
Fast Similarity Search in Scalar Fields using
Merging Histograms

Himangshu Saikia, Hans-Peter Seidel and Tino Weinkauf

Abstract Similarity estimation in scalar fields using level set topology has attracted
a lot of attention in the recent past. Most existing techniques match parts of con-
tour or merge trees against each other by estimating a best overlap between them.
Due to their combinatorial nature, these methods can be computationally expensive
or prone to instabilities. In this paper, we use an inexpensive feature descriptor to
compare subtrees of merge trees against each other. It is the data histogram of the
voxels encompassed by a subtree. A small modification of the merge tree computa-
tion algorithm allows for obtaining these histograms very efficiently. Furthermore,
the descriptor is robust against instabilities in the merge tree. The method is useful
in an interactive environment, where a user can search for all structures similar to
an interactively selected one. Our method is conservative in the sense that it finds all
similar structures, with the rare occurrence of some false positives. We show with
several examples the effectiveness, efficiency and accuracy of our method.

1 Introduction and Related Work

Finding structural similarities in scalar fields is of prime importance when one
needs to analyze repeating patterns or symmetric arrangements in the data. To this
end, several methods involving feature-based analysis using the topology formed by
level-sets have been proposed. The merge tree is one such arrangement of features
which traces the connectivity evolution of sub/super-level sets in the data. It is easy
to see that similar structures exhibit similar level-set arrangements and hence simi-
lar branchings in the merge tree, each such branch or subtree representing a unique
structurally important region. The contour tree [3] is an extension of the merge tree
as it contains the combined information for both sub and super-level sets.

The Reeb Graph [6] is a generalized form of the contour tree to include non-
simply connected manifolds. The Morse-Smale Complex [7] is a segmentation of

1

2 Himangshu Saikia, Hans-Peter Seidel and Tino Weinkauf

the data into regions of uniform gradient flow. These topological arrangements give
rise to graph representations like the extremum graph [18] or topological spines [5].

Beketayev et al. [1] compare two merge trees by comparing all of their possible
branch decompositions. This method provides an accurate ε-match with respect to
noisy perturbations, but is not practical for interactive applications. This is because
computing all possible branch decompositions has exponential complexity and a
memoized solution that the authors propose still involves a higher order polyno-
mial runtime. Precisely, O(n5) for comparing two trees of n nodes each for a given
threshold ε .

Thomas et al. [16, 17] present methods to visualize all symmetric structures in a
scalar field using the contour tree. In [17], the authors cluster the different branches
in the branch decomposition tree of the contour tree to display symmetric arrange-
ments. Using a single branch decomposition tree, however, is less robust against
noise. In [16] they extract iso-surfaces using the contour tree and cluster them in a
feature space. In another work, [18], the authors achieve similar results using the
extremum graph.

Saikia et al. [12] perform a similarity search for any structurally significant re-
gion as given by a subtree in the merge tree by first pre-computing the similarity of
all possible subtrees to all other existing subtrees. The method involves computing
branch decomposition trees for every subtree and overlaying them in the best way
possible. The similarity is then computed as the minimum cost of this overlay. Al-
though the method is fast owing to a memoized algorithm to compute and compare
branch decomposition trees, the result can be affected by perturbations that lead to
a different order in the hierarchy of branching.

We employ the method by Saikia et al. [12] in the sense that we compare all sub-
trees of a merge tree against each other. However, in this paper, instead of overlaying
branch decomposition trees obtained from the subtrees, we describe every subtree
using a feature vector. This is given by the intensity distribution of the member vox-
els within a subtree region and is thus appropriately termed as a histogram. These
histograms can be efficiently computed using just a small modification to the merge
tree computation algorithm, exploiting the fact that the tree is created bottom-up.
This augmented algorithm allows us to compute the histograms for every subtree
on-the-fly, i.e., while the merge tree is being computed. The merge tree computation
is done by a single sweep through a sorted (by function value) array of the voxels in
the data as described in [3, 15]. Augmented contour tree algorithms have also been
used before for topological simplification by computing local geometric measures
such as volume in [4].

