
Fast Topology-based Feature Tracking using a
Directed Acyclic Graph

Himangshu Saikia and Tino Weinkauf

Abstract We present a method for tracking regions defined by Merge trees in time-
dependent scalar fields. We build upon a recently published method that computes
a directed acyclic graph (DAG) from local tracking information such as overlap and
similarity, and tracks a single region by solving a shortest path problem in the DAG.
However, the existing method is only able to track one selected region. Tracking all
regions is not straightforward: the naïve version, tracking regions one by one, is very
slow. We present a fast method here that tracks all regions at once. We showcase
speedups of up to two orders of magnitude.

1 Introduction

We are concerned with the tracking of regions defined by merge trees. In [14], we de-
vised a method that tracks the superlevel or sublevel sets of a scalar field as defined
by the subtrees of the merge tree. However, once these regions have been extracted
in each time step, we neglect their origin and record tracking information such as
overlap and histogram similarity in a directed acyclic graph (DAG). Its nodes are the
regions. Overlapping and similar regions in consecutive time steps are connected by
an edge, weighted by the amount of overlap and similarity. We solve a shortest path
problem to track a region over time. This global approach to tracking prevents the
issue with only local decisions as shown in Figure 1.

In [14], we present, among other things, a method for tracking a single region
using the DAG.This is done by computing shortest paths to all reachable sources
and sinks from a given node and combining those two paths. This however, is not
how one might define a shortest path via a node. In this paper, we define a shortest

Himangshu Saikia
KTH Royal Institute of Technology, Stockholm, Sweden, e-mail: saikia@kth.se

Tino Weinkauf
KTH Royal Institute of Technology, Stockholm, Sweden e-mail: weinkauf@kth.se

1

2 Himangshu Saikia and Tino Weinkauf

A1 A2 A3 A4 A5 A6 A7

C3 C4 C5

B3 B4 B5

Fig. 1 Tracking regions solely based on local decisions leads to broken tracks. In this simple
example, a small fluctuation between time steps t3 and t5 causes the creation of a region C that
has significant overlap and similarity with region A. Assigning the locally best match neglects that
there can be more than one suitable track between two time steps (e.g., between t5 and t6), and
causes tracks to break. A graph structure as illustrated in Figures 3a and 3b helps circumvent this
problem.

path as the path with the least objective function value out of all paths starting at a
source, going through the given node and ending at a sink. An objective function can
be any function which assigns a score to a path based on how well it represents the
evolution of a particular feature along that path. Using this definition of a shortest
path, the previous method of combining backward and forward shortest paths may
not work.

In this work, we extend the previous work and present a non-trivial solution
to tracking all regions from all time steps, i.e., a method for extracting all feature
tracks. The trivial solution is to iterate over all nodes of the DAG and execute the
single region tracking algorithm from [14]. However, we will show in this paper how
this leads to very long running times. Our approach is up to two orders of magni-
tude faster. Our method employs a shortest path algorithm but is quite different from
the standard Djikstra’s algorithm or Floyd-Warshall’s algorithm to compute all pairs
shortest paths. Our DAG being structured in a way that only temporal edges - edges
between nodes of two successive time steps - exist, facilitates better runtime bounds
than standard algorithms.

2 Related Work

The sheer size of time-dependent data sets often necessitates a data reduction step
before an efficient analysis can take place. It is therefore a common approach to
extract and track features.

Many methods track topological structures. Tricoche et al. [23] track critical
points and other topological structures in 2D flows by exploiting the linearity of
the underlying triangle grid. Garth et al. [4] extend this to 3D flows. Theisel and
Weinkauf [19, 27] developed feature flow fields as a general concept to track many

Fast Topology-based Feature Tracking using a Directed Acyclic Graph 3

different features independent of the underlying grid. Reinighaus et al. [11] extended
this idea to the discrete setting.

