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Abstract

This paper proposes an efficient probabilistic method that computes combi-
natorial gradient fields for two dimensional image data. In contrast to existing
algorithms, this approach yields a geometric Morse-Smale complex that converges
almost surely to its continuous counterpart when the image resolution is increased.
This approach is motivated using basic ideas from probability theory and builds
upon an algorithm from discrete Morse theory with a strong mathematical founda-
tion. While a formal proof is only hinted at, we do provide a thorough numerical
evaluation of our method and compare it to established algorithms.

1 Introduction
Computer assisted analysis of two-dimensional image data has become an essential
tool in scientific research and industrial applications. To deal with the growing amount
of data, automated feature extraction methods are frequently employed in applications
from, e.g., medical imaging, geosciences or computer vision. In particular, methods
based on computational topology [EH10] are gaining traction due to their ability to
robustly extract relevant features of the data.

In this paper, we propose a novel method that extracts the Morse-Smale complex
(MS-complex) [Sma61] of a given two-dimensional image. The MS-complex con-
sists of critical points and separatrices. In this setting, the critical points are the local
minimum-, saddle-, and maximum points, while the separatrices are the paths of steep-
est descent connecting the minima and maxima to the saddles [Cay59].

The MS-complex induces a segmentation of the image into regions of monotonic
behavior [Mil65] and is strongly related [NS94] to the concept of the watershed trans-
form [Max70]. In fact, the separatrices form a superset of the watersheds and water-
courses [GC95, LLSV99].

There are three established methods to compute the MS-complex: The classical
approach employs numerical methods. In this setting, the critical points are given
by computing all zeros of the gradient. The separatrices are extracted by starting at
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the saddle points and following the gradient in the direction of the eigenvectors of
their Hessian [Wei08]. Using interval methods, the MS-complex can be extracted in a
certified manner [Cha11]. The second approach works in a piecewise linear context.
In this setting, the critical points are given by an analysis of the lower star of each
vertex [Ban70]. The separatrices are typically approximated as a sequence of steepest
edges in the triangulation [Zom01, BEHP04].

In this paper, we build upon a purely combinatorial approach [For98b, For01] to
compute the MS-complex. Such an approach lends itself to computational purposes
due to its discrete nature [Bau11, Gyu08, Lew05]. In contrast to the classical approach,
it approximates the MS-complex directly on the grid defined by the image. In this set-
ting, the critical points are defined by the topological changes in the sub-level sets of
the data [Mil63]. These topological changes can be computed efficiently by construct-
ing a combinatorial gradient [RWS11]. The separatrices are then computed by starting
at the (combinatorial) saddle points and following the grid along this combinatorial
gradient.

To analyze the approximation error of such a combinatorial algorithm, one can
apply it to a sampling of an analytic function f using k2 pixels and compute the distance
of its result to the exact MS-complex of f . A natural expectation is that this distance
should go to zero when k is increased. This is not the case for any established algorithm.

The main reason for this behavior is the combinatorial representation of the gradient
direction in terms of the directions provided by the grid. In all established algorithms,
the grid direction with the steepest descent is chosen to approximate the gradient. When
one follows the combinatorial gradient, the quantization error can accumulate to a large
value. Since this error only depends on the number of possible directions and the
gradient of the data, it does not decrease when a finer grid is employed.

Based on the mathematical foundation presented in Section 2, we propose an effi-
cient probabilistic method that computes a combinatorial gradient in Section 3. In con-
trast to all established algorithms, the approximation error of its induced MS-complex
almost surely goes to zero when the image resolution is increased. While a formal
proof is only hinted at, we do provide a thorough numerical evaluation of our method
and compare it to established algorithms in Section 4. We conclude this paper with a
discussion of possible future directions and extensions in Section 5.

2 Computational Discrete Morse Theory
This section introduces the main mathematical concepts and algorithms which our
method builds upon. We will first give a brief introduction to discrete Morse the-
ory [For98b] in a graph theoretical notation [RGH+10]. Using this notation, we will
then describe the algorithm which we build upon in Section 3.

2.1 Definitions
Let I denote a two dimensional image represented by real numbers defined on a rect-
angular grid Ω. In topological terms, Ω is called a cubical cell complex C [Hat02,
KMM04]. This complex consists of cells with different dimensions (e.g., vertices,
edges, cubes) and of boundary maps describing their neighborhood relation. For ex-
ample, an edge is bounded by its two incident vertices, whereas a quad is bounded by
its incident edges.
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(a) (b)

(c) (d)

Figure 1: Illustration of a cell graph (a) of a 2×1 grid. The solid edges in (b) represent
a combinatorial gradient containing critical points (black). A p-line is shown in (c),
while (d) shows two separatrices (blue, green) connecting a saddle (yellow) to two
minima (blue).