Histograms have had a long standing use in data visualization [8], automatic
transfer function generation [9, 10] and various volume rendering techniques [14,
20]. Histograms have also been used in shape retrieval, where they are defined on
the distances from the barycentric center of a simplicial mesh to its surface triangles
[19]. This distance metric is known as a cord. A histogram presents itself as a simple
and powerful statistical representation of the data distribution. It is also shown in
[2,13] that the histogram has a close relationship with isosurface area. However, we

Fast Similarity Search in Scalar Fields using Merging Histograms 3

do not focus on a precise calculation of the distribution within a region for the sake
of simplicity and efficiency.

In the following sections, we provide some background and notation in Section
2, the method to compute merging histograms in Section 3, how similarity search
is performed using the new method in Section 4, show a few results obtained using
our method in Section 5 and conclude after some evaluation and discussion of our
method in Section 6.

2 Background and Notation

Given a Morse scalar field f : IRn→ IR, and any value c in the range of the function
f , super-level sets L+

c and sub-level sets L−c are defined as follows

L+
c = {x| f (x)≥ c} (1)

L−c = {x| f (x)≤ c}. (2)

For the sake of convenience let us only talk about super-level sets from here on. Each
super-level set can have one or more disconnected components. These components
are born at the maxima, merge with other components at saddles, and finally merge
and disappear at the global minimum.

We define a region R as the set of voxels belonging to any component just before
it merges with another component. A merge tree is the representation of the connec-
tivity evolution of these regions. Every birth or merge is represented as a node in
this tree, and these nesting relationships are denoted by edges. Every region is rep-
resented as a non-empty subtree, the largest region being the entire merge tree. In
case of super-level sets, the merge tree is often called a join tree.

We denote a merge tree as M = (N ,E) where N = {n1,n2, . . . ,np} are the
nodes and E = {e1,e2, . . . ,ep−1} are the edges of the tree. Note that a tree with p
nodes has p−1 edges.

Figure 1 illustrates the idea of regions and edges. Region RA is given by {eA}
and corresponds to the entire blue area, RB by {eB} - the entire red area and RC by
{eA,eB,eC} - the entire green, red and blue areas together.

nA

D

A

B
C

nB

nC

nD

eA eB

eC

Fig. 1 A region in a scalar field and its join tree
J = (N ,E). Here N = {nA,nB,nC,nD} and E =
{eA→C,eB→C,eC→D} or simply {eA,eB,eC}. The two
red nodes are maximas and leaf nodes, the yellow node
is a saddle, and the blue node is the global minimum
and the root. The edges signify the corresponding ar-
eas in the same color and the arrows show the uni-
directional path from every maximum to the global
minimum.

4 Himangshu Saikia, Hans-Peter Seidel and Tino Weinkauf

3 Merging Histograms

3.1 Histograms as feature descriptors

Our objective is to compare subtree regions of a merge tree. Given that these regions
are similar in data value, size and also to a certain extent the geometry, a histogram
of the distribution of the member voxels in the data range is a good measure for
comparison. This is because a histogram roughly encapsulates the surface area of
a region at various iso-levels. This gives us a good measure of the distribution of
intensity in the region.

Given a scalar function f , and a subtree region R, the histogram is computed by
binning all voxels (or pixels for 2D) in this region into a number of bins by their
function value.

Figure 2 shows an illustration of this feature descriptor. Two structurally different
subtree regions of a dataset can be distinguished from each other by comparing their
individual histograms.

35 40 45 50
0

2

4

35 40 45 50
0

2

4

35 40 45 50
0

1

2

3

35 40 45 50
0

1

2

3

Fig. 2 Four different subtree regions in the benzene dataset along with their corresponding his-
togram feature vectors. The x-axis in the plots shows the corresponding histogram bins and the
y-axis shows the log scaled values of the total number of voxels in each bin. A total of 100 bins
were used in all cases. The x-range with only non-zero values is shown. As can be seen, the regions
corresponding to the hydrogen atoms have similar histograms as do the regions corresponding to
the carbon atoms.

