
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

Efficient Computation of
Combinatorial Feature Flow Fields

Jan Reininghaus, Jens Kasten, Tino Weinkauf, and Ingrid Hotz

Abstract—We propose a combinatorial algorithm to track critical points of 2D time-dependent scalar fields. Existing tracking
algorithms such as Feature Flow Fields apply numerical schemes utilizing derivatives of the data, which makes them prone to
noise and involve a large number of computational parameters. In contrast, our method is robust against noise since it does not
require derivatives, interpolation, and numerical integration. Furthermore, we propose an importance measure that combines the
spatial persistence of a critical point with its temporal evolution. This leads to a time-aware feature hierarchy, which allows us to
discriminate important from spurious features. Our method requires only a single, easy-to-tune computational parameter and is
naturally formulated in an out-of-core fashion, which enables the analysis of large data sets. We apply our method to synthetic
data and data sets from computational fluid dynamics and compare it to the stabilized continuous Feature Flow Field tracking
algorithm.

Index Terms—9.VI.IX.II Flow Visualization, 7.II.II.I Graph algorithms

F

1 INTRODUCTION

T IME-DEPENDENT 2D scalar data arises in many
scientific disciplines. For the analysis of such

data, the extraction of minima, saddles, and maxima
of each individual time step has been proven useful.
These point features of the data are often called
critical points. To understand the dynamic behavior
of time-dependent data, it can be beneficial to analyze
the temporal evolution of these critical points.

To enable an efficient quantification of the temporal
evolution of the critical points, we can track them over
time. In this paper, we call such a tracked critical point
a critical line of the data. Many different algorithms
that extract critical lines have been proposed, see
Section 2 for a small overview.

For smooth functions, the Feature Flow Field
method [1] provides a particularly sound mathemati-
cal foundation. Given a smooth time-dependent scalar
field, the critical lines are implicitly defined by stream-
lines in a higher dimensional derived vector field.

While this method works well for smooth functions,
its application to functions that are only continuous
is problematic as derivatives have to be computed. To
circumvent this problem, derivative free algorithms
employing concepts from algebraic topology have
been developed recently, see Section 2.

The main remaining weakness of the available
algorithms is their inability to handle noisy data in

• J. Reininghaus, J. Kasten and I. Hotz are with Zuse Institute Berlin,
E-mail: reininghaus@zib.de, kasten@zib.de and hotz@zib.de.

• T. Weinkauf is with Max Planck Institute for Informatics, Saarbrücken,
Germany, E-mail: weinkauf@mpi-inf.mpg.de

a meaningful way. Such data usually contains an
overwhelming number of critical lines that hinder
meaningful visual data analysis. To reduce the
number of critical lines, one typically smooths the
data or discards short critical lines. Both approaches
can be problematic. A simple smoothing of the data
may remove important critical lines and affect the
spatial position of the critical lines, see Figure 6
for an example. Discarding short critical lines may
remove an important and stable, but short lived
feature. See Figure 7 for an example of such a short
but important critical line.

This paper proposes a combinatorial algorithm that
is able to track critical points in noisy data. This
robustness is achieved by combining Forman’s notion
of a combinatorial gradient field [2] with the notion
of Persistence proposed by Edelsbrunner et al. [3].
Persistence is a well founded importance measure
for critical points. Together, these concepts enable a
robust and consistent combinatorial representation of
the gradient of a scalar function. Both fundamental
concepts will be briefly introduced in a graph theo-
retic formulation in Section 3.1.

A definition for a critical line of a sequence of
combinatorial gradient fields was recently proposed
by King et al. [4]. The basic idea is similar to the
continuous Feature Flow Field method – a higher
dimensional field is constructed in which the critical
lines are given by combinatorial streamlines. We
therefore refer to the higher dimensional field as
a Combinatorial Feature Flow Field in this paper.
We formulate King’s definition of critical lines in
combinatorial gradient fields using a graph theoretic
formulation in Section 3.2.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2

Our main contribution is the introduction of the
first efficient algorithm that extracts the critical min-
ima, saddle, and maxima lines in 2D discrete scalar
fields using Combinatorial Feature Flow Fields.

The efficiency of our algorithm is achieved by
pointing out that, at least in 2D, the combinatorial
critical lines as defined in [4] can in fact be computed
without considering the higher dimensional
combinatorial feature flow field – we only need
to consider the sequence of combinatorial gradient
fields. We provide an informal proof of the
equivalence of the original definition of combinatorial
critical lines to our simplified definition in Section 4.2.

The proposed algorithm has many valuable prop-
erties. It has a reasonable running time (see Table 1)
and is naturally formulated in an out-of-core fashion
enabling the analysis of large data sets as only two
subsequent time steps have to be kept in memory.
The input consists of a regular cell complex, so the
algorithm can deal with many widely used represen-
tations of discrete data like triangulations, quadran-
gulations, or a mixture of these. It contains only one
easily-tuned computational parameter, the persistence
threshold σ, used to construct the combinatorial rep-
resentation of the gradient fields.

Due to the combinatorial nature of our algorithm,
we can formulate a natural spatio-temporal impor-
tance measure for the resulting critical lines called
Integrated Persistence (see Section 3.3).

2 RELATED WORK

Many algorithms that track features in time-
dependent data have been proposed in many
different scientific communities. A lot of this work
has been partially inspired by object tracking methods
in the area of computer vision, see [5] for a survey.
In the context of visual data analysis, tracking
approaches can roughly be categorized into three
classes depending on the treatment of the temporal
dimension [6].

The first class considers feature tracking as a
two-step process: feature extraction for each time
slice and subsequent feature matching solving a
correspondence. Such methods do not rely on
a temporal interpolation. Event analysis mostly
happens implicitly during tracking defined by
event functions. Common tracked features are
volumes or areas, boundaries or contours and points.
Correspondence criteria use distance metrics of the
domain and the attribute space, which are in general
based on application specific heuristics. Typical
attributes comprise feature size, shape descriptors or
also texture characteristics [7]. Features are linked,
if their distance falls below a given threshold [8],
[9], [10], [11]. Improvements using feature overlap

instead of Euclidean distances are used in [12]. A
more global approach is followed in [13] employing
a best matching algorithm. Improved tracking can
be achieved by utilizing additional information
for motion prediction [14]. In [15], an algorithm is
proposed that progressively tracks isosurfaces using
the isosurface at time t as an initial guess for the
next time-step t + 1. An extension to tracking of the
entire contour tree using volume overlap has been
proposed in [16].

