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Abstract
This paper presents an approach to extracting a path line oriented topological segmentation for periodic 2D time-
dependent vector fields. Topological methods aiming in capturing the asymptotic behavior of path lines rarely exist
because path lines are usually only defined over a fixed time-interval, making statements about their asymptotic
behavior impossible. For the data class of periodic vector fields, this restriction does not apply any more. Our
approach detects critical path lines as well as basins from which the path linesconverge to the critical ones. We
demonstrate our approach on a number of test data sets.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Computer Graphics]: Line and Curve Genera-
tion I.3.3 [Computer Graphics]: Picture/Image Generation I.3.7 [Computer Graphics]: Three-Dimensional Graph-
ics and Realism

1. Introduction

Over the last decade, topological methods have become a
standard tool in vector field visualization. Initially intro-
duced as a visualization tool in [HH89], topological meth-
ods have been extended to higher order critical points
[SKMR98], boundary switch points [dLvL99a], and closed
separatrices [WS01]. In addition, topological methods have
been applied to simplify [dLvL99a, dLvL99b, TSH00,
TSH01, WTS∗05], smooth [WJE01], compress [LRR00,
TRS03] and construct [The02, WTHS04b] vector fields.
The topology of 3D vector fields is visualized in [GLL91,
LDG98,MBS∗04,TWHS03,WTHS04a].

The main idea behind topological methods is to segment
a vector field into areas of similar asymptotic behavior. This
means to classify each pointx in the domain with respect to
the asymptotic behavior of the characteristic curve through
it, i.e., a forward and backward integration starting fromx
with an integration time converging to infinity is considered.
Usually, this integration does not have to be carried out for
every point but only for a certain number of starting points
of separatrices.

For time-dependent vector fields there exists a number

of relevant characteristic curves, such as stream lines, path
lines, streak lines and time lines. Among them, stream lines
and path lines have the uniqueness property: through each
point in the space-time domain there is exactly one stream
line and one path line passing through. This gives that two
different kinds of topologies can be considered: a stream
line oriented topology segmenting areas of similar stream
line behavior, and a path line oriented topology which does
so for path lines. Extracting a stream line oriented topol-
ogy ends up in tracking critical points and considering cer-
tain bifurcations. A number of approaches for this exist
[TWSH02,WSH01,TS03,GTS04,TWHS05].

Path lines are important structures in time-dependent vec-
tor fields because they describe the path of massless par-
ticles in a flow. Hence, a path line oriented segmentation
gives a different kind of insight into the vector field data than
the stream lines. Unfortunately, path line oriented topologi-
cal methods rarely exist because a strong restriction applies:
since path lines move constantly forward in time and real life
data sets are usually given only in a fixed time interval, a path
line integration until infinity cannot be carried out: the inte-
gration stops when the maximal time of the given data set is
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reached. Therefore, a topological segmentation based on the
asymptotic behavior of path lines usually does not exist. One
approach to avoid this problem was presented in [TWHS05].
There, instead of an asymptotic behavior of path lines, only
their local behavior was considered for segmentation. This
segmentation delivers regions of locally attracting, repelling
or saddle-like behavior of the path lines. However, it is not
a topological one in the classical sense because it does not
incorporate any asymptotic behavior of the path lines.

This paper presents the (to the best of our knowledge)
first approach to topologically analyzing and visualizing the
asymptotic behavior of path lines. We achieve this by re-
stricting ourselves toperiodic time-dependent vector fields.
We think that this class of vector fields deserves special con-
sideration since many numerical flow simulations are actu-
ally periodic (or pseudo-periodic) flows. Examples of the vi-
sual analysis of periodic flow fields (but not a topological
analysis of path lines) can be found in [TWHS05,TSW∗05].

For periodic vector fields, the time-domain is not re-
stricted to a certain interval but can be extended to any time
by periodically repeating the given field. Hence, an analysis
of the asymptotic behavior of path lines becomes possible.