In the area of time-dependent scalar fields several methods exist to track and
visualize topological changes over time. Samtaney et al. [15] provides one of the
first algorithms to track regions in 3D data over time using overlap. Kettner et al. [7]
presents a geometric basis for visualization of time-varying volume data of one or
several variables. Szymczak [17] provides a method to query different attributes of
contours as they merge and split over a certain time interval. Sohn and Bajaj [16]
presents a tracking graph of contour components of the contour tree and use it to
detect significant topological and geometric evolutions. Bremer et al. [2] provide an
interactive framework to visualize temporal evolution of topological features.

Other methods for tracking the evolution of merge trees such as the method due
to Oesterling [8] track changes to the hierarchy of the tree. This comes at the price
of a very high computation time. Its runtime complexity is polynomial in the data
size, more precisely, it is O(n3) with n being the number of voxels. However, the
method tracks the unaugmented (full) merge tree instead of just critical points or
super-arcs.

Vortex structures are another important class of features that can be tracked in
time-dependent flows. Reinders et al. [10] track them by solving a correspondence
problem between time steps based on the attributes of the vortices. Bauer and Peikert
[1] and Theisel et al. [18] provide different methods for tracking vortices defined by
swirling stream lines. This notion was extended later to include swirling path lines
[26], swirling streak and time lines [25], swirling trajectories of inertial particles [6]
and rotation invariant vortices [5].

Pattern matching has been originally developed in the computer vision commu-
nity. A number of visualization methods have been inspired by that. Examples are
pattern matching methods for vector fields based on moment invariants as proposed
by Bujack et al. [3], or pattern matching for multi-fields based on the SIFT descrip-
tor as proposed by Wang et al. [24].

A similar line of research, but technologically rather different, is the analysis
of structural similarity in scalar fields, which gained popularity recently. Thomas
and Natarajan detect symmetric structures in a scalar field using either the contour
tree [21], the extremum graph [22], or by clustering contours [20]. Saikia et al.
compared merge trees by means of their branch decompositions [12] or by means
of histogram over parts of the merge tree [13]. Our method outputs a set of best
tracks of topologically segmented structures in a spatio-temporal setting, and en-
ables an all-to-all temporal pattern matching scheme using techniques like dynamic
time warping.

3 Method

In the following, we will first briefly recapitulate the tracking method for single
regions of [14], and then present our new and fast approach for tracking all regions.

4 Himangshu Saikia and Tino Weinkauf

3.1 Tracking Merge Tree Regions using a Directed Acyclic Graph

Given is a time-dependent scalar field. It could have any number of spatial dimen-
sions, our implementation supports 2D and 3D. A merge tree is computed from
each time step independently. After an optional simplification, all subtrees (as de-
fined in [12]) are converted into a set of nodes to be used within the Directed Acyclic
Graph (DAG). They represent the components of the superlevel or sublevel sets of
the scalar field and are continuous regions in the domain.

All overlapping nodes from consecutive time steps are connected via edges in the
DAG. Their weights represent local tracking information in the sense that a lower
edge weight indicates a higher likelihood for the two connected regions to be part
of the same track. We use a linear combination of volume overlap and a histogram
difference to compute these weights.The volume overlap distance do between two
non-empty regions Sa and Sb is determined from the number of voxels they have in
common and the total number of voxels covered by both regions:

do(Sa,Sb) = 1− |Sa∩Sb|
|Sa∪Sb|

. (1)

The Chi-Squared histogram distance (see e.g. [9]) between two regions is defined as

ds(Sa,Sb) = χ
2(ha,hb) =

1
2 ∑

i

(ha,i−hb,i)
2

ha,i +hb,i
, (2)

where ha,i and hb,i denote the bins of the histograms ha and hb, respectively. Here the
histograms represent the number of vertices encapsulated by a region as described
in [13].

Our combined distance measure for an edge is given by d = λds + (1− λ)do
where λ ∈ [0,1] is a tunable parameter. It is now possible to use this DAG for the
next step as is, or it can be further thresholded to weed out extremely large weighted
edges (For instance in Figure 3a the edges between the green and pink nodes are
removed).

