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Transport is an important phenomenon 
underlying a flow process. Any substance 
or property such as a dye, momentum, or 

heat can be transported in a fluid.1 Modern ex-
perimental and computational fluid mechanics 
are increasingly concerned with transport struc-

ture. Researchers have developed 
many promising approaches to 
depict the dynamic transport 
behavior of flow fields. However, 
comprehending the important 
characteristics of this complex 
phenomenon has still proved 
difficult. Particularly, the nature 
of property transport is unclear 
and hard to interpret. Effective 
visual analysis of flow transport 
is still challenging.

In this article, we focus on 
physical properties’ transport 
characteristics and propose an 
approach to visualize the prop-

erties’ finite-time transport structures. In particu-
lar, we focus on advection, the major transport 
mode in a fluid. Advection involves transport of 
some substance or property by the macroscopic 
motion of currents.

The need for visual analysis
Classic approaches to dynamic-flow analysis tend 
to extract the transport features in Eulerian perspec-
tive and track them over time (see the “Related Work 
on Fluid Transport Behavior” sidebar on page 26 
for more on such approaches). Although these ap-
proaches generate promising results, the extracted 

features depend strongly on each instant time step 
and aren’t natural for dynamic analysis.

An alternative approach is Lagrangian coherent 
structures (LCSs), which identify the transport 
barriers during flow advection.2 LCSs provide more 
natural insight into the dynamic processes of fluid 
transport. However, this approach doesn’t con-
sider some important physical properties. To bet-
ter understand intrinsic flow transport, we need 
visual analysis of physical-property transport. This 
analysis must include both the fluid motion and 
corresponding physical properties.

One way to visualize fluid transport’s dynamic 
behavior is to integrate the history of fluid trans-
port over a certain time interval. To do this, you 
can use a transport filter that convolutes a physi-
cal-property field over time and compresses this 
property’s relevant transport information to an 
investigation point. The convolution’s results re-
veal the transport structures.

In advection analysis, a fluid is described as a 
vector field.1 In flow visualization, a standard tech-
nique for visualizing advection trajectories is line 
integral convolution (LIC).3 LIC is similar to ad-
vecting a noise texture field along flow transport 
trajectories and generating the motion blur of the 
processed texture field. This motion blur reflects the 
underlying substance concentration, indicating the 
geometrical distribution of the related trajectories.

We propose a transport filter for fluid advec-
tion—an advection filter—which is similar to ap-
plying LIC along path lines. (Path lines are the 
trajectories of fluid elements.) Instead of a noise 
texture, the advection filter convolutes a cor-
related physical-property field. This is similar to 

This article focuses on the 
transport characteristics of 
physical properties in fluids—
in particular, visualizing the 
finite-time transport structure 
of property advection. 
Applied to a well-chosen 
set of property fields, the 
proposed approach yields 
structures giving insights into 
the underlying flow’s dynamic 
processes.
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investigating the physical properties along flow 
transport and recording these properties’ advec-
tion blur. The resulting field differs from the origi-
nal physical-property field in that it reflects the 
transport’s dynamic behavior. It’s also distinct 
from the traditional LIC result because it captures 
the flow field’s property characteristics.

Describing advection
In fluid dynamics, transport is macroscopic, and 
a fluid is a continuous medium.4 To describe the 
conservative transport of the substances or prop-
erties, we can use continuity equations.4

Figure 1 illustrates advection. (In figures in this 
article, small particles represent distributions of 
the transported substances or properties; they 
aren’t necessarily real particles. Also, we use tem-
perature color coding to characterize the time in-
formation. Red, green, and blue denote the x-, y-, 
and z-axis; yellow denotes the time axis in the 2D 
time-dependent case.) For conservative property 
advection without additional sources, we math-
ematically describe the transport mechanism as

∂
∂
Φ Φ
t

+ ∇ ⋅( ) =v 0

where Φ is the investigated property and v is the 
flow field’s velocity.

