
Eurographics Conference on Visualization (EuroVis) 2014
H. Carr, P. Rheingans, and H. Schumann
(Guest Editors)

Volume 33 (2014), Number 3

Extended Branch Decomposition Graphs:
Structural Comparison of Scalar Data

Himangshu Saikia, Hans-Peter Seidel, Tino Weinkauf
Max Planck Institute for Informatics, Saarbrücken, Germany

Abstract
We present a method to find repeating topological structures in scalar data sets. More precisely, we compare
all subtrees of two merge trees against each other – in an efficient manner exploiting redundancy. This provides
pair-wise distances between the topological structures defined by sub/superlevel sets, which can be exploited
in several applications such as finding similar structures in the same data set, assessing periodic behavior in
time-dependent data, and comparing the topology of two different data sets. To do so, we introduce a novel data
structure called the extended branch decomposition graph, which is composed of the branch decompositions of
all subtrees of the merge tree. Based on dynamic programming, we provide two highly efficient algorithms for
computing and comparing extended branch decomposition graphs. Several applications attest to the utility of our
method and its robustness against noise.

1. Introduction

Structures repeat in both nature and engineering. An example
is the symmetric arrangement of the atoms in molecules such
as Benzene. A prime example for a periodic process is the
combustion in a car engine where the gas concentration in a
cylinder exhibits repeating patterns.

Structures repeat with variations. Sometimes these varia-
tions are clearly noticeable. For example, the weather patterns
over the Atlantic ocean are comparable every summer, but
not quite the same. Similarly in engineering, the flow fields
around a small and a larger car are not quite the same, but
they exhibit significant similarity.

In this paper, we focus on scalar data sets and the topologi-
cal structures defined by their sub/super-level sets. We enable
the user to select such a topological structure – simply by
choosing one such set – and search for similar occurrences of
it (i) in the same data set, (ii) in different time steps, (iii) in
other data sets. We return a list of matches with scores, which
can be emphasized in a volume rendering.

Previous research (Section 2) in this direction includes the
work of Thomas and Natarajan [TN11, TN13] on detecting
symmetry within a scalar data set. In contrast to their work,
we lift the restriction to symmetric patterns and enable the
comparison between different data sets and time steps.

After recapitulating the theoretical background on topol-
ogy in Section 3, we provide reasoning towards our approach
in Section 4 and present our technical contributions in Sec-
tion 5:

• We introduce the extended branch decomposition graph:
a novel data structure that describes the hierarchical decom-
position of all subtrees of a join/split tree. We abbreviate it
with ‘eBDG’.
• We provide a fast algorithm for computing an eBDG. Typ-

ical runtimes are in the order of milliseconds.
• We develop an algorithm for comparing two eBDGs. It

amounts to comparing all subtrees of two join/split trees
against each other, but without the redundancy of a naïve
1-to-1 comparison. The algorithm is fast and memory-
efficient due to our dynamic programming approach. Typ-
ical runtimes are below a second. Subsequently, the user
can select any subtree (sub/super-level set) and find topo-
logically similar ones instantly.

The comparison is robust against noise as we show in Section
6 together with a number of other evaluations and applica-
tions. Section 7 concludes the paper with a discussion of
limitations and future work.

2. Related Work

The largest body of work for finding repeating structures or
objects can be found in the computer graphics and computer
vision domains, where the task is to look for similar shapes
and images, or parts thereof. Many different approaches exist
to identify symmetries and similarities; a detailed overview
can be found in the state of the art report by Mitra et al.
[MPWC13]. Some of these methods use topology [BGSF08].
For example, Hilaga et al. [HSKK01] compare and match
shapes using Reeb graphs and Yang et al. [YGW∗12] using
critical points of the Gaussian curvature.

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

H. Saikia, H.-P. Seidel, T. Weinkauf / Extended Branch Decomposition Graphs

One possible approach to detecting repeating structures
in scalar fields is to extend the methods known from graph-
ics. For example, Kerber et al. [KWKS11] detect partial Eu-
clidean symmetries in volume data by matching crease lines.
Hong et al. [HS07] sample a large number of cutting planes
through the volume to test for reflective symmetry. These
methods are restricted to symmetry and a single data set.
Furthermore, they ignore many properties inherent to scalar
fields such as the hierarchy of level sets.

Other methods in the visualization domain compare two
or more scalar fields with each other, in particular in the
context of multi-field analysis. Sauber et al. [STS06] com-
pute pairwise correlations between 3D scalar fields and use a
graph structure to navigate the exponentially high number of
pairs. Jänicke et al. [JWSK07] compute the statistical com-
plexity for each spatio-temporal location in time-dependent
multi-fields, which is a time-dependent scalar field that often
correlates with application-specific features. An overview
of further methods can be found in [BH07]. In the follow-
ing, we concentrate on topological approaches. For example,
Huettenberger et al. [HHC∗13] propose an approach towards
multi-field scalar topology by overlaying two scalar fields and
assessing their differences using Pareto optimality. Haidacher
et al. [HBG11] compare scalar fields from different modali-
ties using an isosurface similarity measure [BM10]. Schnei-
der et al. [SWC∗08] extract largest isocontours – as defined
by a simplified contour tree – from different 3D data sets and
compare their volume overlap as a measure of similarity. Carr
and Duke [CD13] propose the concept of the joint contour
net which expresses the topological relationships between
two scalar fields defined over the same domain. It has been
applied to the analysis of nuclear fission data sets [DCK∗12].
All these methods have in common that they compare two
data sets as a whole.