The second class of algorithms considers time
as additional dimension, treated equally to spatial
dimensions. Features are extracted from space-
time directly, thus increasing the dimension of the
domain and the features by one. Tracking is accurate
with respect to the chosen temporal interpolation. No
explicit distance metrics for features are needed. Event
analysis is mostly a subsequent step after tracking
and is based on well-founded theory. Methods
extracting isosurfaces in space-time have been
proposed in [17], [18]. A topological event analysis
based on the Reeb-Graph of the surface resulting
from sweeping contours has been performed in [19],
[20]. The development of topological structures in 2D
and 3D flow fields has been analyzed in [21], [22].
These algorithms consider vector fields composed
of space-time cells with linear interpolation, for
which events are restricted to cell boundaries. Critical
point tracking thus reduces to the computation of
entry and exit points for each cell. Similarly, [23]
introduces an algorithm to track vortex core lines
over time and scale space searching for features,
represented as parallel vectors, on all boundary cells
of the space-time cell. While giving accurate results,
these methods are sensitive to noisy data and a high
feature density. To reduce the number of extracted
features and events, a common practice is to delete
short living features. A combinatorial approach to
track critical points is based on the definition of
Jacobi sets [24]. It consists of Jacobi edges, which are
extracted from a spatial-temporal simplicial complex
assuming a linear interpolant. The decision whether
an edge belongs to the Jacobi curve involves the
topological analysis of the lower link of vertices and
edges of the simplicial complex. While providing
a nice theoretical framework, the resulting Jacobi
curves of real data sets are often very complex and
hard to analyze. Based on this work it is also possible
to track the evolution of the Reeb-graph of a scalar
function [25].

The third class of algorithm combines aspects of
both above-mentioned types. They represent the dy-
namic behavior of features implicitly as streamlines
of a higher dimensional derived vector field in space-
time. Critical points can then be tracked by computing
certain streamlines in this vector field, referred to as



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 3

a Feature Flow Field [1]. Recently, a combinatorial
version of the Feature Flow Field method has been
proposed [4]. This method is discussed in detail in
Section 3.2 and provides the mathematical founda-
tion for our novel tracking algorithm presented in
Section 4.

3 FUNDAMENTAL CONCEPTS

The purpose of this section is to introduce the reader
to the main concepts that build the mathematical
foundation for our combinatorial tracking algorithm
described in detail in Section 4. We first introduce the
reader to the well known concept of combinatorial
gradient vector fields (CGF) in Section 3.1 using a
graph theoretic formulation. Using this concept we
can define the notion of a combinatorial feature flow
field (CFFF) in Section 3.2. We conclude this section
with a definition of a time-aware importance measure
for the tracked critical points that is based on the
notion of persistence.

3.1 Combinatorial Gradient Fields

For simplicity, we restrict ourselves to 2D manifolds
while the mathematical theory for combinatorial gra-
dient fields is defined in a far more general setting
[2]. Let C denote a finite regular cell complex of a
2D manifold. Examples of such cell complexes are
triangulations or quadrangular meshes. Given C, we
first define its cell graph GC = (S,L) that encodes the
combinatorial information contained in C in a graph
theoretic setting.

The nodes S of the graph consist of the cells C of the
complex and each node up is labeled with the dimen-
sion p of the cell it represents. For a triangulation, the
nodes of the cell graph therefore consist of the vertices
(0-cells), edges (1-cells), and triangles (2-cells).

The links L of the graph encode the neighborhood
relation of the cells in C: if the cell represented by
node up is in the boundary of the cell represented by
node wp+1 then `p = {up, wp+1} is a link in the graph.
Note that we label each link with the dimension of
its lower dimensional node.

A matching of a graph is defined as a subset of
links such that no two links are adjacent. Using these
definitions, a combinatorial vector field V on a regular
cell complex C can be defined as a matching of
the cell graph GC (see Figure 1, middle). An arrow
representation of this combinatorial field as used in
[2] is shown in Figure 1 left.

The nodes of the graph that are not covered by V
are called critical points. If up is a critical point of V ,
we say that the critical point has index p. A critical
point of index p is called sink (p = 0), saddle (p = 1),
or source (p = 2) (see Figure 1, right).

Fig. 1. Combinatorial gradient fields (CGF) – basic
definitions. Left: arrow representation of a CGF on a
single triangle. Middle: the same CGF represented as a
matching (dashed links) of a cell graph consisting of 0-
links (blue) and 1-links (yellow). Right: topological fea-
tures of a CGF – a minimum (blue), a saddle (yellow),
a maximum (red), and a separatrix (transparent).

A combinatorial p-streamline is a path in the graph
whose links alternate between V and the complement
of V and the dimension of the links equals p. A
p-streamline connecting two critical points is called
a separatrix (see Figure 1, right). If a p-streamline is
closed, we call it either an attracting periodic orbit
(p = 0) or a repelling periodic orbit (p = 1).

As shown in [26], a combinatorial gradient field (CGF)
V can be defined as a combinatorial vector field
that contains no periodic orbits. In the context of
CGF we refer to a critical point up as a minimum
(p = 0), saddle (p = 1), or maximum (p = 2). For
the computation of a CGF that represents the input
data we refer to [27], [28], [29].

When we deal with noisy data, the corresponding
CGF contains a huge number of minima, saddles,
and maxima. Fortunately, the theoretical foundation
of CGF [30] allows for a consistent removal of these
spurious features. Suppose there is a unique separa-
trix connecting a saddle to a maximum or minimum.
Reversing this separatrix results in a CGF without this
pair of critical points, see [31] for an explanation of
this property. When we simplify a CGF using this idea
we have to decide on the order of the simplifications.
A well founded order is given by persistence [3].

Note that the need for a simplified CGF implies
that one cannot make direct use of the algorithm
proposed in [32] since it computes a simplified
Morse-Smale complex and not a simplified CGF.
Reconstructing a CGF from a Morse-Smale complex is
a nontrivial problem, especially in higher dimensions.

To track critical points in noisy data, we compute a
CGF with a given persistence threshold σ. For exam-
ple, if the noise is in the range [−ε, ε], then it suffices
to compute its CGF with a persistence threshold of
σ = 2ε to remove all noise induced critical points. For
more information on the connection between discrete
Morse theory and persistence simplification we refer
the interested reader to [28].



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 4

u

w

u

w

u

w

Fig. 2. Combinatorial feature flow fields – basic def-
initions. Left: Two subsequent combinatorial gradient
fields V0 and V1. Middle: Forward tracking field V[0,1].
Right: Backward tracking field V[1,0]. The minima (blue)
u in V0 and w in V1 are tracked as there is a com-
binatorial 0-streamline (transparent) in V[0,1] and a
combinatorial 0-streamline in V[1,0] that connect u and
w.