We track a region by solving a shortest path problem with Dijkstra’s algorithm
on the DAG. The method in [14] does this for one region at a time. From the se-
lected region, a shortest path is found to a source in an earlier time step, and another
shortest path is found to a sink in a later time step. Combining these paths yields the
track of the region. We describe a path to be a set of successive directed edges in the
graph. Since there exists only a single directed edge between any two nodes in the
graph, a path can also be described by all successive nodes that connect these edges.
Source and sink refer in this context to nodes that have no incoming or outgoing
edges, respectively. We discuss this in more detail in the next section.

Fast Topology-based Feature Tracking using a Directed Acyclic Graph 5

A B

C D E

F G

2

3

2

3

2

4

4

Fig. 2 Illustration of an objective function that does not satisfy the condition expressed in Equa-
tion 4. If f signifies the standard deviation of the weights along a path, f (CABD)< f (CFGD) but
f (CABD∪DE)> f (CFGD∪DE).

3.2 Objective Function and its Validity with Dijkstra’s Algorithm

The classic Dijkstra algorithm finds the shortest path by summing up the edge
weights along the path. Applying this directly to our setting would yield unsuit-
able tracks: instead of following a long path with many likely edges, the tracking
would rather choose an unlikely edge to an immediate sink.

Hence, we use a measure assessing the average edge weight along a path. The
goal is to find the path through a given node that has the smallest normalized squared
sum of edge weights di:

f (P) =

√
∑i∈P d2

i
|P | (3)

The purpose of this section is to demonstrate that the Dijkstra algorithm can be used
to solve for this objective. To do so, let us define an objective function f which
assigns a non-negative score to a path satisfying the following condition:

Condition 1: Consider two paths P1 and P2 with f (P1) ≤ f (P2). We require the
objective function to maintain this relationship after adding an edge e:

f (P1∪ e)≤ f (P2∪ e) (4)

Dijkstra’s algorithm can only be used to solve for an objective if this condition
is fulfilled, since it allows to incrementally build a solution, which is the essential
cornerstone of Dijkstra’s algorithm.

The objective function used in the classic Dijkstra’s shortest path algorithm is
the sum of weights of all edges in a path ∑i∈P di. This function trivially satisfies the
above condition. A non-satisfying objective function is the standard deviation of the
weights as shown in Figure 2. Thus we can see that not all objective functions that
determine the quality of a path can be used with Dijkstra’s algorithm.

Regarding the objective function (3) we note that it can be solved with Dijkstra’s
algorithm if |P1| = |P2| holds, i.e., the two paths are of equal length. This keeps

6 Himangshu Saikia and Tino Weinkauf

A1 A2 A3 A4 A5 A6 A7

C3 C4 C5

B3 B4 B5

0.1 0.1

0.3

0.1 0.1

0.1 0.1

0.1

0.2 0.1

0.4
0.4

0.4
0.4

0.1 0.1

(a) Dijkstra’s algorithm to find the shortest path through the DAG represents the track of this region.
Several regions may have the same source and sink, and result in the same shortest path. In this
example, the shortest path starting from source A1 and sink A7, is common to all the nodes in bold
outline. The path is shown as a blue band.

A1 A2 A3 A4 A5 A6 A7

C3 C4 C5

B3 B4 B5

0.1 0.1

0.3

0.1 0.1

0.1 0.1

0.1

0.2 0.1

0.4
0.4

0.4
0.4

0.1 0.1

(b) The shortest path through the green bold outlined nodes also has the same source-sink pair (A1,
A7) as in Figure 3a. It is given by the green band. The shortest path through the red bold outlined
nodes is given by the magenta band.

Fig. 3 Several nodes in the graph can have the same shortest path. Hence, running Djikstra’s
algorithm for every node independently will be expensive and redundant.

the denominator of (3) equal, and the numerators are just a sum of values consistent
with Condition 1. The condition |P1|= |P2| always holds true in our setting, since
edges connect two consecutive time steps only and we start Dijkstra’s algorithm at a
particular source, which keeps all considered paths at equal length. Hence, Dijkstra’s
algorithm can be used to solve (3).