Several methods deal with the comparison of topologi-
cal structures. Bauer et al. [BGW13] introduce a distance
metric for Reeb graphs under which they are stable to small
perturbations of the input. The algorithm has exponential
complexity. Edelsbrunner et al. [EHMP04] introduce a data
structure tracking the evolution of a Reeb graph over time.
Knowing the initial structure and incremental changes over
time suffices to construct the Reeb graph for any time t. An-
other topological approach to analyzing time-dependent data
is due to [FOTT08]. A close work to ours is due to Beketayev
et al. [BYM∗13] where two merge trees are compared by
means of branch decompositions. They avoid instabilities by
considering a large number of these decompositions, which
on the other hand leads to very long computation times. Their
runtime complexity amounts to O(N5) for comparing a merge
tree with N nodes to itself, whereas our runtime complex-
ity is O((N logN)2). Furthermore, their algorithm needs to
re-run for every similarity threshold ε, whereas our method
computes all scores at once. We pay with the possibility of in-
stabilities (Section 6.1), which can be mitigated by choosing
a proper edge weight in the merge tree (Section 6.2).

scalar field contour tree join tree split tree

Figure 1: Contours of a scalar field may appear, join, split,
and disappear with changing isovalues. The contour tree
represents that behavior. It can be created by merging the
join and split tree.

Tree edit distance is a measure for comparing labeled
trees [Bil05]. These approaches have exponential computa-
tion time. Suboptimal solutions [NRB06] provide significant
speedups, but are still far away from being usable in interac-
tive applications.

The closest work to our approach is due to Thomas and
Natarajan. They detect symmetric structures in a scalar data
set using either the contour tree [TN11] or the extremum
graph [TN13]. See Section 6.3 for a discussion.

3. Background

In this section, we discuss the necessary background regard-
ing the topology of scalar fields. Further details can be found
in [Car04].

3.1. Contour, Join, Split Trees

Consider a level set of a scalar field f : IRn→ IR for a given
isovalue such as the one denoted with the number “2” in
Figure 1. It consists of several connected components, i.e.,
contiguous parts of the level set, which are called contours.
When changing the isovalue, new contours may appear, oth-
ers may disappear, and some contours may join or split. This
behavior is recorded in the contour tree T = (V,E). Its nodes
vi ∈ V are the minima, maxima, and saddle points of the
scalar field. An edge (vi,v j) ∈ E represents the topologically
equivalent contours between vi and v j for f (vi)> f (v j). Con-
tour trees are unrooted and can be computed by merging two
rooted trees: the join and split tree (often jointly referred to
as merge trees).

Following the notation of [Car04], the leaves of the join
tree are the maxima of the scalar field. Each maximum gives
rise to a contour. With decreasing isovalue, they join at sad-
dles until only one contour remains, which will finally col-
lapse at the global minimum, i.e., the root of the join tree.
With a slight abuse of notation we write J = (V,E) for join
trees. Reversely, the split tree is rooted at the global maximum
and its leaves are the minima of the scalar field.

The edges of a merge tree can be weighted by the function
value difference between its nodes. This measure is closely

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

H. Saikia, H.-P. Seidel, T. Weinkauf / Extended Branch Decomposition Graphs

A
B

C

D
E

F

G

I

A
B

E
2

3

3
2

2 1

2

J

H

J

1

2

9
D

F

C

G

I

H

B-J

1
H-I 4C-G

2A-E

2D-F

join tree

branches
of the

join tree

branch
decomposition

tree

Figure 2: A join tree can be segmented into a collection
of branches according to the weight of the edges. This is
a hierarchical segmentation. It is represented as the branch
decomposition tree, where each node corresponds to a branch
of the join tree.

related to persistence [ELZ02]. It allows to discriminate dom-
inant and weak features. Other possible weighting measures
include the maximum or minimum area/volume of the region
represented by an edge. In Section 6.2 we discuss the choice
of the weighting function and its influence on the robustness
against noise.

3.2. Branch Decomposition Tree

A branch decomposition tree (BDT) is a derivative of a
contour/join/split tree. It is usually computed for contour
trees [PCMS04], but just as well defined for merge trees –
and this is how we will use it in this paper. Furthermore, we
restrict the discussion to join trees. The definition for split
trees follows in a straightforward fashion.

The BDT aims at representing the contours in a hierar-
chical manner according to the weight of the edges in the
join tree. To this end, the join tree is segmented into non-
overlapping branches: a branch consists of one or more edges
between a saddle and a maximum. Each branch is represented
as a node in the BDT. Figure 2 illustrates this.

Formally, consider a join tree J = (V,E). We write its
branch decomposition tree as B = (B,S) with the nodes B =
{b : b = {ei, . . . ,e j} with ei, . . . ,e j ∈ E} representing the
branches, and the edges S representing their hierarchy.

The computation of the BDT starts with the edge of lowest
weight, which gets “plucked” from the join tree and becomes
a node in the BDT. This removes a saddle-maximum pair
from the join tree and combines two edges. In Figure 2, the
edge (D→ F) is “plucked” off the join tree and becomes
a node in the BDT, while the former edges (C→ F) and
(F→G) are merged into the branch (C→G), whose weight
is the sum of the individual edge weights. The computa-
tion continues by iteratively removing the branch with the
currently lowest weight. Eventually, the root of the BDT is
formed by the branch between the global minimum and the
global maximum, i.e., (B→ J) in Figure 2.

join trees
branch

decomposition
trees

Figure 3: The upper row shows a simple scalar field with
two maxima as well as its corresponding join tree and branch
decomposition tree. The lower row shows a version with
added noise. Note how difficult it is to relate the two join trees,
whereas the branch decomposition trees show a remarkable
similarity.