3.2 Combinatorial Feature Flow Fields

Using the combinatorial representation of the gradient
fields defined above, we will now describe the
combinatorial feature flow field concept introduced
in [4] that allows us to track critical points in
our graph theoretical framework. This formulation
enables an efficient and simple implementation
described in Section 4.

Given a sequence of combinatorial gradient fields
(Vt)t=0,1,2,...,T on a cell complex C of a 2D manifold
we now define the notion of a combinatorial feature
flow field (CFFF) that allows us to track the critical
points in (Vt). For simplicity, we assume T = 1
as the general case follows easily. We first construct
the cell graph of C × [0, 1] using the graph theoretic
formulation introduced in Section 3.1.

For a depiction of a simple example of the rather
technical construction that follows, we refer to Fig-
ure 2. We start the construction of GC×[0,1] with three
copies G1

C , G
2
C , G

3
C of the cell graph GC . We then add

links to this graph that connect the corresponding
nodes of G1

C with G2
C and G2

C with G3
C . The label

p of each node in G2
C is then increased by one. For

example, if up is a node of the second copy that
corresponds to the node w2 of the first copy, then
p = 3.

We can now define the forward tracking field V[0,1],
a CGF of GC×[0,1]. We first use the matching V0
to define a matching in G1

C and G2
C (see Figure 2,

middle). For G3
C we use the matching V1. We then

add all links to the matching of GC×[0,1] that connect
a critical point of V0 with a node of G2

C .
Constructing a forward tracking field V[0,T ] for the

whole sequence of combinatorial gradient fields (Vt)
can be done iteratively: if we have a forward tracking
field for V[0,k], we get V[0,k+1] as the union of V[0,k]
and V[k,k+1]. The backward tracking field V[T,0] can be
defined by reversing the order of the sequence (Vt).

As proven in [4], the forward tracking field defined
above is indeed a combinatorial gradient field as it
does not contain any periodic orbits. Also, the only
critical cells of this CGF are the cells that are critical
in VT .

We are now in a position to give a precise
definition of the space-time relation of critical
points in this combinatorial setting. Let up and wp

denote critical points in (Vt). We say up and wp are
connected if and only if there is a combinatorial
p-streamline connecting up with wp within V[0,T ] and
a combinatorial p-streamline connecting up with wp

within V[T,0]. For future reference, we call the set of
lines that connect the critical points of (Vt) the critical
lines of (Vt). Note that in principal this definition
allows for splitting and merging critical saddle lines.
While our implementation allows for this behavior
we have not observed any such critical saddle lines
in our numerical experiments.

The presented approach is related to the continuous
Feature Flow Field method [1] – both approaches for
the tracking of critical points define a higher dimen-
sional field where the critical points can be tracked
by streamlines. We therefore refer to the approach
presented in this section as the Combinatorial Feature
Flow Field method (CFFF).

3.3 Integrated Persistence
This section proposes an importance measure for the
critical lines of a sequence of T scalar fields (ft)
defined on a 2D manifold as introduced in Section 3.2.
To incorporate the spatial importance of the critical
points that make up the critical line we can make use
of the notion of persistence [33]. Loosely speaking,
persistence measures the stability of the critical points
with respect to perturbations of the data values.

For simplicity we restrict the definition of persis-
tence to the 1D case and refer the interested reader
to [33] for the general case. For a 1D function f this
measure can be defined by considering the number of
components of the sublevel sets Fr = f−1 ((−∞, r]).
As r increases the number of components in Fr

changes: when r passes the value of a local minimum
a component is born, while two components merge
when r passes the value of a local maximum. A
maximum is then paired with the larger minimum of
the two merged components. The persistence of the
paired critical points is now defined as the difference
of their function values.

We now define an importance measure for a
critical line L as the sum of the persistence values
of the critical points that make up the line divided
by the total number of time steps in the data set
T . For future reference we refer to this measure as
Integrated Persistence.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 5

Fig. 3. Computational pipeline of the algorithm described in Section 4.

Note that in some sense Integrated Persistence is
a spatio-temporal importance measure. A short, but
spatially persistent critical line, is considered as im-
portant as a long critical line with low spatial per-
sistence. Figures 9 and 7 demonstrate the physical
relevance of Integrated Persistence.

4 ALGORITHM

In this section, we will describe our combinatorial
tracking algorithm in detail. We will first give an
overview of the algorithmic pipeline in Section 4.1, de-
scribing the input, output and out-of-core approach.
Section 4.2 describes how we can efficiently track crit-
ical points. We will finish this section with a detailed
description of our algorithm including pseudo-code to
ensure a good reproducibility of the results presented
in Section 5.

4.1 Overview
The input of our algorithm consists of a regular
cell complex C of a 2D manifold and a sequence
of scalar fields (ft) defined on the 0-cells of C. A
simple example of such input data is a triangulation
or a quadrangular mesh with a sequence of scalar
values defined on each vertex. We then compute a
sequence of combinatorial gradient fields (Vt) with
persistence threshold σ that represents the gradient
of the input data in a discrete fashion. To deduce
an importance measure for our result we will also
require the persistence values of the critical points
contained in (Vt).

A closer inspection of the definition given in Sec-
tion 3.2 reveals that we can compute all critical lines
contained in (Vt) in a streaming fashion – it is suffi-
cient to compute the critical lines of each consecutive
pair of the sequence (Vt). Due to the combinatorial
nature of the critical lines they can easily be merged
afterwards to get the result for the complete data set.
The importance measure for a critical line introduced
in Section 3.2 can be computed by adding the persis-
tence values of the critical points contained in the line.
See Figure 3 for an overview of the overall algorithm.

4.2 Efficient Extraction of Critical Lines in CFFF

As described above, it suffices to track the critical
points for each consecutive pair (Vk, Vk+1) of the
sequence of combinatorial gradient fields (Vt). As de-
fined in Section 3.2, a critical point of Vk is connected
to a critical point of Vk+1 if and only if there is
a combinatorial streamline in the forward tracking
field V[k,k+1] and a combinatorial streamline in the
backward tracking field V[k+1,k] connecting the two
points.

The goal of this section is to give a simple algorithm
that finds all pairs of critical points that satisfy this
condition. It will be shown that we actually do not
need to construct the higher dimensional cell graph
GC×[0,1]. This significantly reduces the runtime,
memory consumption, and greatly simplifies the
implementation of our algorithm.