For incompressible flow, where ∇ ⋅ =v 0 , we 
simplify the advection equation as

∂
∂
Φ Φ
t

+ ⋅∇ =v 0

The transport filter
The partial differential equations (PDEs) in the 
previous section clearly reveal property transport’s 
physical mechanism. However, the PDEs are ex-
pressed in Eulerian perspective, and their physical 
pictures still aren’t clear. An intuitive visualization 
of the underlying properties’ transport behaviors 
can help us understand the complex phenomenon. 
In particular, it’s critically important to see the pat-
terns concerned with the phenomenon.

However, most flow patterns are invisible to hu-
man perception. The art of flow visualization is to 
make these underlying patterns visible. A common 
way is to identify visible distribution fields related to 
the phenomenon and visualize the patterns through 
their corresponding fields. The distribution fields are 
normally 2D or 3D scalar fields, which we can visu-
alize using classic visualization approaches.

Then, the problem comes down to identifying a 
distribution field that captures the transport be-

havior. To reflect a dynamic transport behavior, 
the transport process’s history must be represented 
properly. For a given spatiotemporal investigation 
point, we must collect all the information relevant 
to transport behavior that happened at that point 
over a certain time interval. Convolution is pow-
erful for identifying the relevant information in 
a specified domain and for increasing the visual 
depth into a complex phenomenon.

We use the transport filter to apply convolution 
in the spatiotemporal domain (see Figure 2a). The 
filter lets us identify the neighborhood relevant to 
the transport behavior and to record all the rele-
vant information in this neighborhood. The trans-
port filter’s scale is related to the investigation’s 
time interval and can be specified by the user.

The advection filter
Path-line LIC tracks the transport evolution over 
time and can effectively uncover the dynamic in-
formation of advection.5 It’s natural to extend path-
line LIC to property advection, and the advection 

Figure 1. 
Advection. 
This transport 
phenomenon 
involves the 
transport 
of some 
substance or 
property by the 
macroscopic 
motion of 
currents.
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Figure 2. Transport filters for 2D unsteady-flow fields: (a) a general 
transport filter and (b) an advection filter. The transport filters integrate 
the relevant history of the underlying properties and generate the 
corresponding motion blur.
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Many approaches exist for exploring transport behav-
iors of flow fields. Traditional research tracks features 

such as topological features and vortex regions in Eulerian 
perspective1 and typically visualizes quantity features as 
time-varying data sets.2

Path-line-oriented flow visualization
One standard technique for flow visualization involves 
path lines. Path lines are important characteristic curves 
in dynamic-flow fields; they describe the trajectories of 
flow advection. (Advection refers to the transport of some 
substance or property by the macroscopic motion of 
currents.) To formally define a path line, we start with a 
time-dependent vector field v(x, t), where x is the spatial 
component and t is the temporal component. We then 
define a path line px,t() starting at (x, t) as

p v px x, , ,t tx t dτ ξ ξ ξ
τ( ) = + ( ) +( )∫0

( is the integration time, a variable to control the length 
of the integration, which corresponds to the length of the 
corresponding path line.)

Alexander Wiebel and Gerik Scheuermann visualized 
a number of carefully selected path lines to get static 
representations of the dynamic flow.3 Holger Theisel and 
his colleagues considered a segmentation of the flow 
domain based on path lines’ local properties,4 while 
Kuangyu Shi and his colleagues generated asymptotic 
path-line-oriented topological separation structures 
for periodic 2D time-dependent vector fields.5 Daniel 
Weiskopf and his colleagues applied texture-based visu-
alization to capture path line characteristics.6 Kuangyu 
Shi and his colleagues also introduced an information 
visualization approach to explore the correlated struc-
tures of identified path-line attributes.7 Filip Sadlo and 
his colleagues investigated the vortex transport behavior 
along path lines.8

Line integral convolution
Another standard flow visualization technique is line 
integral convolution (LIC), first introduced by Brian 
Cabral and Leith Leedom.9 LIC imitates the motion blur 
of substance advection in a fluid, thereby describing the 
substance concentration due to advection.10 LIC convo-
lutes a noisy input texture into the flow direction. This 
way, the resulting texture changes color only slightly 
in the flow direction, and rapid color changes appear 
perpendicular to the flow. Christof Rezk-Salama and his 
colleagues propose an effective extension of LIC to 3D 
flow visualization.11 Han-Wei Shen and his colleagues 
use LIC to synthesize dye advection in a flow to enhance 
local features.10 Detlef Stalling and Hans-Christian Hege 
significantly improve LIC performance by exploiting 

coherence along streamlines.12 (Streamlines are those 
curves that are instantaneously tangent to the velocity 
field.) Researchers have also applied LIC with path lines 
to deal with unsteady flow.13