3.3 Algorithm for Finding All Paths

Tracking of a single node in the DAG is done by finding the shortest path Pmin
through that node from any source to any sink of the DAG. It may be that the shortest
path through other nodes coincides with Pmin. This is illustrated in Figure 3. Hence,
to find the shortest paths through all nodes, running a naïve Dijkstra for every node
independently will be expensive and redundant.

Instead, we run Dijkstra’s algorithm for every source and sink (in a joint fashion
in two passes, see below), record the gathered information at every node, and stitch
this information together to obtain the shortest path for every node.

To facilitate this, we define a function to incrementally compute the objective
function in (3). We denote this new function by the symbol ⊕ and call it the in-

Fast Topology-based Feature Tracking using a Directed Acyclic Graph 7

cremental path operator. The incremental path operator takes as input the objective
value for path P and a connecting node n and computes the global measure for path
P ∪n. If the weight of the connecting edge between P and n is given by d, ⊕ is
defined as follows

f (P ∪n) = f (P)⊕d =

√
f (P)2 · |P |+d2

|P |+1
(5)

Furthermore, all nodes are topologically sorted. That is, for a node np,i at timestep
t = p and another node nq, j at timestep t = q, node np,i occurs before node nq, j in
the sorted order if p < q.

Our algorithm works as follows. We make two passes through this list of sorted
nodes. One in the sorted order (past time steps to future time steps) and one in
the reverse sorted order. During the first pass, at every node, the best path from
every reachable source to that given node is recorded. This is done by checking
all incoming edges to that node and incrementally calculating the best path from
all incoming edges from a single source. This becomes possible because all nodes
connected to the incoming edges have already been processed earlier (they live at
the previous time step). Consider a node ni with some incoming edges as illustrated
in Figure 4. The best score from any given source to ni is calculated using:

f (Psrc→i) = min
n j∈Ii∧bestSource j=src

(f (Psrc→ j)⊕d j,i). (6)

Algorithm 1 shows the pseudo-code for the first pass described above. The sec-
ond pass is equivalent to the first, but operates on the DAG with edges reversed.
We record the best path to every reachable sink now. This is done by checking for
outgoing edges and the sinks that they lead to. The best score to any given sink from
ni is calculated using:

f (Pi→sink) = min
n j∈Oi∧bestSink j=sink

(f (P j→sink)⊕di, j) (7)

Let the set of all reachable sources to node ni be Si and the set of all reachable
sinks be called Ki. After the two passes are complete, the combined best path for
every node is calculated by choosing the paths (P− ∈ Si,P+ ∈Ki) from the source-
sink pair which minimizes the objective function on the combined path P−∪P+ as
follows:

Pmin = argmin
P−∈Si,P+∈Ki

√
|P−| · f (P−)2 + |P+| · f (P+)2

|P−|+ |P+|
. (8)

Algorithm 2 shows the pseudo-code to obtain all best paths. It can be observed that,
if for any given node ni, the best source-sink pair is given by (si,ki) and the extracted
best path is Pi, all nodes lying on this path, having the same best source-sink pair

8 Himangshu Saikia and Tino Weinkauf

. . . ni−1,1 ni+1,1 k1

s1 . . . ni−1,2 ni ni+1,2 . . . k2

s2 ni−1,3 ni+1,3 . . .

Si[s1] = ni−1,1
Si[s2] = ni−1,3

Ki[k1] = ni+1,1
Ki[k2] = ni+1,2

Fig. 4 Illustration of Algorithm 1. For every node ni in the DAG, the lowest cost (and the corre-
sponding best neighbor) to every reachable source is computed iteratively and stored in the asso-
ciative map Si. In this figure, for example, the best path from ni to source s1 is via its neighbor
ni−1,1. Similarly lowest costs to all reachable sinks are stored in the map Ki. After these values are
computed, the best source-sink pair (s, k) is computed with the lowest cost using Eq. (8) and the
best path Pmin from s to k passing through ni is traced out. All nodes lying on Pmin which have the
same best source-sink pair (s, k) need not be processed as the best path through any such node is
Pmin itself. The final output is the set of all paths passing through every node in the DAG.