For a depiction of the following argument, we refer
to Figure 2. We start with the minima. Let u denote a
minimum in Vk. When we iterate the combinatorial
0-streamlines of the forward tracking field that start
in u we see that there is only a single streamline
that ends in a minimum of Vk+1. This is due to two
reasons. First, the structure of the forward tracking
field implies that the only way to reach Vk+1 is to
start with the matched link adjacent to u. Second, a
combinatorial streamline whose first node is not a
1-cell and whose first link is matched, is uniquely
defined as it cannot split. For an explanation of
this basic property of combinatorial streamlines we
refer the reader to [31]. The same arguments can
be employed to show that there is only a single
streamline connecting a minimum of Vk+1 to a
minimum of Vk in the backward tracking field.

Tracking minima is therefore a rather simple
procedure. Given a minimum u in Vk we find its only
possible partner w in Vk+1 by computing the unique
streamline in the forward tracking field that starts in
u with a matched link. We then compute the unique
streamline in the backward tracking field that starts
in w with a matched link. If this streamline ends in
u, then u and w are connected in the sense of the



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 6

u

w

u

w

Fig. 4. Left: Two subsequent combinatorial gradient fields V0 and V1 on three triangles. Right: Forward tracking
field V[0,1]. The saddles (yellow) u in V0 and w in V1 are connected in V[0,1] by a combinatorial 1-streamline
(transparent) that connects the corresponding nodes. Note that the minima lines (transparent) of the saddle of
V0 (bottom-left) intersect the maxima lines (transparent) of the saddle in V1 (top-left).

definition given in Section 3.2.

Note that we do not actually need to construct the
forward and backward tracking fields to compute
these combinatorial streamlines. It suffices to trace
them in the given pair of CGFs Vk and Vk+1 as can
be seen in Figure 2.

The maxima can be tracked in the same way, we
only have to switch forward and backward tracking
fields: the maxima of Vk+1 have only a single partner
in Vk in the forward tracking field, and the maxima
of Vk have only a single partner in Vk+1 in the
backward tracking field.

While tracking minima and maxima has been
proven to be rather simple, tracking of saddles seems
to be a very daunting task as the combinatorial 1-
streamlines in the higher dimensional tracking fields
may merge and split (see Figure 4). On first sight, it
seems that the only way to compute the critical saddle
lines is a brute-force depth-first-search in the tracking
fields. However, a close inspection of the structure
of the tracking fields reveals that this is not actually
necessary.

Consider the 1-streamlines of the forward tracking
field that start in a saddle u of Vk and end in a saddle
w of Vk+1. If we think of the graph of the forward
tracking field as consisting of three layers (the three
copies of GC), we can observe three properties of these
streamlines (see Figure 4 for an example):

1) The layer of the nodes of the streamlines only
increases and the only node of the bottom layer
is the node in which we start.

2) The section of these streamlines that runs
through the second layer follows the 0-
streamlines of Vk that start in u.

3) The section of these streamlines that runs
through the third layer follows the 1-streamlines

of Vk+1 and ends in w.
These properties imply that there is a combinatorial

1-streamline in the forward tracking field that
connects u with w if and only if the 0-streamlines
of Vk that start in u intersect the 1-streamlines of
Vk+1 that end in w. Similarly, there is a combinatorial
1-streamline in the backward tracking field that
connects w with u if and only if the 0-streamlines of
Vk+1 that start in w intersect the 1-streamlines of Vk
that end in u.

Instead of a brute-force search in the higher di-
mensional cell graph GC×[0,1], it therefore suffices to
intersect the separatrices of u defined by Vk with the
separatrices of w defined by Vk+1 in the low dimen-
sional cell graph GC . This simplifies the following
tracking algorithm significantly.

4.3 Implementation
The main algorithm that tracks the critical points of a
sequence of discrete scalar fields (ft) defined on the 0-
cells of a cell complex C is given in Algorithm 1. Line
1 constructs the cell graph GC of the cell complex C
as defined in Section 3.1. The CGF subfunction called
in Lines 3 and 4 computes a combinatorial gradient
field with a persistence threshold σ.

To do this, we first compute an initial CGF using
the algorithm ProcessLowerStar proposed in [34]. The
basic idea of this algorithm is to apply simple homo-
topic expansions in the lower star of each 0-cell. The
algorithm results in a combinatorial gradient field V
whose critical nodes coincide with the changes of the
topology of the sub-level complexes of C. For more
algorithmic details and the proof of this property, we
refer the interested reader to [34].

We can thereby state an estimate for the precision
of our method. Suppose that we sample an analytic
function with a uniform grid whose cells have size
h. Furthermore, assume that h is sufficiently small



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 7

Algorithm 1 Main CFFF algorithm
Input: C, (ft), T , σ
Output: All critical lines in V[0,T ]

1: GC ← constructCellGraph(C)
2: for k = 0 to T − 1 do
3: Vk ← CGF(GC , fk, σ)
4: Vk+1 ← CGF(GC , fk+1, σ)
5: lines ← lines ∪ trackMinMax(GC , Vk, Vk+1)
6: lines ← lines ∪ trackSaddles(GC , Vk, Vk+1)

Algorithm 2 Combinatorial Streamline Integrator:
traceLine(...)
Input: GC = (S,L), Vk ⊂ L, u ∈ S, p = 0, 1
Output: Combinatorial p-streamline that starts in u

1: loop
2: Line.append( u )
3: if there exists w: {u,w} = `p ∈ Vk then
4: u ← w
5: Vk ← V c

k

6: else
7: return

so that all critical points of the analytic function are
represented in the discrete representation. Then the
distance between the exact critical points and the
critical points in the CGF is smaller than h.

To compute the simplified CGF we follow the ap-
proach presented in [29]. We thereby compute the
whole sequence of simplified CGFs, which has the
advantage of allowing the user to quickly select the
appropriate simplification threshold σ in a post pro-
cessing step.

For the persistence values, we employ the matrix
reduction algorithm presented in [35].

Line 5 and 6 extract the critical minima, maxima
and saddle lines of the current pair of CGFs as defined
in Section 3.2 using the simplified but equivalent
definition presented in Section 4.2.

To compute the critical lines we need to compute
a lot of combinatorial p-streamlines in a given CGF
Vk. The pseudo-code for such a combinatorial stream-
line integrator is given in Algorithm 2. Almost all
computational time of the main Algorithm 1 is spent
integrating such lines which makes the performance
of this algorithm crucial for the overall runtime. Note
that due to the structure of the cell graph GC and the
matching property of Vk, there cannot exist multiple
links that fulfill the condition in Line 3. Of course,
an actual implementation would not take the comple-
ment of the matching in each iteration (Line 5). One
would rather simply switch the if condition in Line 3.