Fast Similarity Search in Scalar Fields using Merging Histograms 5

3.2 Computation

The good thing about constructing these histograms is that they can be computed
incrementally during the construction of the merge tree itself. The part not marked
in red in Algorithm 1 shows the classic merge tree computation. Let us look closely
at the three different cases encountered while sweeping through the sorted data, and
how the histograms have to be modified during this process.

Case 1: extremum This is the if clause in line 10 of Algorithm 1. In this case a
new node ni is added to the set of nodes and a new component in the union-find ci
starts. The initial histogram is set to zero for all bins, i.e., hi = 0 = [0, . . . ,0].

Case 2: regular voxel This is the else-if clause in line 15 of Algorithm 1. Here
the current voxel is added to the component it belongs to. The appropriate histogram
bin has to be incremented for the corresponding component. Let us assume the his-
togram bin that this point falls into is b. Then, hi,b← hi,b +1, where ci is the com-
ponent to which this voxel belongs to.

Case 3: saddle This is the else clause in line 19 of Algorithm 1. This is the case
when a point is in contact with two or more edges. All edges pertaining to every
component are added to the set of edges. A new component is constructed and a
new node corresponding to this voxel is added to the set of nodes. The histogram
corresponding to this component has to be initialized using the sum of all histograms
pertaining to all of the components in set CG. Thus, for a saddle node ni and number
of bins B we have hi = [hi,1,hi,2, . . . ,hi,B], where each bin is given by

hi,b = ∑
c j∈CG

h j,b (3)

The only modification that needs to be done to the algorithm is to incorporate these
three cases. Thus, when the merge tree is computed, the feature vectors are also
pre-computed as a result.

(a) Full volume
rendering.

(b) First selected region and its clos-
est matches.

(c) Second selected region and its
closest matches.

Fig. 3 Scalar field depicting the potential around a Benzene molecule. Two different 6 fold sym-
metry regions are seen.

6 Himangshu Saikia, Hans-Peter Seidel and Tino Weinkauf

Data: The scalar field f , with vertices x1, . . . ,xm in sorted order.
Result: If f (xi)≥ f (x j) for i < j then Join Tree J = (N ,E). If f (xi)≤ f (x j) for i < j then

Split Tree S = (N ,E). Also the set H = {h1, . . . ,hi, . . .} containing all histograms
corresponding to every edge ei ∈ E and subtree region Ri.

1 begin
2 N := /0 , E := /0 , H := /0, UnionFind U
3 for i← 1 to m−1 do
4 Set of neighbors of xi : G = {g1, . . . ,gp}
5 Set of components containing G : CG := /0
6 for j← 1 to p do
7 CG←CG

⋃
f indComponentU (g j)

8 end
9 b := bin(f (xi)) // Finding the bin value.

10 if |CG|= 0 then
11 cν ← createNewComponentU (xi)
12 N ←N

⋃
{ni}

13 hν = [0, . . . ,0] // Initializing.
14 hν ,b← hν ,b +1
15 else if |CG|= 1 then
16 CG = {cν}
17 addMemberToComponentU (cν ,xi)
18 hν ,b← hν ,b +1 // Incrementing the bin.
19 else
20 CG = {ca, . . . ,ck}
21 N ←N

⋃
{ni}

22 E ← E
⋃
{ea→i, . . . ,ek→i}

23 cν ← createNewComponentU (xi)
24 H← H

⋃
{ha, . . . ,hk} // Adding to output. hν = ha + . . .+hk

// Merging.
25 end
26 end
27 N ←N

⋃
{nm}

28 end
Algorithm 1: An augmented version of the classic merge tree algorithm to account
for merging histograms. The augmented parts are shown in red.