4. Towards Comparison of Merge Trees

We enable the user to select a topological structure and find
similar occurrences of it in the same or another scalar field.
A structure is selected by choosing a point in the domain.
This defines an isovalue, which corresponds to an edge in the
merge tree (see Figure 1). From a topological point of view,
the sub/superlevel sets along that edge are equivalent. Hence,
the entire edge is included in the selection. Most importantly,
the entire subtree is selected, starting at the selected edge and
ending at the leaves (minima/maxima).

The task is to find similar occurrences of the selected
subtree in a merge tree. Hence, we need an algorithm for
computing the similarity of merge trees and parts thereof.

Our approach is based on the extended branch decomposi-
tion graph – formally introduced in the next section. In this
section, we justify why the merge trees themselves are not
well suited for this purpose. Furthermore, we justify why a
single branch decomposition tree does not suffice either.

Merge trees represent the nesting of sub/superlevel sets
and their edges can be weighted by feature strength (e.g.,
height difference). However, the notion of feature strength
does not manifest in their structure: merge trees are riddled
with low-weighted branches throughout their hierarchy. It is
not possible to locate the most important edges in a specific
part of the tree. Figure 3 illustrates this. A node-to-node com-
parison is hard, too, since there is no strict order of traversal
defined, i.e., the order of the children is undefined. Hence,
comparing such trees directly leads to a combinatorial night-
mare.

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

H. Saikia, H.-P. Seidel, T. Weinkauf / Extended Branch Decomposition Graphs

A
B

C

D
E

F

G

I

A
B

E

J

H

J

D

F

C

G

I

H

B-J

H-I
C-G

A-E

D-F

A

E

A

E

A-E

B

E

B-E

B

E

C

F

C

F

C-F

D

F

D

F

D-F

I

H

I

H

H-I

A
B

E

G

B

G

A

E

B-G

A-E

C

D

F

G

D

F

C

G

C-G

D-F

A
B

C

D
E

F

G

I

A
B

E

D

F

C

G

I

B-I

C-G
A-E

D-F

Figure 4: A forest of all subtrees (top-row) of the join tree
shown in Figure 2, along with their branches (middle-row)
and the branch decomposition trees (bottom row).

The branch decomposition tree (BDT) is a better alterna-
tive for two reasons:

• A parent node has always a higher feature strength than
any of its children. This means that we can compare the
most dominant features first by starting a comparison from
the root, while noisy structures appear in deeper levels
of the BDT. Figure 3 shows how well the BDTs in this
example represent the similarity between the two data sets.
• The children in a BDT can be ordered in a meaningful

manner: we order them according to the scalar value of
their saddles. This facilitates an efficient comparison, since
we only need to match the children in a given order, instead
of considering all possible permutations.

Our goal is to compare all subtrees of a merge tree. A single
BDT does not allow that, since its nodes do not represent all
subtrees. Figure 2 shows an example, where the subtrees
(A→ E← B) and (C→ F ← D) cannot be compared, since
they are not represented in a single BDT, which in this case
is computed with respect to the root. In order to represent
all subtrees, we need just as many BDTs: one BDT for each
subtree computed from the root of that subtree.

This leads to a forest of BDTs as shown in Figure 4. It is
expensive to keep this forest in memory and to compare all
of the trees against each other: let E be the set of edges of the
full merge tree, Ei be the edges of a subtree andMi its ex-
trema. Then it can easily be seen that the memory for storing
the forest of BDTs is ∑

|E|
i=0 (|Ei|+ |Mi|). The computation of

the forest would require ∑
|E|
i=0 (O(|Ei|)+O(|Mi| log |Mi|)).

Naïvely comparing each tree Ti in this forest against ev-
ery other tree T j in a different forest has a runtime of

∑
|E|
i=0 ∑

|E|
i=0 O(NiN jbib j), where Ni, N j denote the sizes of the

forests and bi,b j the average branching factors in the subtrees.
In the next section, we introduce a graph data structure and
an efficient comparison algorithm that make this approach
feasible.

5. Extended Branch Decomposition Graph

We introduce an efficient graph structure to represent a forest
of branch decomposition trees. Each of the BDTs in the forest
is computed from a subtree of the merge tree (Section 5.1).
We show how to compute the branch decompositions of all
subtrees efficiently as part of a memoization process using
dynamic programming (Section 5.2). The graph structure is
the basis for comparing any subtree of the merge tree with
any other subtree. We give an efficient comparison algorithm
(Section 5.3). Again, all following explanations will be made
for join trees, but work for split trees as well.

5.1. Definition

Let J = (V,E) denote a join tree. We will now enumerate
its subtrees by considering its edges. Each edge (vi,v j) ∈ E
gives rise to one and only one subtree Ji = (Vi,Ei) where
Vi ⊆ V and Ei ⊆ E . This follows since the edges are directed
vi→ v j and there exists one and only one directed path from
every node to the global minimum. Hence, for every vi there
exists one and only one v j where (vi,v j) ∈ E .

For each subtree Ji, we can compute a branch decompo-
sition tree Bi = (Bi,Si). This leads to a forest of branch
decomposition trees as shown in Figure 4.

It is crucial to note that the trees in this forest have a
substantial overlap. To see this, consider two subtrees Ji and
J j of the join tree J. Furthermore, let J j be a subtree of Ji.
Then, some parts of the hierarchy of B j will also appear in
Bi. This can easily be observed in Figure 4, where the node
D-F appears four times in the forest. Furthermore, note that
every node in the forest appears also exactly once as a root
node. This leads us to a new data structure for representing
this forest without redundancy.

The extended branch decomposition graph (eBDG) is the
union of all branch decomposition trees Bi. We denote it
with B∪ = (B∪,S∪) where B∪,S∪ represent the union of
the nodes and edges of all Bi. Figure 5 illustrates this.