Using Algorithm 2, we can compute the critical
minima and maxima lines as shown in Algorithm 3.
For each minimum or maximum u (Line 1, S(Vk)
denotes the nodes S contained in the set of matching
links Vk) of the first CGF Vk, we integrate the cor-

Algorithm 3 Min and max tracking algorithm: track-
MinMax(...)
Input: GC = (S,L), Vk ⊂ L, Vk+1 ⊂ L
Output: All critical min/max lines in V(k,k+1)

1: for all up /∈ S(Vk) and p 6= 1 do
2: p ← max(0, p− 1)
3: Line ← traceLine(GC , Vk+1, u, p)
4: w ← Line.last()
5: Line ← traceLine(GC , Vk, w, p)
6: if Line.last() = u then
7: MinMaxCritLines.append( {u,w} )

Algorithm 4 Separatrix Integrator: traceSeps(...)
Input: GC = (S,L), Vk ⊂ L, u ∈ S, p = 0, 1
Output: All combinatorial p-streamlines that start in

saddle u
1: for all {u,w} = `p ∈ L do
2: Line ← traceLine(GC , Vk, w, p)
3: Separatrices.append( Line )

responding combinatorial p-streamline in Vk+1 (Line
3). We now take the last point w of this streamline
as the start point of a streamline in Vk (Lines 4, 5). If
this streamline comes back to u (Line 6), we found a
critical line in V(k,k+1) and append the pair {u,w} to
the result.

To compute the critical saddle lines, we need to
compute the separatrices of the saddles. A simple
method that returns the separatrices of type p of the
saddle u in the CGF Vk is given in Algorithm 4. We
iterate over all adjacent links ` of the saddle u of the
given type p (Line 1) and integrate the combinatorial
p-streamline that starts in the end point w of ` (Line
2). This line is then appended to the separatrices (Line
3).

Using Algorithm 4, we can now trace the critical
saddle lines as shown in Algorithm 5. Each saddle is
appended to the nodes covered by its separatrices of
type 0 (Lines 1-8). We then iterate over each saddle
u of Vk (Line 9). The possible saddle partners for u
in Vk+1 are then given as the union of the saddles
in Vk+1 whose separatrices of type 0 are intersected
by the separatrices of type 1 of u (Lines 10-13). For
each such partner w we then iterate its partners in Vk
(Lines 14-18). If this set of saddles contains u, we have
found a critical saddle line in V(k,k+1) and append the
pair {u,w} to the result.

5 RESULTS

In this section, we will evaluate the algorithm pre-
sented in Section 4. We show its robustness with
respect to noise in Section 5.1, compare it to the
continuous Feature Flow Field tracking algorithm in
Section 5.2, and apply it to a real-world data set
from computational fluid dynamics in Section 5.3.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 8

Fig. 5. Evaluation of noise robustness on a synthetic data set – time is represented using the z-coordinate.
Left: critical saddle lines extracted with the Stable Feature Flow Field method. Middle: critical saddle lines of the
Stable Feature Flow Field method filtered by line length. Right: critical saddle lines extracted by our method using
an appropriate persistence threshold σ.

Algorithm 5 Saddle tracking algorithm: trackSad-
dles(...)
Input: GC = (S,L), Vk ⊂ L, Vk+1 ⊂ L
Output: All critical saddle lines in V(k,k+1)

1: for all u1 /∈ S(Vk) do
2: minLinesu ← traceSeps(GC , Vk, u, 0)
3: for all w ∈ minLinesu do
4: saddlesk[w].append(u)
5: for all u1 /∈ S(Vk+1) do
6: minLinesu ← traceSeps(GC , Vk+1, u, 0)
7: for all w ∈ minLinesu do
8: saddlesk+1[w].append(u)
9: for all u1 /∈ S(Vk) do

10: maxLinesu ← traceSeps(GC , Vk, u, 1)
11: partnersu ← ∅
12: for all w ∈ maxLinesu do
13: partnersu ← partnersu ∪ saddlesk+1[w]
14: for all w ∈ partnersu do
15: maxLinesw ← traceSeps(GC , Vk+1, w, 1)
16: partnersw ← ∅
17: for all v ∈ maxLinesw do
18: partnersw ← partnersw ∪ saddlesk[v]
19: if u ∈ partnersw then
20: SaddleCritLines.append( {u,w} )

We conclude the evaluation of our algorithm with a
performance analysis in Section 5.4.

5.1 Robustness

To demonstrate the ability of our algorithm to deal
with noisy data we consider a synthetic data set.
The data values are given by a 2D analytic function
sampled on a uniform 256× 256 mesh. A height field
visualization of this function is shown in Figure 5.
This data is then rotated to generate a sequence of
256 scalar fields (ft) on the uniform mesh. To show
the influence of the noise on the extraction methods
we added an increasing amount of noise to the

second half of the sequence (ft).

We then applied the algorithm presented in Sec-
tion 4 and the stabilized continuous Feature Flow
Field method [36] to this data set. Figure 5 shows the
critical saddle lines extracted by these two algorithms.
Due to the presence of noise, the continuous extrac-
tion method results in an overwhelming number of
critical saddle lines. Note that some important lines
are interrupted which implies that they are removed
early when we filter the result by line length. In con-
trast, our combinatorial algorithm is able to extract all
dominant critical saddle lines of this time-dependent
data set using a persistence threshold σ slightly above
the range of the noise .

5.2 Comparison
We compare our algorithm to the stabilized
continuous Feature Flow Field method [36] using
a data set from computational fluid dynamics [37].
The data set consists of a simulation of the time-
dependent flow behind a cylinder. The data set
is given on an adaptive mesh with 108k vertices
and 320 time steps. We analyze the scalar quantity
acceleration, a measure for vortex activity in fluid
flows [38] depicted in Figure 9. For the combinatorial
method we set the persistence threshold σ for the
computation of the combinatorial gradient fields to
about one percent of the data range.

Figure 6 shows the critical lines extracted by both
methods in a small subregion of the data set. The
continuous results are shown in the left (original data
set) and middle column (a smoothed version of the
data) while the combinatorial results are shown in the
right column. The three rows show the critical minima
lines (top), saddle lines (middle), and maxima lines
(bottom).

