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Figure 1: f (x) = sin(3x) sampled at 100 points.

1. Supplemental Material Overview

We present several examples of a transformed 1D signal and plots of
DTW comparison costs for the transformed signal with the original
in Section 2. This exemplifies how DTW takes into account both
spatial and temporal differences. In Section 3 we elaborate on how
the overlap and signature distances are calculated for all subtree
pairs in two successive timesteps.

2. Analysis of Dynamic Time Warping behavior on 1D signals

We consider a sine-curve f (x) = sin(3x) sampled at 100 points as
our signal. Figure 1 shows this curve. We perform various trans-
formations to this signal and compare these transformations to the
original signal using DTW.

Frequency Scaling

Figure 2 shows the plot of DTW costs of comparing the signal
f (x) = sin(3x) to a signal f (x) = sin(nx) with n∈ [1,5]. We observe
that the cost rises if the frequency is scaled too high or too low, but
remains small for frequencies close to the original frequency.
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Figure 2: DTW Costs of comparing a signal f (x) = sin(3x) to a
signal f (x) = sin(nx).

Amplitude Scaling

Figure 3 shows the plot of DTW costs of comparing the signal
f (x) = sin(3x) to a signal f (x) = asin(nx) with a ∈ [0.5,2]. We
observe that the cost rises almost linearly when we move away from
our original signal a = 1, as expected.

Phase Shift

Figure 4 shows the plot of DTW costs of comparing the signal
f (x) = sin(3x) to a signal f (x) = sin(3x+φ) with φ ∈ [0,2π]. The
DTW cost is highest at φ = π when the two signals are completely
out of phase. At φ = 2π the signals become identical again and the
cost goes down to zero. The jumps in the curve are observed because
of the chosen sampling distance.

Uniform Noise

We tamper our signal by adding some uniform noise to every
sample. We compare 100 such noisy signals to the original one at
increasing noise levels and plot the average of all 100 costs. Figure 5
shows these observations. Our noise level ` ∈ [0,0.1] is based on
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Figure 3: Comparison of f (x) = sin(3x) to f (x) = asin(3x) where
a ∈ [0.5,2]
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Figure 4: Comparison of f (x) = sin(3x) to f (x) = sin(3x+φ) with
φ ∈ [0,2π].

the % change in amplitude of the signal. As expected, the DTW cost
increases with increasing noise levels.

Linear shift

For this experiment we consider a linear signal f (x) = 3+ 2x,
x ∈ [0,1] and transform it to the signal f (x) = 5−2x, x ∈ [0,1], by
shifting the end-point x = 0,y = 3 upwards and the end-point x =
1,y = 5 downwards. After shifting by 2 units, we arrive at the second
signal. We do this in 100 steps. We compare the original signal to
the shifted signal after every step. The results of the comparison are
shown in Figure 6. This plot is as expected, i.e., with every linear
shift, the L1 distance between each corresponding sample point
increases linearly, hence an overall linear increase in DTW cost.
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Figure 5: Comparison of f (x) = sin(3x) to f (x) = (1 +
rand(−`,`))sin(3x) where ` ∈ [0,0.1]
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Figure 6: Cost of comparing a linear signal f (x) = 3+ 2x, x ∈
[0,1] with a linearly shifted signal f (x) = (3+c)+(2−2c)x where
c ∈ [0,2]

3. Distance Computation between two subtrees
In the following subsections we elaborate on the computation of
overlap as well as the signature difference, between all subtrees of
two successive timesteps.

3.1. Computing Overlap
Consider two merge trees M1 and M2, obtained from scalar fields
f1 and f2 defined in the same domain D . We are interested in
finding the overlap of all subtrees in M1 with all subtrees in M2.
Figure 7 shows a merge tree with 7 edges. Hence, there are 7 subtrees.
Each subtree can be uniquely represented by an edge. The subtree,
AE−BE−EG for example, can be represented by the edge EG, or
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Figure 7: A merge tree

its lowermost edge. We denote this edge by EEG or simply by EE
since every edge is also uniquely represented by its upper node.

Since a subtree consists of smaller subtrees, it can be represented
as a collection of an edge and several smaller subtrees. Using the
notation from before we can write SE = EE ∪SA∪SB. A subtree
with only one edge is simply given by its edge i.e. SA = EA. Hence
in general we can write

Si = Ei∪ (
⋃

x∈Ci

Sx) (1)

where Ci is the set of all child subtrees connected to Ei.

From the merge tree computation, we know for every voxel v∈D
which edge of the merge tree it belongs to. Let this function be called
g. Hence E1 ∪ E2 ∪ . . .∪ En = D for any merge tree with n edges.
The overlap between two edges E1,i ∈M1 and E2, j ∈M2 can hence
be computed quite easily by looking at all voxels v ∈ D such that
g1(v) = E1,i and g2(v) = E2, j . This can be done in O(N) time where
N is the size of the dataset. Hence the overlap between two edges is
given by

E1,i∩E2, j = {v : g1(v) = E1,i∧g2(v) = E2, j,v ∈D} (2)

The overlap between two subtrees can be written as

S1,i∩S2, j = (E1,i∩E2, j)

∪ (E1,i∩S2, j)

∪ (S1,i∩E2, j)

∪ (
⋃

x∈C1,i,y∈C2, j

Sx∩Sy)

(3)

which is a combination of 3 recursive functions. These are easily
solved by decomposing every subtree into its constituent edge and
child subtrees and using the precomputed values for every pair of ed-
ges as computed using Equation 2. Computed scores are memoized
to avoid recomputing in a different recursive instance. The overlap
between two subtrees is now given recursively as the sum of the
overlap between their constituent edges, their child subtrees, and
combinations of the two. These recursions are solved in approxima-
tely O(m ·n) time using memoization for two timesteps with m×n
subtrees.

3.2. Computing Signature Distance

We use histograms of voxel intensities as our spatial comparison
signatures. Comparing two histograms of B buckets each using χ

2-
distance can be done in O(B) time. Hence, for two timesteps with
m×n subtrees, signature distances can be computed in O(m ·n ·B)
time.
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