To define the essential concepts of discrete Morse theory, we consider the cell com-
plex C in a graph theoretical setting: the cell graph G = (N,E) encodes the essential
combinatorial information of C. The nodes N represent the cells of C and each node
up is labeled by the dimension p of the cell it represents. The edges E encode the
neighborhood relation of the cells. If a cell up is in the boundary of a cell wp+1, then
ep = {up,wp+1} ∈ E. The edge ep is said to be of index p.

The main task in computational discrete Morse theory is now to construct a combi-
natorial gradient such that the following combinatorial definitions of critical points and
separatrices correspond to the input image I.

Formally, a combinatorial gradient field V is a subset of pairwise non-adjacent
edges of G with a certain acyclic constraint [Cha00] defined below. Given such a
combinatorial gradient field V , the critical points are the unmatched nodes of V . A
critical point up that represents a cell of dimension p is a minimum (p = 0), saddle
(p = 1), or maximum (p = 2). A combinatorial p-line is a path in the cell graph G
whose edges are of index p and alternate between V and its complement E \V . The
above mentioned acyclic constraint is now specified as the non-existence of any closed
p-line. A p-line connecting two critical points up and wp+1 is called a combinatorial
p-separatrix. A 0-separatrix thereby connects a minimum with a saddle, while a 1-
separatrix connects a saddle with a maximum.

Figure 1 shows a simple cell graph of a 2× 1 grid and an arbitrary combinatorial
gradient field with its critical points and separatrices.

2.2 Algorithm
As already mentioned, the main task in computational discrete Morse theory is to con-
struct a combinatorial gradient that corresponds to the input data I. Many such algo-
rithms have been proposed [BLW12, GBPH11, KKM05, Lew05]. In this paper, we
make use of the algorithm ProcessLowerStars proposed by Robins et al. [RWS11].
The critical points of their combinatorial gradient provably correspond one-to-one to
the topological changes of the lower-level sets of the input data in up to three dimen-
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sions. Also, this algorithm is very efficient, since it has linear running time and a
parallel implementation scales well [GRP+12].

In Section 3 we will propose an extension of this algorithm. Therefore, we now
present it in detail in our graph theoretical notation.

We first propagate the input I from the 0-nodes to all nodes of the graph: each
node up is assigned the maximum I-value of the vertices of the cell that up represents.
We denote this extension of I by Î. Algorithm 1 decomposes then the cell graph G
into the lower stars [Ban70] defined by Î (line 3, 4, 5 and 6). Note that this decom-
position is disjoint, which allows for good parallel scalability. Each lower star is now
grown from its vertex using simple homotopic expansions – the inverse of homotopic
collapses [Coh73]. Such expansions are represented by the edges of the cell graph
(line 7).

The combinatorial gradient V is now constructed iteratively (line 10): each time
we expand a lower star using an edge e ∈ E (lines 13, 14 and 15), we append e to V
(line 16). An edge e = {up,wp+1} ∈ E is admissible for simple homotopic expansion
if the following conditions hold:

1. up and wp+1 are not covered by an edge in the current V (line 13),

2. up and wp+1 have not been flagged previously (line 13),

3. there is no other edge {zp,wp+1} ∈ E that fulfills 1. and 2. (line 14).

If the set of admissible edges L is empty (line 19), we flag an arbitrary node in the
lower star (line 23) that is not covered by an edge in the current V (line 22). If no such
node can be found, the expansion stops. If L is not empty (line 15), an admissible edge
is chosen based on an order defined by Î and appended to V (line 16).

As shown by Robins et al. [RWS11], the way we choose an edge from L (line 16)
does not affect the overall number nor the type of critical points in the resulting com-
binatorial gradient. Since the combinatorial gradient is supposed to correspond to the
(continuous) gradient, a natural choice is the edge that represents locally the steepest
descent.

3 Almost Surely Convergent Separatrices
Before we describe our method in Section 3.2, we give an explanation for the non-
convergent behavior of the existing combinatorial gradient algorithms and motivate
our almost surely convergent probabilistic approach.