A1 A2 A3 A4 A5 A6 A7

C3 C4 C5

B3 B4 B5

0.1 0.1

0.3

0.1 0.1

0.1 0.1

0.1

0.2 0.1

0.4
0.4

0.4
0.4

0.1 0.1

Fig. 5 The shortest paths through all nodes in the DAG combined represent our track graph struc-
ture. Our algorithm avoids computing the three shortest paths (given by the blue, green and ma-
genta bands) for every single node naively, but instead traces a single shortest path only once.
Nodes which lie on a shortest path and has the same source-sink pair, trivially trace the same path.

(si,ki), will trace out the exact same path. Hence, while determining unique paths
in our solution, we can avoid tracing paths from all such nodes. See Figure 4 for an
illustration.

After all nodes have been examined, we are left with the set of best paths passing
through every single node in the DAG. An illustration of the output is shown in
Figure 5.

Fast Topology-based Feature Tracking using a Directed Acyclic Graph 9

Data: Set of all nodes N = {n1,n2, . . . ,nm} sorted topologically. Incoming nodes to ni
given by Ii. The weight of an edge between nodes ni and n j is given by di, j .

Result: Set of associations of all reachable sources and the best path to them from every
node ni given by Si.

1 begin
2 for ∀ni ∈ N do
3 for ∀n j ∈ N do
4 if |I j|= 0 then
5 if ni = n j then
6 Si[j]← n j
7 Si,cost [j]← 0
8 else
9 Si[j]←−1

10 Si,cost [j]← ∞

11 for ∀ni ∈ N do
12 for ∀n j ∈ Ii do
13 for ∀source ∈ S j do
14 costnew← S j,cost [source]⊕di, j
15 if costnew < Si,cost [source] then
16 Si[source]← n j
17 Si,cost [source]← costnew

Algorithm 1: Algorithm to find the associations for the best routes to any node
from all reachable sources. The best routes to all reachable sinks are determined
by running the same algorithm with the nodes sorted in reverse order.

3.4 Complexity Analysis

Let us assume, without loss of generality, that the average number of features in
every timestep is n. For t timesteps, we would then have a total of tn nodes in the
entire DAG. The number of edges is bounded by n2 between every pair of successive
timesteps, so the total number of edges would be bounded by tn2. The naïve version
of the algorithm is a combination of two simple Dijkstra runs from any given node
to all reachable sources and sinks. As we know the runtime of this algorithm is
O(V + E), for V vertices and E edges in a graph, the runtime in the naïve case
will be O(tn+ tn2) or O(tn2) for every node. Hence, if we were to run the naïve
algorithm for all nodes, the runtime would be given by O(t2n3) in the worst case.

Now for our improved algorithm, assuming the number of sources/sinks is given
by p, we can safely say that p << tn. The runtime of Algorithm 1 is then given by
O(tnp+ tn2 p) or O(tn2 p). For Algorithm 2, it is O(tnp2+ t2n). So the total runtime
of our algorithm would be given by O(tn2 p+ tnp2 + t2n) which in practice (as seen
in Table 1) is far less than O(t2n3).

The memory footprint for the naïve version is bounded by the normal Dijkstra
runtime of O(N) for N nodes. Thus, in our scenario, it is given by O(tn) as the short-
est path via every node is computed independently. For the improved algorithm how-
ever, we need to store the mappings of shortest paths from all incoming/outgoing

10 Himangshu Saikia and Tino Weinkauf

Data: The sets of associated maps Si and Ki for every node ni as obtained from
Algorithm 1. The function tracePath(ni,s,k) traces the path to source s and sink k
from node ni using the information present in Si and Ki.

Result: Set of all unique shortest paths P where there exists at least one path passing
through every node ni.