The following statement holds regarding the number of
elements in the eBDG and the join tree:

|B∪|= |E|= |V|−1. (1)

This follows from two facts:

• As discussed before, every node in the forest of all Bi is
also a root node of one particular Bi.

• Every Bi represents a subtree of the join tree, which in turn
is represented by the sole edge from the root of the subtree.

In other words, a node of the eBDG uniquely identifies an
edge of the join tree, which in turn represents topologically
equivalent contours. This is crucial for our applications, since
we aim to possess a comparison structure for every contour.

Table 1 shows the eBDG nodes for the contour tree in
Figure 2 and exemplifies our indexing scheme for the root

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

H. Saikia, H.-P. Seidel, T. Weinkauf / Extended Branch Decomposition Graphs

Figure 5: The extended branch
decomposition graph (eBDG) for
the join tree in Figure 2 is the
union of the BDTs in Figure 4. All
BDTs arising from every subtree
of the join tree are included in
this graph. Every node represents
a root branch of a BDT and the rest
of the BDT can be traced along the
directed edges.

A-E B-E C-F D-F H-I

B-G C-G

B-I

B-J

Index Root Node Corresponding Weight Child Level
Edge in J Indices

0 A-E A → E 2 - 0
1 B-E B → E 3 - 0
2 C-F C → F 3 - 0
3 D-F D → F 2 - 0
4 H-I H → I 1 - 0
5 B-G E → G 5 0 1
6 C-G F → G 4 3 1
7 B-I G → I 7 6, 0 2
8 B-J I → J 9 4, 6, 0 2

Table 1: eBDG table for the contour tree in Figure 2.

nodes of the Bi. The level encodes the hierarchy that a node
belongs to. A node without any children is of level-0. A node
is level-1, if it has only level-0 children. In general, the level
of a node is one higher than the level of its highest-level child.

5.2. Computation

As seen previously, the eBDG avoids redundancy by combin-
ing the BDTs of all subtrees of a join tree to a single graph
structure. This is possible because subtrees overlap with each
other. We exploit this overlapping when computing the eBDG
in a bottom-up fashion.

The algorithm starts with the edges of the join tree that con-
tain a maximum. The BDT for such single edges is straightfor-
ward: a single node representing the edge. Thus, we initialize
the eBDG with these trivial branch decompositions Bi for all
maxima vi ∈ V:

Bi = (ei,{}), (2)

where ei = (vi→ v j) = (vi,v j) is the unique edge in the join
tree starting from vi. The weights Wi of the nodes Bi and their
levels Li are trivially given by

Wi = wi Li = 0 (3)

where wi is the weight of the edge ei. In Figure 5, this initial-
ization created the nodes in the topmost row, but not any of
the edges or other nodes.

The algorithm continues by visiting every saddle of the
join tree and updating the eBDG such that it contains the BDT

of the respective subtree. The update for each saddle consists
of adding a single node and a number of edges to the eBDG.
Consider a saddle vi with (vk → vi) ∈ E and all Bk have
already been computed. Then we can compute Bi = (Bi,Si)
as follows:

`= arg max
x
{Wx|(vx→ vi) ∈ E} (4)

Bi = ei∪B` (5)

Si = S`∪{(Bi→Bk)|(vk→ vi) ∈ E ∧ k 6= `} (6)

with the weight of the root node of Bi and the level given by

Wi =W`+wi (7)

Li = max({1+Lk|(vk→ vi) ∈ E ∧ k 6= `}∪L`). (8)

To put this into words: at every saddle vi, the heaviest branch
B` is identified and combined with the edge ei to form the
root node of Bi. All other branches are assigned as its chil-
dren. Furthermore, all children of the heaviest branch are
also assigned as children of Bi. This takes care of ordering
the saddles in a topologically consistent manner, which is
required by our comparison algorithm later on.

The above algorithm has space complexity of O(N), where
N is the number of nodes in the eBDG. The time complexity
is O(Nd logd), where d is the average branching factor in
the join tree, i.e., how many branches merge at a join saddle.
Most data sets have only first-order saddles where d = 2, so
the runtime is linear in N for those cases. This changes when
monkey saddles are present (where more than two contours
merge at a saddle), but the effect on the runtime is small in all
practical cases since d is the average branching factor. The
complexity is independent of the size of the data, but depends
only on the size of the merge tree. Table 2 lists runtimes.

5.3. Comparison

We present a dynamic programming method to compute a
comparison score (as a cost function) between any two join
trees J1 and J2. These trees are compared by means of their
eBDGs B1 and B2. As a result, we also obtain the comparison
scores of all subtrees of J1 to all subtrees of J2. This enables
us later to do a real-time exploration of similar structures in
the data.

The main algorithmic ingredient is to compare an eBDG
node to another – including their children. Again, we use
a bottom-up approach and memoization. Consider the two
eBDGs B1 and B2. The cost between two level-0 nodes B1

i
and B2

j is given by the objective function

c(B1
i ,B

2
j) = |W 1

i −W 2
j |. (9)

Higher-level nodes have children, which need to be matched
up as well such that it leads to the minimum cost. In fact,
these children are trees and the actual task is to compare
two sequences of trees. The key here is memoization: if the
minimum cost of matching a lower-level node is already com-
puted, then we only need to match the immediate children.