The rest of the paper is organized as follows: section2 re-
calls the concepts of stream line and path line oriented topol-
ogy and gives a setup to distinguish and analyze them. Sec-
tion 3 analyzes the behavior of path lines of periodic vec-
tor fields and shows that their asymptotic behavior can be
obtained by a topological segmentation of a 2D Poincaré
map. Section4 describes how to achieve this segmenta-
tion: section4.1 classifies critical points in a Poincaré map,
while section4.2explains how to get the sectors of different
asymptotic behavior. Section5 describes our algorithm to
extracting the topological skeleton. Section6 shows a num-
ber of applications of our approach, while conclusions are
drawn in section7.

2. Stream line and path line oriented topology

Given is a 2D time-dependent vector fieldv(x, t) in the
space-time domainD × [tmin, tmax] where (for the sake of
simplicity) D = [xmin,xmax]× [ymin,ymax]. Thenx describes
the spatial domain andt is the temporal component. In order
to distinguish stream lines and path lines, we derive two 3D
vector fieldss andp by adding a constant component tov
(see also [TWHS05]):

s(x, t) =

(

v(x, t)
0

)

, p(x, t) =

(

v(x, t)
1

)

. (1)

This way the stream lines ofscorrespond to the stream lines
of v, while the stream lines ofp correspond to the path lines
of v. Therefore, a path line oriented topological segmenta-
tion of v corresponds to a segmentation of the stream lines of
p. Unfortunately, such a segmentation ofp cannot be made
by applying conventional topological methods of 3D vector
fields because an asymptotic analysis of a stream line inp
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Figure 1: Two equivalent approaches of a stream line
integration in a periodic fieldp: (a) In the unbounded
time-domain; (b) Periodically continued in the time-domain
[tmin, tmax].

is impossible: every stream line integration inp is guaran-
teed to leave the domainD× [tmin, tmin] after a while, mak-
ing it impossible to consider the asymptotic behavior. This
restriction does not hold any more when moving forward to
periodic vector fields.

3. Periodic vector fields

If v is a periodic-in-time vector field, it is sufficient to con-
sider one period which can be repeated as often as necessary.
We assume thatv describes one period, which means that
v(x, tmin) = v(x, tmax). Then we can assumev to be defined
in the whole domainD× IR by setting

v(x, t) = v(x, t + k ∆ t)

where∆ t = (tmax− tmin) andk is an integer chosen such that
tmin ≤ t + k ∆ t < tmax. In a similar way,p is defined over
D× IR.

In order to integrate a stream line in the periodic fieldp
(which corresponds to a path line ofv), two equivalent strate-
gies can be applied:

• The integration is done over the unbounded time-domain
as illustrated in figure1a.

• If the integration approaches a point(x, tmax), it is mapped
to (x, tmin). From there, the integration is continued until
tmax is reached again. Figure1b illustrates this.

Note that in all figures throughout this paper the coordinate
system is shown as follows: red/green coordinate axes de-
note the (x, y)- domain, the blue axis shows the time compo-
nent.

Our approach to do a topological segmentation of path
lines starts with picking a certain reference timeτ with
tmin ≤ τ < tmax. We aim at a segmentation of the asymptotic
behavior of all path lines starting at the timeτ. To do so, two

c© The Eurographics Association 2006.



Shi et al. / Path line topology for periodic 2D vector fields

xy

t

tmin

tmax

(a)

t
x

xf

xb

m x
t
(  )

m x(  )
t

stream line of p

xy

t (b)

t

t+Dt

stream line of p

t+2Dt

m x(  )
t

m x(   )1t

x1x

x2

t+Dt

t D- t

Figure 2: (a) The definition ofmτ(x) andm̄τ(x); (b) A con-
tinuous forward integration ofp corresponds to a discrete
integration ofmτ(x).

2D mapsmτ(x) andm̄τ(x) are constructed. Formτ(x), we
start a forward integration ofp from (x,τ) until one of the
following cases occurs:

1. The integration reaches the time levelτ + ∆ t, i.e. comes
to a certain point(x f ,τ+∆ t). Then we setmτ(x) = x f .

2. The integration leavesD before reaching the levelτ+∆ t.
In this case we markmτ(x) as undefined.

In a similar way we computēmτ(x) by starting a backward
integration ofp from (x,τ) until the time levelτ − ∆ t is
reached at a point(xb,τ−∆ t), or until the integration leaves
D. In the first case, we set̄mτ(x) = xb, in the second case
m̄τ(x) is undefined. Figure2a illustrates the definition of
mτ(x) andm̄τ(x).

