most axes of Figure 12a: both methods show it in a similar
way. Note the dominance of blue and green in Figure 12b and how
the shape of these selections is similar for both methods. Similar
observations can be made for the Cars data set in Figure 5.

Comparison to other edge-bundling approach Figure 13
shows the netperf data set using the edge-bundling method of Mc-
Donnell and Mueller [18]. In contrast to our method, the bundling is
based on a clustering defined for all dimensions at once. Hence, this
method is well-suited for showing and distinguishing multidimen-
sional clusters atop a PCP. In general, these clusters intersect each
other in the PCP visualization space and project to non-contiguous
subsets on each axis. This is contrary to our approach, which works
with contiguous clusters on each axis. This enables us to bundle the
lines around each axis, whereas [18] bundles between two axes.

(a) Iris data set.

(b) Netperf data set.

Figure 12: Our method is an abstract version of the classic PCP. It
retains some of its visual characteristics and adds new possibilities
such as faster interactions.

Figure 13: The netperf data set visualized using the edge-bundling
method of McDonnell and Mueller [18]. Left: k-means clustering for
k = 3. Note how the multidimensional clusters overlap on several
axes. Right: When merging two clusters (red+green=orange), the
edge-bundling of [18] changes the bending of the curves.

Both methods deal with large data by rendering sets of lines as
polygons. For [18], the non-contiguous subsets on each axis mani-
fest as holes within their polygons (see Figures 8, 9, 10, 11 in [18]).

Our method lends itself to direct interactions with the clusters,
since the polygonal strips are easy-to-click targets. Creating a mul-
tidimensional cluster using the described interactions (Section 3.4)
is a matter of a few clicks. Interactions with clusters have not been
described in [18], but it is easy to see that merging two clusters
(OR combination) leads to a different bending of each curve in their
setup. In other words, such interactions would lead to a visually in-
coherent behavior that is difficult to predict by the user.

In summary, while [18] also uses clustering and bundling tech-
nologies, their approach is orthogonal to ours. In fact, it is an inter-
esting question for future research how multidimensional clusters
can be visualized on top of our method by bending our strips simi-
lar to how it is done in [18].

Large data sets Figure 14 shows a rather large data set with
more than 100000 observation points. It contains biomechanical
simulation data. Interacting with the classic PCP becomes painstak-
ingly slow for such large data sets. Note that this is not an imple-
mentation or hardware issue, but a fundamental matter: the render-
ing speed depends on the number of observation points. In contrast,
our method is responsive, because it only depends on the number of
clusters. In the example from Figure 14, a trained user needed 15
seconds to create a multidimensional selection using our method,
versus 40 seconds to do the same with the classic PCP. See also the
supplemental video for a demonstration. Also note that the actual
selection action in our method can be a simple mouse click on a



Figure 14: Biomechanical data set with 116732 observation points.

cluster (or a strip between two clusters). Contrary, the classic PCP
requires a dragging motion for a selection.

6 CONCLUSION AND FUTURE WORK

In this paper, we gave the following contributions:

• An edge-bundling method for parallel coordinates plots,
which is built on one-dimensional clustering.

• A set of interactions for this method.

• A user study comparing our method to the classic PCP, and
evaluating the utility of color in PCP plots.

The goal of our work was to address well-known shortcomings
of PCP: visual clutter and overplotting. We addressed these with an
edge-bundling method that utilizes one-dimensional clustering on
each axis. This way, our edge-bundling leads to an abstract version
of the classic PCP. The bundles are rendered as polygonal strips,
which leads to a clutter-reduced visualization and the rendering
speed becomes independent of the number of observation points.
We have shown how the clusters on each axis and the bundle strips
between the axes are useful as handles for intuitive and fast interac-
tions. Multidimensional clusters can be created and trends isolated
with simple gestures.

The examples and the data from the user study show that the
method is effectively increasing the analysis performance of users.
In particular, we found empirical evidence for improvements in user
performance in correlation judgment tasks and subset tracing tasks.

An obvious limitation of our method is that it works best for a
small or medium amount of clusters per variable, say 2-5 clusters
per axis. More clusters create too much visual clutter. If there is just
one cluster, then bundling the edges around that axis is useless. In
this sense, it is important to choose a clustering method that works
well with a specific data set. One may actually choose different
clustering methods for different variables within the same data set,
since our subsequent visualization is not affected by that. However,
clustering data is always an application-dependent issue.

One of the virtues of our method is its aggregation capability:
the big trends are highlighted. By design, this introduces a certain
level of abstraction where individual observation points cannot be
seen anymore. In particular, outliers are not taken explicitly care of
at the moment. It would be interesting for future work to investigate
how the principal idea behind the outlier preservation of Novotny
and Hauser [19] can be applied to our method as well.
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