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

H. Saikia, H.-P. Seidel, T. Weinkauf / Extended Branch Decomposition Graphs

Hence, we visit the eBDG nodes in ascending order of their
levels and compute their cost as

c(B1
i ,B

2
j) = |W 1

i −W 2
j |+ c(F1

i ,F
2
j), (10)

where c(F1
i ,F

2
j) is the cost of matching the two sequences

of trees below B1
i and B2

j . Since lower-level nodes have been
processed first, this is now a simpler matter of matching two
sequences of values. Figure 6 illustrates this. Note that such a
matching must not have any crossings, since this would lead
to topological inconsistencies, where higher-valued saddles
would be matched to lower-valued saddles.

Matching two sequences without edge crossings is solved
using a divide-and-conquer approach: consider a dissection
of the two sequences at any given pair of indices such that
optimal matches are not cut. Then the optimal matches within
each partial sequence remain the same. Hence, this prob-
lem can be solved using dynamic programming. To define
the recurrence of our dynamic programming formulation we
observe that we have one of three choices at any moment:
(i) leave out the first node in the first sequence, (ii) leave
out the first node in the second sequence, (iii) match the
first two nodes with each other. This leads to the following
formulation:

c(F1
i ,F

2
j) = d0,0(F

1
i ,F

2
j), (11)

where dp,q(F1
i ,F

2
j) is the minimal cost of matching the two

sequences of trees F1
i and F2

j at indices p and q, respectively.
F1

i and F2
j are given by:

F1
i = {B1

i,0,B
1
i,1,B

1
i,2, . . . ,B

1
i,m} (12)

F2
j = {B2

j,0,B
2
j,1,B

2
j,2, . . . ,B

2
j,n}. (13)

Here, B1
i has m children and B2

j has n children. Writing
dp,q({B1

i,0,B
1
i,1,B

1
i,2, . . . ,B

1
i,m},{B2

j,0,B
2
j,1,B

2
j,2, . . . ,B

2
j,n})

simply as dp,q we have,

dp,q = min

dp+1,q + c(B1

i,p)

dp,q+1 + c(B2
j,q)

dp+1,q+1 + c(B1
i,p,B

2
j,q)

(14)

where p ∈ {0, . . . ,m} and q ∈ {0, . . . ,n}. Also dp,n+1 =
dm+1,q = 0. The cost of leaving out a node is equivalent
to leaving out all of its children. This is given by:

c(Bi) =Wi + c(Fi) (15)

c(Fi) = Σc(Bk) ∀k ∈ children(i). (16)

Thus, using the memoized scores from previously computed
lower-level node matches, an all-to-all score table is obtained.
From this, the similarity for any pair of subtrees J1

i and J2
j

can be obtained, including the full join trees J1 and J2.

The space complexity of the comparison algorithm is
O(N1N2 + b1b2), where N1 and N2 denote the sizes of the
two eBDGs, and b1 and b2 denote the average branching
factors. The time complexity is O(N1N2b1b2). Consider L1

i i + 1 i + 2 i + 3

j j + 1 j + 2 j + 3

50 2 23 125

49 25 4 118

Figure 6: Illustration of
the dynamic program-
ming concept behind
matching child nodes.

Dataset Vertices Edges in join tree eBDG eBDG comparison
(after simplification) computation with itself

Benzene 1013 23 0.02 0.13
Neghip 643 252 0.17 14.93
EMDB-1706 1303 155 0.12 15.65
EMDB-1603 1603 38669 (911) 1.89 73.45
EMDB-1603 (z=47) 1602 1416 1.36 2028.1

Table 2: Computation times (in milliseconds) for various
data sets. All operations were performed on a machine with
a 2.66GHz Intel Xeon processor and 12GB main memory.

and L2 as the average levels in the two trees. Then we can
write the time complexity as

O(N1N2 logL1+1(N1 +1) logL2+1(N2 +1)). (17)

As an example, for finding similarities within the same
data set and for L = 2, we have a time complexity of
O((N logN)2). Again, the complexity is independent of the
size of the data, but depends only on the size of the merge
tree. Table 2 lists runtimes.

6. Evaluation, Comparison and Applications

In the following, we discuss and evaluate further aspects
such as the stability of branch decompositions, compare our
method to previous work, and describe several applications.

6.1. Stability of Branch Decompositions

Any process of decomposing a merge tree into branches needs
to make binary decisions about the vertical (parent-child)
and horizontal (siblings) ordering of branches. These binary
decisions create instabilities with respect to perturbations.
This is also true for the branch decomposition introduced in
Section 3.2 and used throughout this paper, which is based
on the edge weights in the merge tree.

Figure 7 shows a vertical instability for a 2D scalar field
where the edge weights in the merge tree are the function
value differences between the nodes. The function values
of the two largest maxima B and C are very similar, and a
perturbation can lead to a different vertical ordering of their
respective branches. Our comparison algorithm gives a score
between these two configurations that depends on the weights
of the children (the two major branches are similar by design):
2 |w(D→F)−w(A→E)|.

Figure 8 shows a horizontal instability, where the two
saddles E and G are close to each other and swap their po-
sition in the merge tree under perturbation. This leads to a

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

H. Saikia, H.-P. Seidel, T. Weinkauf / Extended Branch Decomposition Graphs

Figure 7: Vertical instability of a branch decomposition. The extrema B
and C fight for the dominance, since the corresponding edge weights are
very similar, i.e., small perturbations may favor one over the other.