4 Similarity Search using Merging Histograms

After the computation is performed using Algorithm 1, in addition to the merge
tree, we also obtain the feature descriptors for every subtree region in the form of
a histogram of values. Using these feature descriptors we compare every subtree
region with each of the others and store the results in a distance matrix. Later we
can reference any of these subtree regions by means of interactively selecting it, and
querying for its best matches in the distance matrix.

Fast Similarity Search in Scalar Fields using Merging Histograms 7

4.1 Distance Measure

The distance measure between two histograms should be as discriminative as pos-
sible. To compare two histograms we use the L2-norm of the log-scaled bin values.
Log scaling helps to smooth the histograms a little bit and make the comparison
function slightly robust to noise. Thus, the distance d between two subtree regions
Ri and R j can be given as

d(Ri,R j) = ∑
b∈[1,B]

||g(hi,b)−g(h j,b)|| (4)

where g is given by

g(x) =

{
0, if x = 0
logx, otherwise.

(5)

4.2 Querying the distance matrix

A distance matrix is then constructed using the distance values for every pair of
subtree regions computed using Equation 4. Any row and column in this matrix
refers to a subtree region. As has been seen before in Section 2 the number of subtree
regions is equal to the number of edges in the merge tree. This shows that the time
complexity of computing a distance matrix and its size are dependent only on the
merge tree and not on the size of the data.

In an interactive setting, a user picks any voxel in the dataset. Since every voxel
is contained within an edge, the corresponding edge can be queried for. And since
every edge corresponds to a unique subtree, we can immediately identify which
subtree region is selected by the user. Once this region is known, similar regions to
it can be queried simply by looking for the smallest values in the corresponding row
of the distance matrix. A distance threshold slider also allows the user to increase or
decrease the threshold and show correspondingly more or lesser close matches.

5 Results

Now we show a few results obtained using our method. Figure 3 shows a volume
rendering of the Benzene data set and two different search regions. As can be seen,
the 6-fold symmetry in the molecule is evident from the closest matches to the se-
lected subtree region. Figure 4 shows the EMDB-1603 data set and a few different
search regions. The dataset had nearly 38,000 edges in its merge tree, which were
then simplified to around 900 edges by eliminating low persistent edges (below 2%).
The particle exhibits a 9-fold symmetry as seen in all three selections and their clos-

8 Himangshu Saikia, Hans-Peter Seidel and Tino Weinkauf

(a) Full volume ren-
dering.

(b) First selection and its corresponding best
matches.

(c) Second selection visualized at a slightly
different angle and its best matches.

(d) Third selection and its best matches.

Fig. 4 EMDB-1603. A cryo-electron microscopy reconstruction of a recombinant active ribonu-
cleoprotein particle of influenza virus. The 9 fold symmetry is apparent in the matchings shown.
Different transfer functions are used for the three different selections for better visibility.

(a) Full volume ren-
dering.

(b) first selection and its best matches.

(c) Second selection and its best matches.

Fig. 5 EMDB-1201. The myosin V inhibited state obtained by cryo-electron tomography. There
exists a 6-fold symmetry.

Fast Similarity Search in Scalar Fields using Merging Histograms 9

est matches. As can be observed, interesting structures which could otherwise not be
seen clearly are apparent when singled out. Figures 5 and 6 show two other protein
datasets alongwith some interesting self-similar structures. Figure 7 shows another
EMDB dataset with a helical structure. This is identified in the selected subtree re-
gion and its closest matches. Figure 8 shows another complicated dataset where the
symmetric arrangements are revealed during exploration.

All EMDB data sets are obtained from the Protein Data Bank Japan (pdbj.org)
online archive. The results are all rendered using the Voreen volume rendering en-
gine (voreen.uni-muenster.de).

6 Discussion

6.1 Runtime comparison with tree overlay methods

Computing feature vectors on the fly while computing the merge tree itself leads to
a more efficient implementation as opposed to performing the two steps sequentially
as in the Extended Branch Decomposition Graph method in [12]. There is almost no
overhead of running the augmented merge tree computation algorithm as opposed
to the classic algorithm, as can be seen in Table 1.