3.1 Motivation
As defined in Section 2.1, the separatrices of a combinatorial gradient V are alternat-
ing paths in the cell graph G with respect to V . Intuitively, the edges in V should
therefore reflect the direction of the gradient of the input data. However, at a given
vertex u, there are only a constant number of directions representable by the edges of
G. This implies that the continuous gradient can only be represented in a quantized
way. Loosely speaking, the gradient direction is snapped to the edges of the graph.

Therefore, the combinatorial gradient differs from the continuous gradient not only
by a sampling error, but also by a quantization error. Note that the sampling error can
be decreased using a denser sampling. However, this is not necessarily the case for the
quantization error.
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Algorithm 1 CombinatorialGradient(G, I)

Input: G = (N,E), Î : N→ R
Output: V ⊂ E

1: V ← /0
2: for all v0 ∈ N do
3: S← v0

4: W ←{w ∈ N : Î(w)≤ Î(v0)}
5: for p← 0, . . . ,d−1 do
6: S← S∪{wp+1 ∈W : ∃{up,wp+1} ∈ E, up ∈ S}
7: K← E(S)
8: C← /0
9: abort← f alse

10: while abort = f alse do
11: abort← true
12: for p← 0, . . . ,d−1 do
13: T ←{{up,wp+1} ∈ K : up,wp+1 /∈C∪N(V )}
14: L← T \{{up,wp+1} ∈ T : ∃{zp,wp+1} ∈ T, up 6= zp}
15: if L 6= /0 then
16: V ←V ∪ChooseEdge(L)
17: abort← f alse
18: goto Line 10
19: else
20: for k← 0, . . . ,d do
21: {uk

0,u
k
1, . . . ,u

k
m}← {uk ∈ S : uk /∈C∪N(V )}

22: if {uk ∈ S : uk /∈C∪N(V )} 6= /0 then
23: C←C∪uk

0
24: abort← f alse
25: goto Line 10

Perhaps surprisingly, the ubiquitous steepest descent strategy for the edge selection
in Line 16 of Algorithm 1 suffers from this quantization artifact. Suppose that the exact
gradient is almost constant in a region K and points ’North-North-East’. At any given
vertex in K the steepest descent direction is therefore always ’North’ – independent of
the resolution used to sample the exact gradient. Any exact separatrix passing through
K is thereby approximated by a straight line going ’North’. This (resolution indepen-
dent) behavior can be observed frequently in practice as can be seen in Figure 7.

To deal with the quantization error, we propose to choose the edges in Line 16 of
Algorithm 1 adjacent to a vertex u in a probabilistic fashion. Since we cannot represent
the (continuous) gradient direction exactly, we pick an edge according to a random
variable Xu. The probability mass function g of Xu is defined by the image data I and
the width and height of each pixel. The basic idea is to design g such that the expected
value of Xu corresponds to the (continuous) gradient direction at u.

Note that these random variables are independent. Assuming that in this setting the
law of large numbers [Ber13] is applicable, a path following this probabilistic combina-
torial gradient will therefore almost surely proceed in the direction of the (continuous)
gradient when the grid is refined. While this argument is far from a formal proof, we do
provide a thorough numerical evaluation in Section 4 that substantiates this intuition.
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3.2 Method
The main building block of our method consists of Algorithm 1. The only change is
that we choose the direction (Line 16 of Algorithm 1) from L in a probabilistic fashion
instead of choosing the locally steepest descent.

The index of the edges in L is either always 1 or always 0 (Line 14 of Algorithm 1).
Perhaps surprisingly, it suffices to choose the edges of index 0 appropriately. The order
in which the edges of index 1 are chosen has no effect. They are uniquely defined once
the edges of index 0 and the saddle points have been selected. This fact motivated
the original construction of a combinatorial gradient in [LLT03]. In the following, we
therefore assume that L contains only edges of index 0.

For a given vertex u0 ∈ N, the edge selection strategy is given by a random variable
Xu. The value of this random variable is always an edge in L. We now define a proba-
bility mass function g : L→ [0,1] for Xu such that the expected value of Xu is collinear
to the (continuous) gradient at u.

We assume (without loss of generality) that the (continuous) gradient points North-
East, i.e., ∇I(u) = (Ix, Iy) with Ix, Iy ≥ 0. Furthermore, the width of the current pixel is
denoted by w and its height by h. The set L thereby consists of the directions (0,h) and
(w,0).