Lagrangian coherent structures
These structures depict the transport barriers of underly-
ing flow processes. George Haller was the first to use a 
finite-time Lyapunov exponent (FTLE) field to characterize 
Lagrangian coherent structures (LCSs).14,15 He also pro-
posed using FTLE fields’ ridge lines to identify stable and 
unstable manifolds.16

The Lyapunov exponent of a finite-time path line is a 
finite-time average of the maximum expansion rate for 
a pair of advected particles. Consider a given point (x, t) in 
the spatiotemporal domain and the perturbed point x′ = x + 
x of an infinitesimal perturbation x. After a time interval 
, this perturbation becomes xpx,t() = px′,t() – px,t(). A 
linear-flow map A = ∇px,t() characterizes the perturbation’s 
stretching gradient. The maximum stretching occurs when 
x is chosen such that it’s aligned with the eigenvector 
associated with the maximum eigenvalue of AAT. The maxi-
mum stretching is correspondingly the largest eigenvalue 
of AAT. Through logarithm computation and normalization 
with the absolute advection time , the definition of the 
FTLE field is

δ
λ

τ
τ
t

TAA
=

( )( )log max

Large FTLE values for forward advection correspond 
to unstable manifolds, whereas large FTLE values for 
backward advection correspond to stable manifolds. 
For an FTLE field δ τ

t x( ), the field’s ridges depict LCSs.16  
Researchers have developed many algorithms to acceler-
ate visualization of LCSs.17,18
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filter provides the equivalent of path-line LIC (see 
Figure 2b).

Given a time-dependent vector field v(x, t), a 
path line px,t() starting at (x, t) is a function of 
time. It depends on the initial position x, the ini-
tial time t, and the integration time . Path-line 
integration can be carried out both forwards and 
backwards. In real applications, flow data is usu-
ally given in a fixed spatiotemporal domain, which 
means that we can integrate path lines for only a 
finite time. A path line starting from (x, t) can 
also be parameterized in the form of px,t(s) with a 
specific arc length s.

Given a scalar property field (we discuss the specific 
properties we’re investigating later), the advection 
filter calculates an intensity value I by convoluting it 
along path lines for either a fixed time,

I t k d
T

T

tx px, ,,( ) = ( ) ( )( )∫ τ τ τ τ
1

2 Φ

or a fixed length,

I t k s s s ds
S

S

tx px, ,,( ) = ( ) ( )( )∫ 1

2 Φ

where k denotes a filter kernel. T1 > 0 and T2 > 0 
are the kernel lengths specifying the forward and 
backward integration times. The integration could 
be restricted to one direction simply by setting the 
other parameter to 0. Similarly, S1 > 0 and S2 > 0 
specify the integration arc length in forward and 
backward directions.

In real applications, the resulting intensity is 
normalized by dividing by the total integration 
time (for a fixed time) or the integration arc length 
(for a fixed length).

Finite-time transport structure
A simple example shows how the advection filter 
reveals advection structure more clearly than tra-
ditional approaches. Consider the analysis of two 
dipole flows of different volume flow rates per unit 
depth m.1 Figure 3a (next page) compares the LIC 
visualizations, which display the geometrical distri-
butions of the transport trajectories. The results are 
nearly the same; such visualizations aren’t enough 
to identify the full view of a dynamic behavior.

Figure 3b shows the color coding of local kinetic 
energy. Structurally, the visualizations of the two 
dipoles are still the same. This local-property visu-
alization doesn’t fully reveal the dynamic behav-
ior, either.

Figure 3c shows the results of using our advec-
tion filter to convolute the kinetic energy along 
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path lines and visualize the result distribution. 
The convoluted field’s values indicate the advec-
tion magnitude; the high values correspond to the 
sink area. The inherent asymmetry is clear in these 
kinetic-energy transport structures. Analysts can 
distinguish the two dipoles through the difference 
in these structures.