For searching a subtree region, a distance matrix has to be constructed and this
can be achieved in O(n2B) time as opposed to O((n logn)2) in [12]. Note that both
methods, the one in this paper and the method in [12], compare all subtrees to all
others and then allow for similarity searching interactively in real-time. Comparing
two subtree regions using our method is very fast as it just compares the two indi-
vidual histograms in O(B) time. Hence our method is orders of magnitude faster.
This can be seen in Table 2.

6.2 Robustness

Merging histograms perform well under small perturbations in the data. This can
be immediately observed from the fact that there is no ordering of hierarchy in
this representation unlike a branch decomposition tree. Since every ROI is defined
only by its complete underlying structure and not on the precise order in which its
containing iso-contours evolved, this method is immune to slight changes in the
merge tree due to noise (see Figure 9).

For more complicated branchings however, the histogram cannot accurately rep-
resent the branching hierarchy. This means that two trees with extremely different
branchings (and hence underlying topological structure) might end up having very
similar histograms (see Figure 10). This might result in false negatives. However,
note that similar subtrees have similar histograms, i.e., the method finds similar
structures independent of their complexity.

10 Himangshu Saikia, Hans-Peter Seidel and Tino Weinkauf

(a) Full volume ren-
dering.

(b) First selection and its closest matches.

(c) Second selection and its matches. (d) Selection in (b) from a different angle. A
few more best matches are shown to reveal a
duplicate 6-fold symmetric pattern.

Fig. 6 EMDB-1706. Cryo-electron reconstruction of Lactococcal phage p2 baseplate. There exists
a 6-fold symmetry.

(a) Full volume ren-
dering.

(b) A selection and its closest matches. The
helical structure is apparent.

Fig. 7 EMDB-2400. MuB is an AAA+ ATPase that forms helical filaments to control target selec-
tion for DNA transposition.

(a) Full volume ren-
dering.

(b) A selection and its closest matches.

Fig. 8 EMDB-5300. Structural Diversity of Bacterial Flagellar Motors: Campylobacter jejuni.

Fast Similarity Search in Scalar Fields using Merging Histograms 11

(a) Full volume ren-
dering.

(b) A selection. (c) Similar structures
to (b) using merging
histograms.

(d) Similar structures
to (b) using eBDG.

(e) 5% random noise
added to (a).

(f) Same selection. (g) Similar structures
to (f) using merging
histogram.

(h) Similar structures
to (f) using eBDG.

Fig. 9 Neghip dataset. The results are in accordance with the eBDG method described in [12]. The
matching results are stable even in presence of noise.

(a) Simple dataset A (b) Simple dataset B (c) Join tree for A (d) Join tree for B

Fig. 10 An example of false positives in the histogram approach. Two simple yet topologically
different datasets were designed to have the exactly same pixel distribution (Red = 83, Blue = 57
and Green = 116) and hence identical histograms. (c) and (d) show their corresponding join trees.
As can be seen, a tree overlay method will be able to find the differences between these datasets
but the histogram method will not.

12 Himangshu Saikia, Hans-Peter Seidel and Tino Weinkauf

6.3 Histogram resolution and comparison

The bin number reflects the resolution at which we sample our data. The higher the
bin number, the greater the resolution. In our examples we observe that a bin number
of 100 is a good estimate for most cases, and using a higher number does not alter
the results much. In our implementation, we do not impose a necessary condition on
the bin number. Sometimes it may so happen that two non-overlapping iso-valued
regions are assigned to the same bin due to the resolution being too low. This issue
can be addressed in future work. Another alternative binning strategy would be to
assign more bins to more dense parts of the dataset and vice versa, thereby choosing
a non-linear binning mechanism based on the intensity distribution of the entire
dataset.

The current implementation considers applications which require finding similar
regions at nearly the same iso-range. For applications which require finding similar
structures at different iso-ranges, the method can be modified to finding the best
overlap between histograms which minimizes the distance between them. This can
be achieved by using standard dynamic programming techniques such as the Earth
Mover’s Distance [11].