1 begin
2 P← /0
3 for ∀ni ∈ N do
4 bestScore← ∞

5 bestSourcei←−1
6 bestSinki←−1
7 donei← f alse
8 for ∀ni ∈ N do
9 for ∀s ∈ Si do

10 for ∀k ∈Ki do
11 score← scost ⊕ kcost
12 if score < best then
13 bestScore← score
14 bestSourcei← s
15 bestSinki← k
16 for ∀ni ∈ N do
17 if donei 6= true then
18 P ← tracePath(ni,bestSourcei,bestSinki)
19 donei← true
20 P← P∪P
21 for ∀n j ∈ P do
22 if bestSource j = bestSourcei∧bestSink j = bestSinki then
23 done j ← true

Algorithm 2: Algorithm to find shortest paths via every node

edges to all reachable sources/sinks and hence the memory footprint is given by
O(tnp).

3.5 Filtering similar paths for visualization

For visualization purposes we need to choose the best candidate paths which best
represent a feature track at some spatio-temporal region.

In most cases, due to slight perturbations in the DAG, two unique paths may
differ only at very few node positions with most of their nodes being identical. An
example of this can be observed in Figure 5, where the blue and green paths show
in essence the same structure with only a slight perturbation.

We aim to show the path with the best objective score, while other similar paths
falling within a specified threshold are filtered out. The similarity g between two
paths is estimated using

Fast Topology-based Feature Tracking using a Directed Acyclic Graph 11

2D Checker- 2D Streak Line 3D Square
Dataset Benzene board Curvature Cylinder

Dimensions 127×127×255 128×128×1 750×136×1 192×64×48
Time Steps 101 128 429 134
DAG Nodes 2239 3413 18035 15818
DAG Edges 2121 3198 85262 76739

Time to extract 10 ms 16 ms 1767 ms 3200 ms
Time to filter 5 ms 10 ms 80 ms 96 ms
Time naïve alg. 507 ms 936 ms 442050 ms 283448 ms

Memory 427 KB 758 KB 26322 KB 70814 KB
Memory naïve alg. 23 KB 12 KB 523 KB 372 KB

Table 1 Computation runtimes and memory requirements of our algorithm versus the naïve one
for several data sets. All our experiments were performed on a machine with a 2.3GHz Intel i7
processor and 16GB main memory. Timings are totaled over the entire dataset. The timings do
not include computation and simplification of the merge trees. It is to be noted that runtimes and
memory usage depend only on the size of the DAG and not on the size of the dataset.

g(P1,P2) =
|P1∩P2|

max(|P1|, |P2|)
(9)

where |P1∩P2| represent the number of matching edges. The function g estimates
the fraction of edges that are identical in both paths. The filtration using function g
is applied as follows. All paths obtained by solving Equation 8 for every node are
sorted according to the best objective function score given by Equation 3. Paths are
then processed in this sorted order, from lowest score to highest. If a path falls above
the similarity threshold with any other path encountered before, it is filtered out. All
other paths are retained.

If the filter node is set to be 100%, we are left with the complete set of unique
paths. In our experiments, a filter rate of 70% shows best results.

4 Results

The timing and memory consumption for our method are given in Table 1. Regard-
ing the computation times, note how our algorithm improves over the naïve version
by up to two orders of magnitude. Regarding the memory consumption, the naïve
method has lower memory usage as it only processes one node at once, while our
algorithm processes all nodes together. Hence, considering the number of nodes in
each data set, our algorithm is quite efficient with regards to memory usage as well.

Figure 6 shows a rotating and translating benzene data set. Since the data is not
truly time-dependent, but just transformed rigidly, this serves as a test case to show
that we capture all expected tracks and that our method is invariant against rotations
and translations.

Figure 7 shows the 2D time-dependent Streak Line Curvature dataset.

12 Himangshu Saikia and Tino Weinkauf

Fig. 6 Our method applied to the Benzene dataset. The paths indicate tracking of centers of mass
of the regions signified by nodes in our DAG. (a) Paths of all lengths at filter rate 100% (b) Paths
of length 100 and above at filter rate 100% (c) Paths of length 100 and above at filter rate 70%.

Fig. 7 (a) The 2D Streak Line Curvature dataset at filter rate 100% and showing paths of all
lengths. (b) At 100% filter rate and full length paths only (c) At 70% filter rate and full length
paths only.