In general, both methods extract the correct critical
lines in the right half of the depicted subregion of



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 9

Fig. 6. Comparison between the Stable Feature Flow Field method (left column) and our combinatorial method
(right column) on a subset of the cylinder flow data set. The middle column depicts the result of the Stable
Feature Flow Field method applied to a pre-smoothed version of the data set. Top row: critical minima lines.
Middle row: critical saddle lines. Bottom row: critical maxima lines.

the data set. Some lines extracted by the continuous
method do contain a very high oscillation. Applying
the continuous method to the smoothed version of the
data set removes these oscillations, but also removes
some important critical lines. Note that our combi-
natorial method deals directly with the original data
without any modifications.

5.3 Application
We applied our method to a scalar data set derived
from a flow simulation [39]. The simulation shows
the flow over a cavity from left to right. Due to
the cavity, there is a dominant vortex that separates
from the wall after some time and moves through
the cavity to the right side, where it hits the other wall.

As an indicator for time-dependent vortex struc-
tures, we used the acceleration, a scalar quantity
whose dominant minima indicate vortex activity [38],
[40]. Note that in contrast to the zeros of the velocity
field, the minima of the acceleration do not depend on
the chosen frame of reference. We computed the ac-
celeration on the adaptive mesh that was used during
the simulation of the flow consisting of 26k nodes for
each of the 690 time steps. For the combinatorial com-
putation of the critical lines, the persistence threshold
σ was set to about one percent of the data range.
Since we are only interested in the minima of the
acceleration, we only show the critical minima lines
in Figure 7. To demonstrate the physical significance
of the importance measure introduced in Section 3.3,
the thickness of the lines is determined by Integrated
Persistence. The dominant vortices that pass through
the cavity have a high Integrated Persistence. This can
be visualized by seeding path lines in the vicinity of
the lines with high Integrated Persistence.

Note that our algorithm has found one critical
minima line that is difficult to observe manually (see
zoom-in in Figure 7 and consider the color map
therein). This short critical line has a higher Integrated

Persistence than most other critical lines in the data
set. By seeding path lines in its vicinity we observe
that this line corresponds to strong vortex activity.

This example shows that it is in general problematic
to use line length as an importance measure for critical
lines.

5.4 Performance

The performance of our implementation was calcu-
lated for all three data sets used in this section. Table 1
contains the running times for a standard workstation
containing two Intel Xeon E5620 CPUs. The table
shows the number of data values given at the vertices
of the grid and the number of slices T for which
the critical lines were computed. Tracking the critical
points in the computed CGFs is very fast – for a mesh
with approximately one hundred thousand vertices,
only 38 milliseconds are required for each time step.

For comparison, we have also measured the run-
ning time of the stable Feature Flow Field method.
Computing the critical lines for the synthetic data set
shown in Figure 5 with this method takes 333 seconds
compared to the total running time of 149s using our
method. Comparing the running time for the other
data sets is problematic, since they are defined on an
adaptive mesh and the implementation of the Feature
Flow Field that is available to us can only be applied
to uniform grids.

Note that the timings for the CGF computation
represent the computation of the full hierarchy of
CGFs, see [29]. The user can thereby quickly select
an appropriate persistence threshold σ in a post pro-
cessing step.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 10

Fig. 7. Application of our method to a real-world data set from computational fluid dynamics. The data set is
the simulation of the flow over a cavity. The dominant minima of the acceleration of the flow describe the vortex
activity. We extracted the critical minima lines of this data set using our method. The thickness of these lines is
defined by our novel importance measure integrated persistence. To demonstrate the physical relevance of this
importance measure, path lines are seeded in the vicinity of the most important lines. Note that there is a short,
but important critical line in this data set (see close-up). This shows that the length of a critical line by itself is not
a good importance measure in general.

Dataset #vertices T CGF Pers. CFFF Total
Synthetic 65k 256 77s 67s 5s 149s

Cavity 26k 690 186s 110s 4s 300s
Cylinder 108k 320 368s 96s 12s 476s

TABLE 1
Performance analysis of our method. For each data

set shown in the paper we measured the running time
for the computation of the combinatorial gradient fields

(CGF), the computation of the persistence values
(Pers.), and the tracking of the critical points in the

resulting sequence (CFFF).

6 DISCUSSION AND FUTURE WORK
As shown in Section 5, our novel combinatorial al-
gorithm to extract critical lines of discrete scalar data
works very well in practice:

• It effectively handles noisy data (see Figure 5).
• It allows for a physically relevant importance

measure for the tracked critical points (see Fig-
ures 9 and 7).

• Its extracted features correspond to the results of
the Feature Flow Field method for a smooth data
set (see Figure 6).

• It has a practical running time (see Table 1).

The robustness of our algorithm with respect to
noise is mainly due to the notion of persistence
which allows for a robust computation of a CGF.
Unfortunately, using persistence can be problematic
if the data contains outliers. To efficiently deal with
such data, an importance measure for critical points
would need to be developed that can address outliers
in a sensible way.

Many of the existing tracking algorithms mentioned
in Section 2 extract bifurcation points, i.e. the points
where a pair of critical points appears or disappears.
The spatial importance of such critical points becomes
arbitrarily small as they approach a bifurcation point,
see Figure 8. Due to our focus on noise resilient
extraction of critical lines, we do not aim at a precise
computation of bifurcation points in this work.
Note that critical points of course can appear or
disappear in our method – we start tracking them as
soon as their spatial importance is high enough to
differentiate them from noise induced critical points.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 11

Fig. 8. Bifurcation handling in CFFF. Right: a
maximum-saddle pair evolving over time. Left: spatial
importance of this pair over time. The pair is only
tracked while the spatial importance is above the
threshold σ. For t < t0 and t1 < t the critical points
are considered as noise.

An extension of the presented algorithm to 3D may
be quite feasible. The mathematical foundation for our
algorithm presented in Section 3 easily extends to 3D.
A close inspection of the definition of combinatorial
critical minima and maxima lines in 3D reveals that
they have the same combinatorial structure as in 2D.
Given an algorithm that can compute a combinatorial
gradient field in 3D we can therefore directly use our
algorithm to track the minima and maxima of 3D
time-dependent data.

ACKNOWLEDGMENTS

This work was supported by the German Science
Foundation (DFG) Emmy-Noether research program.
Tino Weinkauf acknowledges support of the Max-
Planck-Center for Visual Computing. The authors
would like to thank Gerd Mutschke for providing
the cylinder data set, Mo Samimy for providing the
cavity data set, and David Günther for many fruitful
discussions on this topic. All visualizations have been
created using Amira – a system for advanced visual
data analysis (http://amira.zib.de).