To simplify notation, we refer to g((w,0)) by λ . Since g is a probability mass
function, we have g((0,h)) = 1−λ . The expected direction E(Xu) is now given by

E(Xu) = (1−λ )

(
0
h

)
+λ

(
w
0

)
=

(
λw

(1−λ )h

)
. (1)

Since E(Xu) should be collinear to ∇I(u) = (Ix, Iy), the following condition must
hold

det
(

λw Ix
(1−λ )h Iy

)
= 0. (2)

This yields

g((w,0)) =
hIx

wIy +hIx
, and g((0,h)) =

wIy

wIy +hIx
. (3)

Since ∇I(u) is not directly available, we approximate it using finite differences:

Ix ≈
I((u+(w,0))− I(u)

w
, and Iy ≈

I((u+(0,h))− I(u)
h

. (4)

Denoting the height difference I((u+(w,0))− I(u) by W and I((u+(0,h))− I(u)
by H, and inserting (4) into (3) yields the final probability mass function g in terms of
I, w and h:

g((w,0)) =
h2W

w2H +h2W
, and g((0,h)) =

w2H
w2H +h2W

. (5)

Note that, in practice, L may consist of more than 2 edges due to the sampling of
I. Each edge in L is therefore assigned the height difference weighted by the squared
length of the dual edge. Its probability is then given by the normalized value with
respect to the other edges in L.
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4 Evaluation and Comparison
In the following, we evaluate our probabilistic method and compare it to established
algorithms. All experiments were performed on a machine with two Intel Xeon E5645
CPUs. We applied the linear Algorithm 1 in parallel. For an image of resolution 40962,
Algorithm 1 needed about 6 seconds. The probabilistic and the steepest descent version
take the same time, since the amount of time needed to choose the edges is negligible.
Using the implicit representation of the cell graph proposed in [GRP+12], the memory
requirement is very low. To process an image of k pixels we need 2k bytes of main
memory.

An analytic function. Let Ω = [−2,2]2 and α ∈ R+. The function f : Ω→ R is
given as

f (x,y) =−e−α

(√
x2+y2−1

)2

−0.3(x+ y). (6)

The function f describes a circle engraved on a tilted plane. The sharpness of this
circle is defined by the parameter α . For α → ∞, the circle becomes arbitrary sharp.
For α → 0, f gets flattened. Varying α allows us to simulate smooth as well as sharp
features appearing in many applications. An illustration of f sampled on a 20482 grid
for different choices of α is given in the first row of Figure 6. Integral lines of the
continuous gradient ∇ f are depicted by black lines using the dual streamline seeding
technique [RPP+09]. Converging integral lines indicate thereby the existence of a
separatrix. In the following paragraphs, we choose the engraved circle as a reference
feature. For illustration, it is shown as a white circle line in the first row of Figure 6.

A qualitative comparison. We applied Algorithm 1 using the steepest descent ver-
sion as well as our probabilistic version to construct a combinatorial gradient of f for
different choices of α . The resulting MS-complexes of the steepest descent version
are shown in the second row of Figure 6. Our reference feature – the white circle – is
visually well recovered for large values of α , which confirms also the extraction results
of recently proposed methods [CCL03, KRHH11, WG09]. In many applications, the
desired features are sufficiently sharp.

However, deviations to the reference circle become visible if the feature gets smooth,
i.e., for small choices of α . The steepest descent version of Algorithm 1 is not able to
recover the circle for α = 20 and α = 21. The probabilistic approach, in contrast, is
able to recover the circle for all choices of α . The resulting MS-complexes are shown
in the third row of Figure 6.

A quantitative comparison. To quantify the approximation error, we measured the
Hausdorff distance [Hau14] of the reference circle to the approximated circle. Figure 6
g) shows the approximation error for Algorithm 1 using the steepest descent strategy
in a log-log plot. Although the extraction result looked visually reasonable for large
α-values, there is no convergence for any α . The Hausdorff distance to the reference
circle does not decrease when a finer grid is employed.

For the probabilistic approach, we did 200 runs of Algorithm 1 using the method
presented in Section 3.2. Figure 6 h) shows the mean value of the Hausdorff distance
and its standard deviation. Both quantities are converging to zero. Hence, the sampling
as well as the quantization error mentioned in Section 3.2 are reduced when a finer grid
is employed. However, it needs to be noted that the approximation error for very sharp
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Figure 2: Distribution of Hausdorff distance error. The blue, black and red curves show
the estimated probability density function of the Hausdorff distance between the center
circle and the reference circle (as shown in Figure 6) for different resolutions.

features (α = 25) is slightly larger compared to the steepest descent strategy when
coarse grids are used.