A

B

C

E

G

I

B-I

C-G A-E

A

B
C

G

E

I

B-I

A-E C-G

Figure 8: Horizontal instability of a branch decom-
position. Swapping the close saddles E and G leads
to a different horizontal ordering in the BDT.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

level of noise (in % of data range)

no
rm

al
iz

ed
sc

or
e

(c
os

t) edge weight wv
edge weight wc
edge weight wh

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

level of noise (in % of data range)

no
rm

al
iz

ed
sc

or
e

(c
os

t) edge weight wv
edge weight wc
edge weight wh

Figure 9: Perturbation analysis of the data set from Figure 7
(left) and the Neghip data set (right, cf. Figure 12). Shown
is the comparison score of the unperturbed data against
increasingly noisier versions. The score is normalized by the
total weight of the unperturbed BDT. At every noise level, 50
differently perturbed samples are shown. They show different
patterns depending on the choice of edge weights for the
merge tree.

different horizontal ordering in the BDT. Our comparison
algorithm gives a score between these two configurations:
2 min[|w(C→G)−w(A→E)|, w(C→G), w(A→E)].

These instabilities induce undesired scores. In fact, when
comparing a function to a perturbed version of itself, then the
returned score should correlate to the range of the perturba-
tion. Figure 9 shows an experiment regarding this using the
data set from Figure 7. We compare the unperturbed data with
a large number of perturbed versions. The comparison scores
are shown as red dots. As expected, they form two clusters
for low levels of noise, precisely because of the vertical insta-
bility described above. This effect is dwarfed at higher levels
of noise by other topological changes.

Beketayev et al. [BYM∗13] avoid these instabilities by
considering branch decompositions with permuted branches,
thereby explicitly allowing that parents have lower weights
than their children. Since the number of these permutations
grows exponentially with the number of extrema [BYM∗13],
this leads quickly to infeasible computation times. Therefore,
we propose to use only the default branch decomposition and
study the actual effect of these instabilities in real data sets in
the next section.

6.2. Choice of Edge Weights and Noise Robustness

The choice of the edge weights for the merge tree influences
the occurrence of instabilities. This is easy to see: consider
the same weight for all edges, then we have a large number
of instabilities. Consider distinctively different weights for
all edges and there would be no instabilities. We discuss the
following weights for an edge (a→ b):

• Height (function value) difference: wh = | f (a)− f (b)|
• Volume (area) covered by the contour of (a→ b): wv
• A combination of the above: wc = wh ·wv

These measures are normalized before use, i.e., wh is normal-
ized by the data range, and wv is normalized by the volume
of the data set. Hence, all weights are in the range [0,1].

Figure 9 shows the previously described perturbation anal-
ysis for the three choices of edge weights. Further plots can
be found in the supplemental material. They show how the
comparison score behaves under smaller and larger pertur-
bations. Erratic behavior of the score indicates instabilities
and would render it useless for any application. As it turns
out, the score shows a relatively large variance for the the
weights wh and wv, but it develops smoothly and with low
variance for the combined weight wc. Hence, we deem wc
to be a good choice. Note that the scores in these plots are
comparable, because we normalize them to the total weight
of their respective unperturbed BDTs. In other words, if half
of the respective BDT changes, then it shows in these plots
as a cost of 0.5.

6.3. Comparison to Previous Work on Self-Similarity

One of the applications (next section) of our method is self-
similarity, i.e., finding similar structures within the same data
set. Symmetry can be seen as a special form of self-similarity.
Hence, we deem it necessary to compare our approach in
more detail to the approaches of Thomas and Natarajan, who
find symmetry in a scalar field using the branch decomposi-
tion tree [TN11], or using extremum graphs [TN13].

As discussed in Section 4, the BDT does not address all
subtrees of a merge or contour tree. Hence, [TN11] is not able

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

H. Saikia, H.-P. Seidel, T. Weinkauf / Extended Branch Decomposition Graphs

(a) Full volume rendering. (b) Selected ROI. (c) Similar structures. (d) Different ROI. (e) Structures similar to (d).

Figure 11: Self-Similarity pertaining to different regions in the electrostatic field of the Benzene molecule.

(a) Full volume rendering. (b) Small selected ROI. (c) Similar structures. (d) Expanded ROI. (e) Similar structures.

Figure 12: Interactive expansion of search regions in the Neghip data set. A small ROI is expanded to the next higher level in the
join tree and the corresponding matches are instantly updated. Notice that complicated self-similar structures are found.

(a) Full volume
rendering.

(b) Selected
super-seed.

(c) All other
super-seeds.

Figure 10: Automatic super-seed selection from one super-
seed for the method in [TN13]. EMDB-1706 data set.

to handle all topological structures of the data set as they are
defined by the contour tree. Our method is able to do that for
merge trees, since the eBDG subsumes all these structures.
On the other hand, [TN11] works with the contour tree which
holds more information than a single merge tree.

Thomas and Natarajan [TN11] group similar branches
of the branch decomposition tree and displays all identified
groups using different transfer functions. This is a very useful
feature as it allows to identify structures without user inter-
action. In our setting, we could implement that by clustering
the nodes in the eBDG. This could for example be possible
by solving the clique problem. We leave that to future work.

The extremum graph approach [TN13] aims at incorporat-
ing more geometric information into the computation. This
is very useful, since symmetry is a geometric feature. As we

will describe in the next section, we incorporate geometric
information as well, but with a different approach: we allow
to encode volume measures in the edge weights instead of
just using the height difference.

The extremum graph approach [TN13] has one disadvan-
tage: one has to manually define so-called super-seeds (lo-
cations in the domain) to actually find and distinguish all
symmetric structures. See Figure 11 in [TN13]. As we show
in Figure 10 for the same data set, our method can actu-
ally help with the creation of a set of super-seeds. The user
can select one region of interest and our method returns all
similar occurrences, which can then be used as super-seeds
in [TN13].

6.4. Applications

The computation and comparison of eBDGs is usually in
the order of milliseconds as listed in Table 2. Note that we
do not simplify the merge trees for most data sets, but this
may become necessary for topologically very rich data sets
such as the EMDB-1603 from Figure 13. A plot of simplifi-
cation threshold vs. computation times can be found in the
supplemental material.