7 Conclusion

Interactive similarity search in scalar fields using merge trees present a lot of useful
possibilities like real-time exploration of the data, and reveal interesting patterns in
volume renderings that are otherwise hard to see. Finding such patterns involve the

Dataset Vertices Edges in
join tree

Merge tree computation time in ms

Classic Algorithm Augmented algorithm 1

with 10 bins with 100 bins
(% increase) (% increase)

Benzene 1013 23 678 752 (10.9) 700 (3.2)
Neghip 643 252 148 157 (6.1) 156 (5.1)
EMDB-1603 1603 38671 4934 5470 (10.9) 6336 (28.4)
EMDB-1201 1803 41169 1589 1873 (17.9) 2531 (59.3)
EMDB-1706 1303 155 935 1112 (18.9) 1141 (22.0)
EMDB-2400 1283 2003 1973 2189 (11.0) 2083 (5.6)
EMDB-5300 603 3685 191 210 (10.0) 237 (24.1)

Table 1 Merge tree computation times (in milliseconds) for various data sets - without histograms
and with histograms of bin sizes 10 and 100. As can be seen there is only a slight overhead to adding
histogram information to the computation phase. All operations were performed on a machine with
a 2.66GHz Intel Xeon processor and 12GB main memory.

Fast Similarity Search in Scalar Fields using Merging Histograms 13

Dataset Vertices Edges in join
tree (after
simplification)

Feature computation and comparison
time in ms

eBDG approach Our approach

Benzene 1013 23 506 489
Neghip 643 252 268 142
EMDB-1603 1603 38671 (910) 54487 6572
EMDB-1201 1803 41169 (198) 13955 3749
EMDB-1706 1303 155 672 702
EMDB-2400 1283 2003 764629 3632
EMDB-5300 603 3685 6805101 7081

Table 2 Total feature computation and comparison times (in milliseconds) for various data sets -
using the eBDG method in [12] and the histogram method. As can be seen, with more number of
edges the eBDG method requires far more time to compare all features against each other than the
histogram method. All operations were performed on a machine with a 2.3GHz Intel i7 processor
and 16GB main memory.

general idea of finding similar subtrees to the corresponding subtree of the under-
lying pattern. Instead of trying to compare these subtrees, we focused on compar-
ing feature descriptors of the subtree regions themselves and showed that a faster
method can be used to achieve similar results.

We presented merging histograms - a feature descriptor defined for all subtrees
of a merge tree, which was shown to be easily computed on-the-fly as part of the
merge tree computation step. We presented a few simple modifications to the merge
tree computation algorithm to achieve this. The comparison was shown to be quite
discriminative and robust to small perturbations.

Computing these self-similarities between all pairs of subtree regions very quickly,
provides for a rich interactive possibility.

A direction for future work could be to display self-similar structures at various
iso-levels automatically without any user intervention.

References

1. Beketayev, K., Yeliussizov, D., Morozov, D., Weber, G.H., Hamann, B.: Measuring the dis-
tance between merge trees. In: TopoInVis (2013)

2. Carr, H., Brian, D., Brian, D.: On histograms and isosurface statistics. IEEE Trans-
actions on Visualization and Computer Graphics 12(5), 1259–1266 (2006). DOI
10.1109/TVCG.2006.168. URL http://dx.doi.org/10.1109/TVCG.2006.168

3. Carr, H., Snoeyink, J., Axen, U.: Computing contour trees in all dimensions. In: Proceedings of
the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’00, pp. 918–
926. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (2000). URL
http://dl.acm.org/citation.cfm?id=338219.338659

4. Carr, H., Snoeyink, J., van de Panne, M.: Simplifying flexible isosurfaces using local geomet-
ric measures. In: Proc. IEEE Visualization, pp. 497–504 (2004)