Instead of the definition of the mapsmτ(x) andm̄τ(x) de-
scribed above, we can also use a vector-oriented description
of the map:

qτ(x) = mτ(x)−x , q̄τ(x) = m̄τ(x)−x (2)

Sincemτ(x) andqτ(x) can be easily transformed into each
other, we will switch between both formulations in order to
simplify the notation of our approach. Note that in general
q̄τ 6= −qτ.

The mapsmτ andm̄τ can be interpreted as 2D Poincaré
maps [LKG98]. In order to analyze the asymptotic behavior
of a path line starting from(x,τ) in forward direction, we do
not have to integratep any more but can restrict ourselves to
a sequence of maps ofmτ(x):

x0 = x , xi+1 = mτ(xi) (3)

and considering the asymptotic behavior fori →∞. Figure
2b illustrates this. A similar statement holds for the back-
ward integration ofp and a sequence of maps of̄mτ. Note
that (3) is equivalent to a numerical Euler integration ofqτ
with the step size 1:xi+1 = xi +1 qτ(xi).

Both Poincré mapsmτ andm̄τ can be considered as dis-
crete invertible dynamical systems: there are no two distinct
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Figure 3: (a) A critical path line corresponds to fix points in
mτ, m̄τ. (b) Critical path line over two time periods.

points which are mapped to the same point bymτ or m̄τ. In
other words:mτ andm̄τ are inverse to each other:

m̄τ(mτ(x)) = mτ(m̄τ(x)) = x (4)

for everyx where bothmτ andm̄τ are defined.

A special role in the further analysis of the path lines
play isolated fix points ofmτ and m̄τ, i.e., pointsx with
mτ(x) = m̄τ(x) = x. (This is equivalent to critical points in
qτ, q̄τ.) The fix points ofmτ andm̄τ correspond to certain
path lines which we callcritical path linesbecause they have
a well-defined asymptotic behavior: they repeat the same
spatial cycle in every time period. Figure3a gives an illus-
tration.

The critical path lines will be the basis of our topological
segmentation: we classify path lines whether they converge
to a critical path line in forward or backward integration re-
spectively. Similar to critical points of a vector field, critical
path lines can act as sources, sinks, or saddles.

Note that more critical path lines may occur when con-
sidering two or more time periods. Such a critical path line
over n time periods corresponds to a fix point of the map
mτ

n. Figure3b illustrates an example forn = 2. However,
in our applications we only considered simple (one period)
critical path lines.

4. Topological segmentation of 2D Poincaré maps

The segmentation of areas of similar path line behavior cor-
responds to the topological segmentation of the 2D Poincaré
mapsmτ andm̄τ respectively. Critical path lines inp corre-
spond to fix points inmτ andm̄τ. They may act as sources,
sinks or saddle path lines buildingα- and ω-basins inD.
In this section we show how to find this segmentation by a
topological analysis ofmτ andm̄τ. Sincemτ andm̄τ can be
considered as discrete dynamical systems, classical topolog-
ical vector field approaches fail to give the correct segmen-
tation because they reflect continuous dynamical systems. In
particular, the following points apply:
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Figure 4: Pseudo discontinuities inmτ: if x1 and x2 are
close but at different sides of a separatrix ofv(x) = v(x, t),
mτ has too large changes that it is impossible for discrete
numerical method to deal with it though it is still continuous.

1. Although p is continuous, bothmτ and m̄τ may have
pseudo discontinuities. It means thatmτ andm̄τ are still
continuous mathematically, but they may have areas with
tremendous large gradient, which appear as discontinu-
ities for discrete treatment.

2. The classification of the fix points ofmτ and m̄τ in
sources, sinks and saddles can be obtained by an eigen-
analysis of the Jabobians ofmτ andm̄τ but differers from
the classification for smooth vector fields [Tso92,Löf98].

3. The separating structures of the basins are generally not
stream lines of the vector fieldsqτ and q̄τ. Because of
this, they can intersect in non-critical points ofqτ andq̄τ.

