Comparative Ultrastructural Anatomy of Dendritic Spines

Abstract

The synaptic weight, a central concept in numerous neuroscience studies, is still lacking a proper biophysical foundation at the level of macromolecular assemblies. Given their intrinsic morphological plasticity, dendritic spines are prime candidates to modulate synaptic weights. Understanding the structural dynamics of spines is thus key to understanding synaptic transmission and plasticity. So far, electron microscopy tomography (EMT) is the only imaging method that provides an isotropic resolution that is sufficient to study the ultrastructural anatomy of these ubiquitous structures. Applying an advanced topological segmentation-algorithm (Günther et al., Computer Graphics Forum 31, 2012) to analyze EMT image stacks, we were able to extract the entire actin cytoskeleton of individual spines from the mouse cerebellar and hippocampal formations. Here, we present results of this methodological pipeline, focusing on the cytoskeletal organization as morphological alterations of dendritic spines are always driven by changes of the underlying macromolecular structure that provides their mechanical stability.

Dinu Patirniche	LMU
Markus Breit	GCSC
Tino Weinkauf	KTH
Eric Bushong	UCSD
Sebastien Phan	UCSD
Gillian Queisser	GCSC
Mark Ellisman	UCSD
Andreas Herz	LMU

Morse-Smale Segmentation of Actin Filaments from Electron-Tomograms

Results

Spatial Node Rank Distribution

head

neck

