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Abstract

The finite-time Lyapunov exponent (FTLE) has become a standard tool for analyzing unsteady flow phenomena,
partly since its ridges can be interpreted as Lagrangian coherent structures (LCS). While there are several definitions
for ridges, a particular one called second derivative ridges has been introduced in the context of LCS, but subsequently
received criticism from several researchers for being over-constrained. Among the critics are Norgard and Bremer
2012 [1], who suggest furthermore that the widely used definition of height ridges was a part of the definition of
second derivative ridges, and that topological separatrices were ill-suited for describing ridges. We show that (a) the
definitions of height ridges and second derivative ridges are not directly related, and (b) there is an interdisciplinary
consensus throughout the literature that topological separatrices describe ridges. Furthermore, we provide pointers to
practically feasible and numerically stable ridge extraction schemes for FTLE fields.

For a scalar function σ : D ⊂ R2 → R, the following
definition is given by Shadden et al. [2]. The Hessian of
σ is denoted by Σi j = ∂2σ

/
∂xi∂x j.

Definition. A second derivative ridge of σ is an in-
jective curve c : (a, b) → D satisfying the following
conditions for each s ∈ (a, b):
SR1. The vectors c′(s) and ∇σ(c(s)) are parallel.
SR2. Σ(n,n) = min‖u‖=1Σ(u,u) < 0, where n is a unit
normal vector to the curve c(s) and Σ is thought of as a
bilinear form evaluated at the point c(s).

It has been noted by several researchers that curves
described by the conditions SR1 and SR2 are over-
constrained [3, 1]. This can be seen by noting that both
conditions prescribe a different tangent direction for the
curve c: SR1 describes c as a curve tangential to the
gradient. The equation in SR2 describes c as a curve
tangential to the eigenvector of the Hessian correspond-
ing to the larger (signed) eigenvalue. Due to this over-
constrained definition, second derivative ridges are the-
oretically infeasible.

This observation was recently also published by Nor-
gard and Bremer [1], but unfortunately, it led them
to several incorrect conclusions. Firstly, they claimed
that omitting condition SR1 leads to the definition of a
height ridge. However, SR2 does not define a height
ridge but a tensor field line, where the tensor field is

given by the Hessian Σ. The definition of a height ridge
fundamentally differs from SR2, as it does not involve
the curve normal (or tangent) direction, but only deriva-
tives of σ. It is obtained by replacing in SR2 the curve
normal by the cogradient of σ, i.e., the gradient of σ
rotated by π

2 .

Secondly, the authors of [1] made the following state-
ment: “More generally the result proves that in general
(height) ridge lines and integral lines (curves tangent to
the gradient) are disjunct.” Because of the incorrect def-
inition of height ridges in [1], this statement would have
to be rephrased for tensor field lines anyway. How-
ever, there is a more fundamental question underlying
this statement: what is the relationship between locally
defined ridges (e.g., height ridges) and globally defined
ridges (e.g., watersheds, topological separatrices)? In
fact, it is often even overlooked that the watershed def-
inition is a valid ridge definition and even among the
first ones to be proposed, see Maxwell [4]. The relation-
ship between these mathematically different approaches
(local vs. global definition) was debated vigorously in
the computer vision community in the early 1990s (see,
e.g., Koenderink and van Doorn [5]). Nowadays, there
is a consensus that both approaches have their merits,
and López et al. [6] provide an exhaustive evaluation of
the equated local and global definitions. In this light, the
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criticism of [1] regarding modern discrete approaches to
watershed extraction [7, 8] is unsubstantiated.

The definition of second derivative ridges is over-
constrained, but a relaxed version of the condition SR1
is often rather desirable for locally defined ridges: SR1
demands that the curve is tangential to the gradient ∇σ,
and a relaxed version of this is to require that the an-
gle between the curve tangent and the gradient is below
some threshold. Such a threshold agrees with the intu-
ition that ridges should roughly follow the slope lines.
For example, this has been used by Peikert and Sadlo [9]
as a filter criterion for height ridges, such that parts of
the curves are pruned which do not follow the above in-
tuition of a “ridge.” Peikert and Sadlo [9] show that such
a removal of false positives is essential in practice, since
height ridges tend to have this kind of spurious parts at
both ends, often after a sharp turn. As a final remark, for
the special case of FTLE fields, the C-ridge [3] provides
a numerically favorable alternative to height ridges. In
C-ridges, the Cauchy-Green tensor is used instead of Σ.
The defining equation for C-ridges is one of the proper-
ties of the weak LCS as proposed by Haller [10, thm. 7].
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[6] A. López, F. Lumbreras, J. Serrat, J. Villanueva, Evaluation of
methods for ridge and valley detection, IEEE Transactions on
Pattern Analysis and Machine Intelligence 21 (1999) 327–335.

[7] J. Sahner, B. Weber, S. Prohaska, H. Lamecker, Extraction of
feature lines on surface meshes based on discrete morse theory,
Computer Graphics Forum 27 (2008) 735–742.

[8] T. Weinkauf, D. Günther, Separatrix Persistence: Extraction of
salient edges on surfaces using topological methods, Computer
Graphics Forum 28 (2009) 1519–1528.

[9] R. Peikert, F. Sadlo, Height Ridge Computation and Filtering
for Visualization, in: I. Fujishiro, H. Li, K.-L. Ma (Eds.), Pro-
ceedings of Pacific Vis 2008, pp. 119–126.

[10] G. Haller, A Variational Theory of Hyperbolic Lagrangian Co-
herent Structures, Physica D 240 (2011) 574–598.

2