To see the first point, we consider the example of a steady 2D
vector fieldv(x) = v(x, t) which can also be considered as as
periodic time-depending vector field. Setting a certain time
∆ t as period,mτ(x) is obtained by a stream line integration
of v at x over a time∆ t. If v consists of saddles, its separa-
trices may induce tremendous changes inmτ that it appears
as discontinuities for normal discrete numerical programs.
Figure4 illustrates this. The points 2 and 3 are treated in the
next subsections.

Critical points of discrete non-invertible dynamical sys-
tems and their corresponding basins have been extracted
and visualized in [BMH01, HMBG01], ending up in non-
connected or even fractal-shaped basins. However, for our
purposes the approach simplifies becausemτ andm̄τ are in-
vertible.

4.1. Classifying critical points

The classification of a first order critical point in a discrete
dynamical system is well-understood [Tso92, Löf98] and
differs from the classification of a continuous system. Given
a first order approximation ofmτ

mτ(x) = J x (5)

whereJ is the 2× 2 Jacobian matrix,mτ has a fix point at
(0,0). To capture the asymptotic converging/diverging be-
havior of the sequence (3) for i →∞ in a vicinity of (0,0),
we consider the eigenvalesλ1, λ2 and the corresponding
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Figure 5: Classification of sources/sinks ofmτ: (a)
repelling/alternating; (b) attracting/alternating; (c)
attracting/non-alternating (d) repelling/non-alternating; (e)
attracting/rotating; (f) repelling/rotating.

eigenvectorse1, e2 of J. Based on the eigenvalues, we get
the following classification

‖λ j‖ > 1 → repelling behavior

‖λ j‖ < 1 → attracting behavior

Im(λ j ) 6= 0 → rotating behavior

Im(λ j ) = 0 , Re(λ j ) < 0 → alternating behavior

Im(λ j ) = 0 , Re(λ j ) > 0 → non-alternating behavior

for j = 1,2. Figure5 illustrates some examples of sources
and sinks ofmτ. There, in order to describe the linear ap-
proximationmτ, we show three points and their assigned
vectorsqτ: the fix pointx0, and two more pointsx1, x2 in
the direction of the two eigenvectors ofJ. The circles around
the fix points denote whether the map moves closer or fur-
ther away from the fix point: if the two arrows ofqτ point
inside the circle, an attracting behavior ofqτ is present.

If mτ is linear as given in (5), thenm̄τ is linear as well:

m̄τ(x) = J−1 x. (6)

Since the eigenvalues/eigenvectors ofJ−1 are 1/λ j , ej for
j = 1,2, there are the following correlations betweenmτ and
m̄τ:

behavior ofmτ behavior ofm̄τ
repelling attracting
attracting repelling

saddle saddle
alternating alternating

non-alternating non-alternating
rotating rotating

4.2. Getting the topological sectors

For continuous dynamical systems, the different basins are
separated by stream lines starting from saddle points. How-
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ever, such a stream line integration does not exist for the dis-
crete systemsmτ andm̄τ. Therefore we apply a point-wise
approach: for every pointx in D, we integratemτ using (3)
until one of the following conditions is fulfilled:

• xi comes close to a fix point ofmτ,
• xi leaves the domainD,
• i exceeds a certain threshold of maximal iterations.

In the first case we assumex to be part of the basin of the
fix point. This means that the path line starting at(x,τ) con-
verges to a critical path line under forward integration. In
the second case, the path line is known to leaving the do-
main under forward integration. In the last case,x is marked
as unknown because we could not get a statement about the
asymptotic behavior of the path line starting from(x, t).

5. The algorithm

In this section we formulate our algorithm to get the path line
oriented topological segmentation of a periodic 2D vector
field v(x, t):

1. Pick a timeτ with tmin ≤ τ < tmax for which we compute
the topological segmentation.

2. Compute the Poincaré mapsmτ andm̄τ, or equivalently,
the vector fieldsqτ andq̄τ.

3. Extract the fix points ofmτ andm̄τ.
4. Classify the fix points ofmτ andm̄τ.
5. Assign a unique color to each sink ofmτ andm̄τ.
6. For eachx ∈ D: repeatedly applymτ using (3) starting

from x and color code the result:

• convergence to a sink→ assigned color of the sink
• leavingD → color code leavingD
• exceed maximal number of iterations→ color code

unknown converging behavior

7. Similar to6. for m̄τ.
8. Overlay of the color coding schemes of6.and7.gives the

complete classification of the asymptotic path line behav-
ior at the timeτ.