Figure 8 shows the tracks for the smallest super/sub level set regions in a 2D
Checkerboard dataset. The checkerboard pattern starts off smoothly and becomes
increasingly noisy with time.

Fig. 8 Rotating 2D Checkerboard dataset. Tracks for the centers of mass of the smallest super/sub
level sets are shown. (a) Filter rate 100% and paths of all lengths (b) Filter rate 100% and long
(100 length or more) paths only (c) Filter rate 70% and long paths only (d) Filter rate 70% with
long paths obtained from the naive version of the algorithm.

Figure 9 shows all the tracks in a flow around a 3D Square Cylinder. The location
of the center of mass of a region is used to visualize the paths in all result images.

Fast Topology-based Feature Tracking using a Directed Acyclic Graph 13

Fig. 9 Flow around a Square Cylinder dataset (a) Paths of all lengths extracted at filter rate of
100% (b) Paths of all lengths at filter rate 90% (c) Paths of all lengths at filter rate 70%.

5 Conclusion

We presented an extension of the method in [14] which was used to extract the best
track through a chosen region at any given timestep in a time-dependent scalar field.
These regions are based on topological segmentations in the spatial domain using
merge trees and form the nodes in a Directed Acyclic Graph (DAG) structure in the
spatio-temporal domain. Using the method in [14] to extract the best tracks through
all nodes naïvely results in tracing the same paths multiple times. The algorithm
presented in this paper makes use of the structure in the DAG to iteratively compute
the best paths to every node from all reachable sources and sinks. This in turn al-
lows us to compute the best paths through all nodes at orders of magnitude faster
than the naïve approach. We also presented a filtering algorithm to filter out very
similar paths for visualizing all paths together. Further work may include cluster-
ing these paths according to their similarity by using temporal similarity estimation
techniques like dynamic time warping.

References

1. Bauer, D., Peikert, R.: Vortex tracking in scale-space. In: Proceedings of the Symposium on
Data Visualisation 2002, VISSYM ’02, pp. 233–ff. Eurographics Association, Aire-la-Ville,
Switzerland, Switzerland (2002)

2. Bremer, P.T., Weber, G., Tierny, J., Pascucci, V., Day, M., Bell, J.: Interactive exploration
and analysis of large-scale simulations using topology-based data segmentation. IEEE TVCG
17(9), 1307–1324 (2011)

3. Bujack, R., Hotz, I., Scheuermann, G., Hitzer, E.: Moment invariants for 2d flow fields using
normalization. In: 2014 IEEE Pacific Visualization Symposium, pp. 41–48 (2014)

4. Garth, C., Tricoche, X., Scheuermann, G.: Tracking of vector field singularities in unstructured
3d time-dependent datasets. In: Proceedings of the Conference on Visualization ’04, VIS ’04,
pp. 329–336. IEEE Computer Society, Washington, DC, USA (2004)

5. Günther, T., Schulze, M., Theisel, H.: Rotation invariant vortices for flow visualization. IEEE
TVCG 22(1), 817–826 (2016)

6. Günther, T., Theisel, H.: Vortex cores of inertial particles. IEEE TVCG 20(12), 2535–2544
(2014)

7. Kettner, L., Rossignac, J., Snoeyink, J.: The safari interface for visualizing time-dependent
volume data using iso-surfaces and contour spectra. Computational Geometry 25(1), 97 – 116
(2003). European Workshop on Computational Geometry - CG01

14 Himangshu Saikia and Tino Weinkauf

8. Oesterling, P., Heine, C., Weber, G.H., Morozov, D., Scheuermann, G.: Computing and visu-
alizing time-varying merge trees for high-dimensional data. In: H. Carr, C. Garth, T. Weinkauf
(eds.) Topological Methods in Data Analysis and Visualization IV, pp. 87–101. Springer In-
ternational Publishing, Cham (2017)