6.4.1. Self-Similarity in a Data Set

In this application, we want to find topologically similar
structures in the same data set. To do so, we just need to
compare the eBDG to itself. Since the comparison scores

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

H. Saikia, H.-P. Seidel, T. Weinkauf / Extended Branch Decomposition Graphs

(a) Full volume. (b) Selected ROI. (c) Similar structures.

Figure 13: The EMDB-1603 data set has ≈39k edges in the
join tree. We simplified it to ≈900 edges.

(a) Full slice. (b) Selected ROI. (c) Similar structures.

Figure 14: Self-similarity in a slice of EMDB-1603.

for all subtrees against all other subtrees are precomputed,
this allows for a real-time exploration of the scalar field for
self-similar structures. The user defines a region of interest
(ROI) using a point in the domain and a range in the merge
tree. The system answers by highlighting similar regions.

Figures 11-14 show examples of self-similarities for differ-
ent data sets. Note how the results are not restricted by scaling
or other Euclidean transformations. Since there are scores
involved, we could display similarities at different thresholds,
for example from very similar to quite distinct. The real-time
exploration of the data allows us to shift our ROI to other in-
teresting regions (Figure 11), expand it to higher-level nodes
(Figure 12), and estimate self-similarities in large and noisy
data sets using topological simplification (Figure 13).

Some volume data sets consist of very interesting symmet-
ric patterns which are not directly evident when visualizing
the full data set in 3D. Occlusion is the main problem. In these
cases, a certain slice of the data set can be isolated and sym-
metric patterns can be explored within this slice. Figure 14
illustrates such an example.

6.4.2. Periodicity in Time-Dependent Data

Whether a time dependent data set exhibits periodic patterns
is of importance in fluid dynamics [GTP∗07] and flow anal-
ysis [STW∗06]. Comparing two contour trees from two dif-
ferent times steps can tell us if similar structures manifest
themselves at different time intervals. Figure 15 shows a 2D
time-dependent flow behind a cylinder. It exhibits periodic
vortex shedding [ZFN∗95]. We compare the full join tree
of the first time step to the join trees from all other 1000
time steps. The resulting similarity scores reveal the peri-

(a) Time steps from top: T = 0,
T = 10, T = 35 and T = 75.

(b) Score matrix, from blue
(similar) to red (different).

Figure 15: Periodicity analysis in the 2D time-dependent flow
behind a cylinder. The scores are obtained by comparing the
full join trees of every time step against each other: for 1000
time slices, a 1000×1000 symmetric matrix is obtained.

odic pattern in the data. Please observe the diagonal regions
bounded by bluish lines. From this, we can approximate a
period length of ≈76 time steps. In Figure 15(a) we see that
the time slices corresponding to T = 0 and T = 75 are struc-
turally very similar which supports our approximated period.

7. Conclusions

We introduced a novel data structure: the extended branch
decomposition graph. It is the union of all branch decom-
positions of all subtrees of a merge tree. In contrast to the
forest of all such branch decomposition trees, the eBDG is
free of redundancy. We provided an algorithm for computing
eBDGs and an algorithm for comparing them. As we show
with our complexity analysis and in our evaluations, both
algorithms are fast and memory-efficient. We compared our
method against previous work. We have shown several appli-
cations that benefit from using eBDGs to find topologically
similar structures in data sets.

Several possibilities are open for future work. As already
mentioned, it would be interesting to find self-similar patterns
automatically without choosing a region. This requires to
cluster the eBDG nodes, thereby solving the clique problem.

Another open question is how to define the eBDG for
contour trees. The main issue is the dynamic programming
regarding matching child nodes (see Figure 6): currently,
we just need to find an optimal matching between the two
sequences, since all children are of the same type. But if the
children can be of different type (join or split), we have to
consider significantly more possibilities at this stage of the
comparison algorithm. We refrained from that for this paper,
but plan to work on it in the future. In fact, we found that in
many applications, one tree (join or split) suffices to select
interesting structures.

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

H. Saikia, H.-P. Seidel, T. Weinkauf / Extended Branch Decomposition Graphs

References
[BGSF08] BIASOTTI S., GIORGI D., SPAGNUOLO M., FALCI-

DIENO B.: Reeb graphs for shape analysis and applications. Theor.
Comput. Sci. 392, 1-3 (Feb. 2008), 5–22. 1

[BGW13] BAUER U., GE X., WANG Y.: Measuring distance
between reeb graphs. CoRR abs/1307.2839 (2013). 2

[BH07] BÜRGER R., HAUSER H.: Visualization of multi-variate
scientific data. EuroGraphics State of the Art Reports (STARs)
(2007), 117–134. 2

[Bil05] BILLE P.: A survey on tree edit distance and related prob-
lems. Theor. Comput. Sci 337 (2005), 217–239. 2

[BM10] BRUCKNER S., MÖLLER T.: Isosurface similarity maps.
Computer Graphics Forum 29, 3 (2010), 773–782. 2

[BYM∗13] BEKETAYEV K., YELIUSSIZOV D., MOROZOV D.,
WEBER G. H., HAMANN B.: Measuring the distance between
merge trees. In TopoInVis (2013). 2, 7

[Car04] CARR H.: Topological Manipulation of Isosurfaces. PhD
thesis, The University of British Columbia, 2004. 2

[CD13] CARR H., DUKE D.: Joint contour nets: Computation and
properties. In Proc. PacificVis (2013), pp. 161–168. 2