In Figure 2, we plotted a kernel density estimate [BGK10] of the probability density
of the Hausdorff distance error for different resolutions. We applied Algorithm 1 using
the probabilistic approach 1000 times to obtain a sufficient number of samples for the
density estimate. The overall shape of the densities suggests a sequence of binomial
error distributions that converge to a normal distribution.

A segmentation comparison. In Figure 3 we compared ourselves (f) with different
established segmentation approaches: steepest descent [RWS11] (b), Meyer’s water-
shed algorithm [Mey94] using a 4- (c) and 8-connectivity (d) provided by the image
processing toolbox of Matlab [MAT09], and a fitted spanning forest approach [CCL03]
(e). Since the implementation of [CCL03] that was available to us requires a triangula-
tion we subdivided each pixel into two triangles.

The objective is the segmentation of the inner part of our reference circle of f with
α = 1 sampled on a 20482 grid. It can be observed that the steepest descent strategy
yields a similar result as the watershed algorithm using an 8-connectivity, while the
result of the spanning forest approach looks similar to the watershed result using a
4-connectivity. However, none of these approaches is able to segment the circle, in
contrast, to the probabilistic approach presented in this paper.

Anisotropic grids. In certain applications, the image data is not provided on uniform
grids. Based on the imaging technique anisotropic grids might be employed. In Fig-
ure 4, we illustrate the behavior of the steepest descent and our probabilistic strategy
applied to f with α = 1 using two different anisotropic grids.

It can be seen in Figure 4 a) and c) that the result of the steepest descent approach
heavily depends on the kind of anisotropy. The resulting segmentation is distorted
when the anisotropy becomes large. However, this is not the case for our probabilistic
approach, see Figure 4 b) and d).
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(a) Input image (b) Steepest descent

(c) Watershed 4-connectivity (d) Watershed 8-connectivity

(e) Spanning forest (triangulated) (f) This paper

Figure 3: Segmentation comparison. The analytic function f as defined in (6) with
α = 1 is visualized as in Figure 6 – the black lines depict integral lines of the gradient.
Converging integral lines indicate the separatrices/watersheds. (b) shows the result us-
ing Algorithm 1 with the steepest descent strategy. (c) and (d) show the result using the
Matlab implementation of the classic watershed algorithm [Mey94]. (e) shows the re-
sult using a fitted spanning forest approach [CCL03]. (f) shows the segmentation using
our probabilistic approach based on Algorithm 1. The red circle shows the reference
separatrix/watershed of the continuous function.
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Grid dependency. To evaluate the grid dependency of our approach, we rotated f by
different angles θ ∈ [−π/2,π/2]. Since this is a rigid transformation of f , a rotation by
−θ of the extracted separatrices should coincide with the the original separatrices of
f . The rotated function fθ : Ω× [−π/2,π/2]→ R is given by

fθ (x,y) = f (R(x,y,θ)) (7)

with

R(x,y,θ) =
(

cos(θ) −sin(θ)
sin(θ) cos(θ)

)(
x
y

)
.

We concentrate ourselves on the reference feature of Figure 6. Since the center circle
is rotated and back-rotated by θ , the ground truth is a cylinder. We extracted the center
circle using the steepest descent and our probabilistic strategy for each rotation step.
The spatial domain was discretized using a 10242 grid and a full rotation was sampled
using 1024 steps.

(a) Steepest descent (256×4096) (b) This paper (256×4096)

(c) Steepest descent (2048×4096) (d) This paper (2048×4096)

Figure 4: Segmentation comparison on anisotropic grids. The left column shows the
segmentation of the analytic function f (6) with α = 1 using Algorithm 1 with the
steepest descent approach on two anisotropic grids. The right column shows the corre-
sponding results for our probabilistic approach. The red circle depicts the continuous
separatrix/watershed of f .
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x

yθ

(a) Ground truth (b) Steepest descent (c) This paper

Figure 5: Grid dependence. (a) shows the ground truth of the rotating function fθ as
defined in (7). The gray surface depicts the evolution of the spatial reference feature
shown in Figure 6. (b) and (c) show the discrete result of Algorithm 1 using the steepest
descent edge selection and our probabilistic strategy, respectively.

In order to obtain a segmentation of this region over the the range of the rotation, we
stacked the spatial separatrices on top of each other and connected them to a surface.
The result is shown in Figure 5.