9. Pele, O., Werman, M.: The quadratic-chi histogram distance family. In: K. Daniilidis, P. Mara-
gos, N. Paragios (eds.) Computer Vision – ECCV 2010, pp. 749–762. Springer Berlin Heidel-
berg, Berlin, Heidelberg (2010)

10. Reinders, F., Sadarjoen, I.A., Vrolijk, B., Post, F.H.: Vortex tracking and visualisation in a
flow past a tapered cylinder. Computer Graphics Forum 21(4), 675–682 (2002)

11. Reininghaus, J., Kasten, J., Weinkauf, T., Hotz, I.: Efficient computation of Combinatorial
Feature Flow Fields. IEEE TVCG 18(9), 1563–1573 (2012)

12. Saikia, H., Seidel, H.P., Weinkauf, T.: Extended branch decomposition graphs: Structural com-
parison of scalar data. Computer Graphics Forum (Proc. EuroVis) 33(3), 41–50 (2014)

13. Saikia, H., Seidel, H.P., Weinkauf, T.: Fast similarity search in scalar fields using merging his-
tograms. In: H. Carr, C. Garth, T. Weinkauf (eds.) TopoInVis, pp. 1–14. Annweiler, Germany
(2015)

14. Saikia, H., Weinkauf, T.: Global feature tracking and similarity estimation in time-dependent
scalar fields. Computer Graphics Forum 36(3), 1–11 (2017)

15. Samtaney, R., Silver, D., Zabusky, N., Cao, J.: Visualizing features and tracking their evolu-
tion. Computer 27(7), 20–27 (1994)

16. Sohn, B.S., Bajaj, C.: Time-varying contour topology. IEEE TVCG 12(1), 14–25 (2006)
17. Szymczak, A.: Subdomain aware contour trees and contour evolution in time-dependent scalar

fields. In: International Conference on Shape Modeling and Applications 2005 (SMI’ 05), pp.
136–144 (2005)

18. Theisel, H., Sahner, J., Weinkauf, T., Hege, H.., Seidel, H..: Extraction of parallel vector sur-
faces in 3d time-dependent fields and application to vortex core line tracking. In: VIS 05.
IEEE Visualization, 2005., pp. 631–638 (2005)

19. Theisel, H., Seidel, H.P.: Feature flow fields. In: Proceedings of the Symposium on Data Visu-
alisation 2003, VISSYM ’03, pp. 141–148. Eurographics Association, Aire-la-Ville, Switzer-
land, Switzerland (2003)

20. Thomas, D., Natarajan, V.: Multiscale symmetry detection in scalar fields by clustering con-
tours. IEEE TVCG 20(12), 2427–2436 (2014)

21. Thomas, D.M., Natarajan, V.: Symmetry in scalar field topology. IEEE TVCG 17(12), 2035–
2044 (2011)

22. Thomas, D.M., Natarajan, V.: Detecting symmetry in scalar fields using augmented extremum
graphs. IEEE TVCG 19(12), 2663–2672 (2013)

23. Tricoche, X., Wischgoll, T., Scheuermann, G., Hagen, H.: Topology tracking for the visu-
alization of time-dependent two-dimensional flows. Computers & Graphics 26(2), 249–257
(2002)

24. Wang, Z., Seidel, H.P., Weinkauf, T.: Multi-field pattern matching based on sparse feature
sampling. IEEE TVCG (Proc. IEEE VIS) 22(1), 807–816 (2016)

25. Weinkauf, T., Hege, H.C., Theisel, H.: Advected tangent curves: A general scheme for charac-
teristic curves of flow fields. Computer Graphics Forum (Proc. Eurographics) 31(2), 825–834
(2012). Eurographics 2012, Cagliari, Italy, May 13 - 18

26. Weinkauf, T., Sahner, J., Theisel, H., Hege, H.C.: Cores of swirling particle motion in unsteady
flows. IEEE TVCG (Proc. IEEE Visualization) 13(6), 1759–1766 (2007)

27. Weinkauf, T., Theisel, H., Gelder, A.V., Pang, A.: Stable Feature Flow Fields. IEEE TVCG
17(6), 770–780 (2011)