[DCK∗12] DUKE D., CARR H., KNOLL A., SCHUNCK N., NAM
H. A., STASZCZAK A.: Visualizing nuclear scission through a
multifield extension of topological analysis. IEEE TVCG 18, 12
(2012), 2033–2040. 2

[EHMP04] EDELSBRUNNER H., HARER J., MASCARENHAS A.,
PASCUCCI V.: Time-varying reeb graphs for continuous space-
time data. In Proc. Symposium on Computational Geometry
(2004), ACM, pp. 366–372. 2

[ELZ02] EDELSBRUNNER H., LETSCHER D., ZOMORODIAN A.:
Topological persistence and simplification. Discrete and Compu-
tational Geometry 28, 4 (2002), 511 – 533. 3

[FOTT08] FUJISHIRO I., OTSUKA R., TAKAHASHI S.,
TAKESHIMA Y.: T-map: A topological approach to visual
exploration of time-varying volume data. In High-Performance
Computing (2008), Springer, pp. 176–190. 2

[GTP∗07] GÜNTHER B., THIELE F., PETZ R., NITSCHE W.,
SAHNER J., WEINKAUF T., HEGE H.-C.: Control of separation
on the flap of a three-element high-lift configuration. In 45th AIAA
Aerospace Sciences Meeting and Exhibit (Reno, U.S.A., January
2007). AIAA-2007-265. 9

[HBG11] HAIDACHER M., BRUCKNER S., GRÖLLER M. E.: Vol-
ume analysis using multimodal surface similarity. IEEE Transac-
tions on Visualization and Computer Graphics 17, 12 (Oct. 2011),
1969–1978. 2

[HHC∗13] HUETTENBERGER L., HEINE C., CARR H.,
SCHEUERMANN G., GARTH C.: Towards multifield scalar
topology based on pareto optimality. Computer Graphics Forum
32, 3pt3 (2013), 341–350. 2

[HS07] HONG Y., SHEN H.-W.: Parallel reflective symmetry
transformation for volume data. In Proc. Eurographics conference
on Parallel Graphics and Visualization (2007), pp. 77–83. 2

[HSKK01] HILAGA M., SHINAGAWA Y., KOHMURA T., KUNII
T.: Topology matching for fully automatic similarity estimation
of 3D shapes. In Proc. SIGGRAPH (2001), pp. 203–212. 1

[JWSK07] JÄNICKE H., WIEBEL A., SCHEUERMANN G., KOLL-
MANN W.: Multifield visualization using local statistical com-
plexity. IEEE TVCG 13, 6 (2007), 1384–1391. 2

[KWKS11] KERBER J., WAND M., KRÜGER J., SEIDEL H.-P.:
Partial symmetry detection in volume data. In Vision, Modeling,
and Visualization (2011), pp. 41–48. 2

[MPWC13] MITRA N. J., PAULY M., WAND M., CEYLAN D.:
Symmetry in 3D geometry: Extraction and applications. In Com-
puter Graphics Forum (2013), Wiley Online Library. 1

[NRB06] NEUHAUS M., RIESEN K., BUNKE H.: Fast subopti-
mal algorithms for the computation of graph edit distance. In
Proceedings of the 2006 Joint IAPR International Conference on
Structural, Syntactic, and Statistical Pattern Recognition (Berlin,
Heidelberg, 2006), SSPR’06/SPR’06, Springer-Verlag, pp. 163–
172. 2

[PCMS04] PASCUCCI V., COLE-MCLAUGHLIN K., SCORZELLI
G.: Multi-resolution computation and presentation of contour
trees. In Proc. IASTED Conference on Visualization, Imaging,
and Image Processing (2004), Citeseer, pp. 452–290. 3

[STS06] SAUBER N., THEISEL H., SEIDEL H.-P.: Multifield-
graphs: An approach to visualizing correlations in multifield scalar
data. IEEE TVCG 12, 5 (2006), 917–924. 2

[STW∗06] SHI K., THEISEL H., WEINKAUF T., HAUSER H.,
HEGE H.-C., SEIDEL H.-P.: Path line oriented topology for
periodic 2D time-dependent vector fields. In Proc. Eurographics /
IEEE VGTC Symposium on Visualization (EuroVis ’06) (Lisbon,
Portugal, May 2006), pp. 139–146. 9

[SWC∗08] SCHNEIDER D., WIEBEL A., CARR H., HLAW-
ITSCHKA M., SCHEUERMANN G.: Interactive comparison of
scalar fields based on largest contours with applications to flow
visualization. Visualization and Computer Graphics, IEEE Trans-
actions on 14, 6 (2008), 1475–1482. 2

[TN11] THOMAS D. M., NATARAJAN V.: Symmetry in scalar
field topology. IEEE TVCG 17, 12 (2011), 2035–2044. 1, 2, 7, 8

[TN13] THOMAS D. M., NATARAJAN V.: Detecting symmetry in
scalar fields using augmented extremum graphs. IEEE TVCG 19,
12 (2013), 2663–2672. 1, 2, 7, 8

[YGW∗12] YANG Y., GÜNTHER D., WUHRER S., BRUNTON
A., IVRISSIMTZIS I., SEIDEL H.-P., WEINKAUF T.: Correspon-
dences of persistent feature points on near-isometric surfaces. In
Proceedings of the Fifth Workshop on Non-Rigid Shape Analysis
and Deformable Image Alignment (NORDIA) in Proceedings of
ECCV 2012 and its Workshops (Florence, Italy, October 2012),
pp. 102–112. 1

[ZFN∗95] ZHANG H.-Q., FEY U., NOACK B., KÖNIG M., ECK-
ELMANN H.: On the transition of the cylinder wake. Phys. Fluids
7, 4 (1995), 779–795. 9

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