The result of the steepest descent strategy shown in Figure 5 b) clearly reflects
the structure of the grid. The surface is snapped to the grid, no cylindrical shape can
be observed. In contrast, the probabilistic approach shown in Figure 5 c) is a rough
approximation of the ground truth, and the cylindrical shape is well recovered.

Generic functions. To demonstrate that our approach is convergent for general smooth
functions, we considered a set of smooth functions generated by the expression

2

∑
m,n=1

(
X (1)

m,n sin(mx)+X (2)
m,n cos(mx)

)(
X (3)

m,n sin(ny)+X (4)
m,n cos(ny)

)
, (8)

where the X ( j)
m,n’s are random variables uniformly distributed in [−1,1]. This expres-

sion is now evaluated on the domain [−π,π]2 discretized using two different grid reso-
lutions. We selected two representatives of this set of functions and applied the steepest
descent and our probabilistic version of Algorithm 1. The resulting MS-complexes are
shown in Figure 7.

It is apparent that the steepest descent approach does not yield the correct MS-
complex. Our probabilistic edge selection strategy, however, visually converges to the
correct solution. Note that we applied our method to a much larger number of such
functions. We observed the above behavior in every case.

5 Conclusion and Future Work
We presented a probabilistic approach that computes a combinatorial gradient for a
given two dimensional image data set. Since our method is a modification of a previ-
ously proposed method [RWS11], it shares its main properties. It has a linear running
time and can be applied efficiently in a parallel setting. Furthermore, its critical points
correspond one-to-one with the topological changes of the sublevel sets of the input
data.
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Our probabilistic extension of this algorithm yields combinatorial gradients whose
separatrices converge to their continuous counterpart when the grid resolution is in-
creased. We also demonstrated that our method works for anisotropic grids and does
not exhibit a grid dependency. While we only hinted at a formal proof of this property,
we provided a thorough numerical evaluation and compared it to existing algorithms.

We believe that this approach could be extended and improved in several directions:

• It seems that an generalization to scalar data defined on triangulated surfaces is
feasible. The main challenge is thereby the generalization of the derivation of
the edge selection strategy in Section 3.2. This may also yield some insight on
the representation of the discrete metric provided by the triangulation.

• Extending our approach to higher dimensional image data could also be interest-
ing and useful. This may be quite challenging since combinatorial separatrices
that connect the saddle points can merge and split in 3D. This stems from a fun-
damentally different structure of the cell graph.

• The efficiency of the method may be increased by developing an adaptive grid
refinement approach. This may be particularly effective since a high resolution
is only needed in the vicinity of the separatrices.

• It could also be possible to extend this idea to the combinatorial vector field
context [For98a, RLH11].
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(h) Statistical characteristics of probabilistic error (this paper)

Figure 6: The analytic example f (6). The first row of (a)-(f) shows the sampled
function f color-coded for different choices of α . Red denotes a high function value,
while blue denotes a low value. Black lines depict integral lines of the gradient ∇ f
seeded using the dual streamline technique [RPP+09]. The second and third row show
the MS-complex based on Algorithm 1 using the steepest descent and our probabilistic
edge selection strategy, respectively. Minima, saddles and maxima are shown as blue,
yellow and red spheres, whereas the 0- and 1-separatrices are shown as blue and red
lines, respectively. Since separatrices are integral lines of the gradient, the blue and
red lines should follow the black lines. (g) and (h) show the Hausdorff distance of the
approximated center circle (blue) to the reference circle (white, first row) for different
choices of α and increasing resolution. (g) shows the evolution of the error using the
steepest descent approach. (h) shows two statistical characteristics of the error of the
probabilistic approach proposed in this paper.
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Figure 7: Comparison of the steepest descent and the probabilistic approach using
generic functions. The two rows show two different functions randomly generated
using expression (8). Red denotes a high function value, while blue denotes a low
value. Black lines depict integral lines of their gradient. The left two columns show
the extracted MS-complexes for each function sampled on a 5122 grid using the steep-
est descent and our probabilistic edge selection strategy, respectively. The right two
columns show the result on a 40962 grid. Minima, saddles and maxima are shown as
blue, yellow and red spheres, whereas the 0- and 1-separatrices are shown as blue and
red lines, respectively. Since separatrices are integral lines of the gradient, the blue
and red lines should follow the black lines. White arrows indicate regions where the
difference of the two approaches is visually apparent.
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