REFERENCES

[1] H. Theisel and H.-P. Seidel, “Feature flow fields,” in VisSym
’03: Proceedings of the symposium on Data Visualization 2003.
Aire-la-Ville, Switzerland, Switzerland: Eurographics Associ-
ation, 2003, pp. 141–148.

[2] R. Forman, “Combinatorial vector fields and dynamical sys-
tems,” Mathematische Zeitschrift, vol. 228, no. 4, pp. 629–681,
August 1998.

[3] H. Edelsbrunner, J. Harer, and A. Zomorodian, “Hierarchical
morse complexes for piecewise linear 2-manifolds,” in Proc. of
the 17th Symposium on Computational Geometry, 2001, pp. 70–79.

[4] H. King, K. Knudson, and N. Mramor, “Birth and death in dis-
crete morse theory,” arXiv:0808.0051v1, 2008. [Online]. Avail-
able: http://adsabs.harvard.edu/abs/2008arXiv0808.0051K

[5] A. Yilmaz, O. Javed, and M. Shah, “Object tracking: A survey,”
ACM Comput. Surv., vol. 38, no. 4, p. 13, 2006.

[6] F. H. Post, “The state of the art in flow visualization:
Feature extraction and tracking,” in Computer Graphics Forum,
D. Duke and R. Scopigno, Eds. Oxford, UK and Boston, USA:
Blackwell Publishing Inc, Jun. 2003, vol. 22(4), pp. 775–792.
[Online]. Available: http://www.vrvis.at/scivis/star/index.
html

[7] J. Caban, A. Joshi, and P. Rheingans, “Texture-based feature
tracking for effective time-varying data visualizations,” IEEE
Transactions on Visualization and Computer Graphics (Vis07),
vol. 13, no. 6, pp. 1472–1479, 2007.

[8] R. Samtaney, D. Silver, N. Zabusky, and J. Cao, “Visualizing
features and tracking their evolution,” Computer, vol. 27, no. 7,
pp. 20–27, 1994.

[9] F. Reinders, F. Post, and H. Spoelder, “Attribute-based feature
tracking,” in Proceedings of EG - IEEE TCVG Symposium on
Visualization ’99, 1999.

[10] D. Laney, P. T. Bremer, A. Mascarenhas, P. Miller, and V. Pas-
cucci, “Understanding the structure of the turbulent mixing
layer in hydrodynamic instabilities,” IEEE Transactions on Vi-
sualization and Computer Graphics, vol. 12, no. 5, pp. 1053–1060,
2006.

[11] W. de Leeuw and R. van Liere, “Chromatin decondensation:
A case study of tracking features in confocal data,” in VIS ’01:
Proceedings of the conference on Visualization ’01. Washington,
DC, USA: IEEE Computer Society, 2001, pp. 441–444.

[12] D. Silver and X. Wang, “Tracking and visualizing turbulent
3d features,” IEEE Transactions on Visualization and Computer
Graphics, vol. 3, no. 2, pp. 129–141, 1997. [Online]. Available:
www.caip.rutgers.edu/vislab.html

[13] G. Ji, “Feature tracking and viewing for time-varying data
sets,” Ph.D. dissertation, Ohio State University, Columbus,
OH, USA, 2006, advised by Han-Wei Shen.

[14] F. Reinders, I. A. Sadarjoen, B. Vrolijk, and F. H. Post, “Vortex
tracking and visualisation in a flow past a tapered cylinder,”
Computer Graphics Forum, vol. 21, no. 4, pp. 675–682, 2002.

[15] C. Bajaj, A. Shamir, and B.-S. Sohn, “Progressive tracking
of isosurfaces in time-varying scalar fields,” Department of
Computer Sciences & TICAM, University of Texas Austin,
Tech. Rep. TR-02-4, CS & TICAM, 2002.

[16] B.-S. Sohn and C. Bajaj, “Time-varying contour topology,”
IEEE Transactions on Visualization and Computer Graphics,
vol. 12, no. 1, pp. 14–25, 2006.

[17] C. Weigle and D. C. Banks, “Extracting iso-valued features in
4-dimensional scalar fields,” in VVS ’98: Proceedings of the 1998
IEEE symposium on Volume visualization. New York, NY, USA:
ACM, 1998, pp. 103–110.

[18] G. Ji, H.-W. Shen, and R. Wenger, “Volume tracking using
higher dimensional isosurfacing,” in VIS ’03: Proceedings of the
14th IEEE Visualization 2003 (VIS’03). Washington, DC, USA:
IEEE Computer Society, 2003, pp. 209–216.

[19] G. H. Weber, P.-T. Bremer, M. S. Day, J. B. Bell, and V. Pascucci,
“Feature tracking using Reeb graphs,” in Topological Methods
in Data Analysis and Visualization: Theory, Algorithms, and Appli-
cations, V. Pascucci, X. Tricoche, H. Hagen, and J. Tierny, Eds.
Springer Verlag, 2011, pp. 241–253.

[20] P.-T. Bremer, G. H. Weber, V. Pascucci, M. Day, and J. B. Bell,
“Analyzing and tracking burning structures in lean premixed
hydrogen flames,” IEEE Transactions on Visualization and Com-
puter Graphics, vol. 16, no. 2, pp. 248–260, 2010.

[21] X. Tricoche, T. Wischgoll, G. Scheuermann, and H. Hagen,
“Topology tracking for the visualization of time-dependent
two-dimensional flows,” Computer & Graphics, vol. 26, pp. 249–
257, 2002.

[22] C. Garth, X. Tricoche, and G. Scheuermann, “Tracking of
vector field singularities in unstructured 3d time-dependent
datasets,” in VIS ’04: Proceedings of the conference on Visualiza-
tion ’04. Washington, DC, USA: IEEE Computer Society, 2004,
pp. 329–336.

[23] D. Bauer and R. Peikert, “Vortex tracking in scale space,” in
Joint Eurographics — IEEE TCVG Symposium on Visualization,
May 2002, pp. 140–147. [Online]. Available: citeseer.csail.mit.
edu/bauer02vortex.html

[24] H. Edelsbrunner and J. Harer, “Jacobi sets of multiple morse
functions,” in Foundations of Computational Mathematics, Min-
neapolis 2002, F. Cucker, R. DeVore, P. Olver, and E. Sueli, Eds.
Cambridge Universtiy Press, 2004, pp. 37–57.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 12

Fig. 9. Evaluation of different filter criteria for critical minima lines (blue) of the acceleration of a flow dataset. The
dominant minima of the acceleration describe vortex activity of the flow. Top-left: all extracted critical minima lines
computed by Algorithm 1 without any post processing. Top-right: lines filtered by length. Bottom-left: lines filtered
by spatial persistence. Bottom-right: lines filtered by our novel importance measure integrated persistence. The
lines with high integrated persistence correspond to the dominant vortex activity of this data set as shown in [41].