This algorithm needs some remarks:

To 1. In our application we have chosen not only a singleτ
but a number of them to show the evolving of the topological
sectors over time.

To 2. Sincemτ andm̄τ are known to have discontinuities,
we sampled them in a rather high resolution and represented
them as piecewise bilinear fields.

To 3. To extract the fix points ofmτ and m̄τ, standard
methods for piecewise bilinear fields are applied. However,
from the set of extracted fix points we have to remove the
ones which are located close to lines of discontinuities of
mτ andm̄τ. We do so by choosing a small enough neighbor-
hood in which we assume the vector field around the critical
point to be continuous. Then we can compute the eigenval-
ues and eigenvectors of the critical point by sampling inside

(a)qτ at τ = tmin (b) q̄τ at τ = tmin

(c) Basins ofqτ at τ = tmin (d) Basins ofq̄τ at τ = tmin

Figure 7: The random data set.

the neighborhood. With these eigenvalues and eigenvectors,
we estimate the vector field inside the neighborhood and
compare it with the original vector field. If the estimation
error exceeds some threshold, it means there is no continuity
inside the neighborhood, and the critical point is invalid.

To 4. Inside a cell, the bilinear interpolation ofmτ andm̄τ
gives the Jacobian of a fix point.

To 5. We used a scheme of random isoluminant colors.

To 6. and7. The resolution of the sampling for the color
coding should not be less than the resolution ofmτ andm̄τ,
in order to deal with the discontinuities ofmτ andm̄τ.

6. Applications

In this section we apply our technique to a number of test
data sets.

Figures6–7 illustrate our technique at a random vector
field. We use random fields as a proof-of-concept because
they contain a maximal amount of topological information.
The vector field is piecewise trilinear over a 8× 8× 7 grid
where the timei-th and the(6− i)th time slices coincide for
i = 0, ..,2. Figure6ashows the visualization ofp using LIC
planes at three different time slices as well as a number of
illuminated stream lines. Figure7a-7b show the 2D vector
fieldsqτ andq̄τ which correspond to the Poincaré mapsmτ
and m̄τ for τ = tmin. These images have to be interpreted
carefully. They clearly show the regions whereqτ and q̄τ
are undefined (marked black) as well as the locations of the
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(a) The vector fieldp. (b) Critical path lines and basins
for forward integration.

(c) Critical path lines and basins
for backward integration.

(d) Overlayed basins for forward
and backward integration.

Figure 6: The random data set.

(a) The vector fieldp. (b) Critical path lines and basins for forward
integration.

(c) Critical path lines and basins for backward
integration.

Figure 8: The ABC flow.

(a) Stream line oriented topology
(from [TWHS05])

(b) The vector fieldp. (c) Critical path lines.

Figure 10: The cavity data.
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(a)qτ at τ = tmin (b) q̄τ at τ = tmin

Figure 9: The ABC flow.

(a)qτ at τ = tmin (b) q̄τ at τ = tmin

(c) Critical points and basins of̄qτ

Figure 11: The cavity flow.

critical points, i.e., the fix points ofmτ and m̄τ. Also, the
LIC images reveal the discontinuities in the Poincaré maps.
However, the LIC images also present information about the
stream lines ofqτ andq̄τ. Since only a discrete integration is
carried out, stream lines ofqτ andq̄τ do not have a physical
interpretation.

Figure6b–6d show the detected 19 critical path lines. 5
of them are sinks in forward integration ofp (marked with
blue points), 5 are sinks under backward integration ofp (red
points), and 9 are saddles (yellow points). Figure6b shows
the basins of the sinks ofmτ for three different timesτ. Fig-
ure6b does so for the basins of̄mτ. Their overlay is shown
in figure6d, giving the complete classification of the asymp-
totic behavior ofp starting at one of the selected timesτ.
The computing time for this data set was 10 minutes for the
Poincaré maps in a 1000×1000 resolution, and 1 minute for
the basins in a 1000×1000 resolution on a Pentium 4 with
3.40 GHz.