14 Himangshu Saikia, Hans-Peter Seidel and Tino Weinkauf

5. Correa, C., Lindstrom, P., Bremer, P.T.: Topological spines: A structure-preserving vi-
sual representation of scalar fields. IEEE Transactions on Visualization and Com-
puter Graphics 17(12), 1842–1851 (2011). DOI 10.1109/TVCG.2011.244. URL
http://dx.doi.org/10.1109/TVCG.2011.244

6. Doraiswamy, H., Natarajan, V.: Efficient algorithms for comput-
ing reeb graphs. Computational Geometry 42(6-7), 606–616
(2009). DOI http://dx.doi.org/10.1016/j.comgeo.2008.12.003. URL
http://www.sciencedirect.com/science/article/pii/S0925772108001193

7. Günther, D., Reininghaus, J., Seidel, H.P., Weinkauf, T.: Notes on the simplification
of the morse-smale complex. In: Proc. TopoInVis. Davis, U.S.A. (2013). URL
http://tinoweinkauf.net/publications/absguenther13a.html

8. Ioannidis, Y.: The history of histograms (abridged). In: Proceedings of the 29th International
Conference on Very Large Data Bases - Volume 29, VLDB ’03, pp. 19–30. VLDB Endowment
(2003). URL http://dl.acm.org/citation.cfm?id=1315451.1315455

9. Kindlmann, G.L.: Semi-automatic generation of transfer functions for direct volume render-
ing. In: In IEEE Symposium on Volume Visualization, pp. 79–86 (1998)

10. Lundström, C., Ynnerman, A., et al.: Local histograms for design of transfer functions in direct
volume rendering (2006)

11. Rubner, Y., Tomasi, C., Guibas, L.: A metric for distributions with applications to image
databases. In: IEEE Internations Conferences on computer Vision (1998)

12. Saikia, H., Seidel, H.P., Weinkauf, T.: Extended branch decomposition graphs: Structural com-
parison of scalar data. Computer Graphics Forum (Proc. EuroVis) 33(3), 41–50 (2014). URL
http://tinoweinkauf.net/publications/abssaikia14a.html

13. Scheidegger, C.E., Schreiner, J.M., Duffy, B., Carr, H., Silva, C.T.: Revisiting histograms and
isosurface statistics. IEEE Transactions on Visualization and Computer Graphics 14(6), 1659–
1666 (2008). DOI 10.1109/TVCG.2008.160. URL http://dx.doi.org/10.1109/TVCG.2008.160

14. Sereda, P., Bartrolí, A.V., Serlie, I.W.O., Gerritsen, F.A.: Visualization of boundaries in vol-
umetric data sets using lh histograms. IEEE Transactions on Visualization and Computer
Graphics 12, 208–218 (2006)

15. Tarasov, S.P., Vyalyi, M.N.: Construction of contour trees in 3d in o(n log n) steps. In:
Proceedings of the Fourteenth Annual Symposium on Computational Geometry, SCG ’98,
pp. 68–75. ACM, New York, NY, USA (1998). DOI 10.1145/276884.276892. URL
http://doi.acm.org/10.1145/276884.276892

16. Thomas, D., Natarajan, V.: Multiscale symmetry detection in scalar fields by clustering con-
tours. Visualization and Computer Graphics, IEEE Transactions on 20(12), 2427–2436
(2014). DOI 10.1109/TVCG.2014.2346332

17. Thomas, D.M., Natarajan, V.: Symmetry in scalar field topology. IEEE TVCG 17(12), 2035–
2044 (2011)

18. Thomas, D.M., Natarajan, V.: Detecting symmetry in scalar fields using augmented extremum
graphs. IEEE TVCG 19(12), 2663–2672 (2013)

19. Tung, T., Schmitt, F.: Augmented reeb graphs for content-based retrieval of 3d mesh models.
In: Shape Modeling Applications, 2004. Proceedings, pp. 157–166. IEEE (2004)

20. Younesy, H., Möller, T., Carr, H.: Visualization of time-varying volumetric data using differ-
ential time-histogram table (2005)