[25] H. Edelsbrunner, J. Harer, A. Mascarenhas, J. Snoeyink, and
V. Pascucci, “Time-varying Reeb graphs for continuous space-
time data,” Computation Geometry: Theory and Applications,
vol. 41, no. 3, pp. 149–166, 2008.

[26] M. K. Chari, “On discrete morse functions and combinatorial
decompositions,” Discrete Math., vol. 217, no. 1-3, pp. 101–113,
2000.

[27] T. Lewiner, “Geometric discrete Morse complexes,” Ph.D.
dissertation, Department of Mathematics, PUC-Rio, 2005,
advised by Hélio Lopes and Geovan Tavares. [Online].
Available: http://www.matmidia.mat.puc-rio.br/∼tomlew/
phd thesis puc uk.pdf

[28] U. Bauer, C. Lange, and M. Wardetzky, “Optimal topo-
logical simplification of discrete functions on surfaces,”
arXiv:1001.1269v2, 2010.

[29] J. Reininghaus, D. Günther, I. Hotz, S. Prohaska, and H.-C.
Hege, “TADD: A computational framework for data analysis
using discrete morse theory,” in Proc. ICMS 2010, 2010, (in
press).

[30] R. Forman, “Morse theory for cell complexes,” Advances in
Mathematics, vol. 134, pp. 90–145, 1998.

[31] ——, “A user’s guide to discrete Morse theory,” in Seminaire
Lotharingien de Combinatoire, vol. B48c, 2002, pp. 1–35.

[32] A. Gyulassy, P.-T. Bremer, B. Hamann, and V. Pascucci, “A
practical approach to Morse-Smale complex computation: scal-
ability and generality,” IEEE Transactions on Visualization and
Computer Graphics, vol. 14, pp. 1619–1626, 2008.

[33] H. Edelsbrunner, D. Letscher, and A. Zomorodian, “Topolog-
ical persistence and simplification,” Discrete Comput. Geom.,
vol. 28, pp. 511–533, 2002.

[34] V. Robins, P. Wood, and A. Sheppard, “Discrete morse theory
for grayscale digital images,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, to appear.

[35] D. Cohen-Steiner, H. Edelsbrunner, and D. Morozov, “Vines
and vineyards by updating persistence in linear time,”
in Proceedings of the twenty-second annual symposium on
Computational geometry, ser. SCG ’06. New York, NY,
USA: ACM, 2006, pp. 119–126. [Online]. Available: http:
//doi.acm.org/10.1145/1137856.1137877

[36] T. Weinkauf, H. Theisel, A. V. Gelder, and A. Pang,
“Stable feature flow fields,” IEEE Transactions on Visualization
and Computer Graphics, 2010, accepted. [Online]. Available:
http://tinoweinkauf.net/

[37] B. R. Noack, M. Schlegel, B. Ahlborn, G. Mutschke,
M. Morzyński, P. Comte, and G. Tadmor, “A finite-time ther-
modynamics of unsteady fluid flows,” J. Non-Equilibr. Thermo-
dyn., vol. 33, no. 2, pp. 103–148, 2008.

[38] J. Kasten, I. Hotz, B. Noack, and H.-C. Hege, “On the ex-
traction of long-living features in unsteady fluid flows,” in
Topological Methods in Data Analysis and Visualization. Theory,
Algorithms, and Applications., V. Pascucci, X. Tricoche, H. Ha-
gen, and J. Tierny, Eds. Springer, 2010, pp. 115–126.

[39] E. Caraballo, M. Samimy, and J. DeBonis, “Low dimensional
modeling of flow for closed-loop flow control,” AIAA Paper,
vol. 59, 2003.

[40] R. Fuchs, J. Kemmler, B. Schindler, F. Sadlo, H. Hauser, and
R. Peikert, “Toward a Lagrangian Vector Field Topology,”
Computer Graphics Forum, vol. 29, no. 3, pp. 1163–1172, 2010.

[41] T. Weinkauf, J. Sahner, H. Theisel, and H.-C. Hege, “Cores of
swirling particle motion in unsteady flows,” IEEE Transactions



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 13

on Visualization and Computer Graphics (Proceedings Visualization
2007), vol. 13, no. 6, pp. 1759–1766, November – December
2007.

Jan Reininghaus received the M.S. degree
in Mathematics from the Humboldt University
of Berlin, Germany, for a thesis on the numer-
ical treatment of Maxwell’s equations. He is
a main author of OpenFFW, an open source
finite element framework written in Matlab.
Currently he is with the Scientific Visualiza-
tion Department of Zuse Institute Berlin (ZIB)
where he is working on his PhD thesis. His
current research interests include Hodge the-
ory, volume rendering, finite element exterior

calculus and discrete Morse theory.

Jens Kasten is a junior researcher at the
Zuse Institute Berlin. His main field of re-
search is the analysis of time-dependent flow
fields including the extraction of Lagrangian
features. He studied mathematics and com-
puter science at the University of Münster,
Germany, and received his M.S. degree in
mathematics in 2008.

Tino Weinkauf studied computer science
with the focus on computer graphics at the
University of Rostock, Germany, where he
received his M.S. degree in 2000. Based
on his research carried out at the Scientific
Visualization department of Zuse Institute
Berlin (ZIB) on feature-based analysis and
comparison techniques for flow fields he re-
ceived his awarded PhD in computer science
from the University of Magdeburg in 2008. He
spent two years as a post-doc at the Courant

Institute of Mathematical Sciences, New York University, based on
a Feodor Lynen research fellowship of the Alexander von Humboldt
foundation. Since 2011 he is a senior researcher at the Max-Planck-
Institute for Informatics in Saarbrücken, Germany, and the head
of the research group “Feature-Based Data Analysis for Computer
Graphics and Visualization.” His current research interests focus
on flow and tensor analysis, geometric modeling, and information
visualization.

Ingrid Hotz received the M.S. degree in
theoretical Physics from the Ludwig Maxim-
ilian University in Munich Germany and the
PhD degree from the Computer Science De-
partment at the University of Kaiserslautern,
Germany. During 2003 – 2006 she worked
as a postdoctoral researcher at the Institute
for Data Analysis and Visualization (IDAV)
at the University of California. Currently she
is the leader of a junior research group at
the Zuse Institute in Berlin Germany. Her

research interests are in the area of data analysis and scientific
visualization with focus on tensor and vector fields.