Figures8–9 visualize parts of the so-called ABC flow
which is given by

u(x) = Asinz+Ccosy,

v(x) = Bsinx+Acosz, (7)

w(x) = Csiny+Bcosx,

where we setA =
√

3, B =
√

2 andC = 1. For our purpose,

we considered a cut through the(x,y)-plane and interpret the
z-coordinate as the time dimension:

p(x, t) =





√
3sint +cosy√

2sinx+
√

3cost
1



 (8)

The field is periodic inx,y- andt direction with a period of
2π each. We visualize the behavior of the path lines in the
domain[0,10π]× [0,10π]× [0,2π]. Figure8ashows the LIC
plane and the path lines. We detected 45 critical path lines
as illustrated in figures8b and8c. Figure9 shows the LIC
images ofqτ andq̄τ: the classification gives that all critical
points are weak sinks inqτ. The norm of the eigenvalues is
only slightly smaller than 1, and the basins are computed us-
ing 1000 integration steps. For̄qτ, all critical points are weak
sinks as well, giving very similarly shaped basins asqτ (fig-
ure8c). Since this contradicts to the property mentioned in
section4.1 (a sink inqτ is a source in̄qτ), we conclude that
critical points have an unstable center-like behavior: path
lines in a certain neighborhood (color coded in figures8b
and8c) asymptotically remain in this neighborhood without
converging/diverging to/from the critical path line. Between
these neighborhood regions there are regions where the path
lines leave the domain (white areas in figures8b and8c)).
The computing time for this data set was 10 minutes for the
Poincaré maps in a 1000× 1000 resolution, and 1 minutes
for the basins in a 1000×1000 resolution.

Figures10–11show the visualization of a vector field de-
scribing the flow at a 2D cavity. This data set was kindly pro-
vided by Mo Samimy and Edgar Caraballo (both Ohio State
University) [CSJ] as well as Bernd R. Noack (TU Berlin).
1000 time steps have been simulated using the compressible
Navier-Stokes equations. The topological behavior of the
stream lines of this data set has been analyzed in [TWHS05].
For this data set it turned out that the period appears ev-
ery 79 time steps. Figure10b showsp is one time period
by two LIC planes and illuminated stream lines. Figure10a
(from [TWHS05]) shows the stream line oriented topologi-
cal skeleton. This skeleton has a moderate complexity mani-
fested in a number of moving critical points (represented by
the colored lines) and bifurcations. The topological skele-
ton of our path line oriented topology looks more simple:
we detected four critical path lines which are shown in fig-
ure10c. One of them is located inside the cavity, while the
others are outside. Three critical path lines are sinks under
forward integration and sources under backward integration,
the remaining one is a saddle. The total absence of any sinks
in forward direction gives the main result of the topological
analysis of his data set: every particle (except the ones start-
ing on the critical path lines) is going to leave the cavity after
a certain time. Also, it is possible to show the regions from
which a backward integration ofp converges to the critical
path line: they are shown as colored areas in figure11c. This
figure clearly shows that the basins can have a rather discon-
nected structure. The computing time for the cavity data set
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was 30 minutes for the 3650× 1000 Poincaré map, and 5
minutes for the basins in the same resolution. The LIC im-
ages ofqτ andq̄τ in figures11aand11billustrate this.

7. Conclusions

In this paper we made the following contributions:

• We introduced an approach to analyzing the asymptotic
behavior of path lines in periodic time-dependent vector
fields.

• We defined, extracted, and classified critical path lines.
• We computed the basins from which the path lines con-

verge to the critical path lines in forward or backward in-
tegration.

Our examples show that the path line oriented topology
gives significantly different topological information than the
stream line oriented one. The main disadvantage of our ap-
proach is that it is limited to periodic vector fields only. In
fact, we do not see a way to straightforwardly extend it to
non-periodic vector fields. However, we think that due to
the number of periodic vector fields obtained from time-
dependent numerical flow simulations, this class of vector
field data deserves the special consideration.
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