For steady flow, path lines coincide with stream-
lines. (Streamlines are those curves that are in-
stantaneously tangent to the velocity field.) We 
consider simple 2D steady flow in this section to 
illustrate basic ideas.

Physical properties for investigation
The general kinematic properties that we inves-
tigate here are kinetic energy, momentum, ac-
celeration, and the local shear rate (which is a 
determinant of the local-shear-rate tensor).1 For 

vortex-related behaviors, we analyze properties 
such as vorticity, divergence, Q, and 2.6 On the 
basis of our experience, no criteria to assess these 
properties exist.

The algorithm
We use this basic algorithm:

Identify the physical properties to investigate.
Choose a time of interest and make a sampling 
in the spatial domain.
Integrate path lines from the sampling points 
either forwards or backwards over a fixed time.
Specify a convolution kernel for the advection 
filter, and convolute the physical-property field 
along path lines.
Visualize the resulting convoluted field and char-
acterize the corresponding transport structures.

1.
2.

3.

4.

5.

(a)

0 0.008–0.008

0 0.008–0.008

0 0.8–0.8

0 0.8–0.8

(b)

(c)

Figure 3. 
Visualization of 
a dipole flow, 
for a unit depth 
of m = 0.0628 
(left column) 
and m = 0.628 
(right column): 
(a) classic 
line-integral-
convolution 
(LIC) 
visualization, 
(b) color 
coding of the 
kinetic-energy 
field, and 	
(c) applying the 
advection filter 
to the kinetic-
energy field. 
The advection 
filter records 
the dynamic 
information of 
the property 
transport 
and reveals 
significant 
different 
structures.
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Step 1 is the most important and flexible part of 
our approach. We currently select properties that 
have been well applied in flow analysis. However, 
for future applications, we could extend our ap-
proach to other properties. There are no unique 
criteria for selecting properties because different 
analyses in different applications might require 
different property fields. We provide users with an 
interface for further exploration.

In step 2, we try to make the sampling resolu-
tion as high as possible above the Nyquist rate (the 
minimum sampling rate to avoid aliasing for data 
processing). However, we must balance our com-
putation power. During our analysis, we use an 
adaptive mechanism. If we find some interesting 
areas, we zoom in on them with a higher sampling 
resolution.

In step 3, we consider only finite-time path 
lines. We carry out path line integration in one 
direction within a fixed time T. We use T > 0 for 
forward integration and T < 0 for backward inte-
gration. Our approach has the same problem with 
setting the integration time that other finite-time 
approaches have. This problem involves a trade-
off. We want to analyze path lines for as long as 
possible, but most of the path lines should be in-
tegrated over the same time without leaving the 
domain. When applying our algorithm, we care-
fully set the integration time. However, to the best 
of our knowledge, there’s still no guaranteed way 
to optimize the setting of the integration time. 
We use fourth-order Runge-Kutta integration for 
path-line integration.

In step 4, we currently consider a simple box 
kernel3 and restrict the analysis to advection.

In step 5, we can choose typical scalar visualiza-
tion techniques to visualize the convoluted field. 
Here, we apply standard direct volume rendering 
and color coding.

Applications
We applied our approach to data sets for ABC (Ar-
nold-Beltrami-Childress) flow, cylinder flow, and 
flying jets. For each physical property we analyze, 
we can identify several interesting flow transport 
structures, which seem to hold even for different 
data sets.

ABC flow
We analyzed two ABC flow fields:

v x( , )
sin cos
sin cos
sin cos

t
A z B y
B x C z
C y A x

=
+
+
+















which are solutions of the Euler equation.1 They’re 
incompressible and inviscid. A, B, and C are three 
constants of the flow. Here we set A = √3, B = √2, 
and C = 1 for the steady case and A = √3 + 0.5t 
sin(t), B = √2, and C = 1 for the unsteady case. 
We consider the spatial domain D = [0,2 ]3 and 
use a sampling of 128 × 128 × 128. Because this 
field is also defined outside the domain, we can in-
tegrate every path line for a full time, even though 
it leaves the domain.

Figure 4a shows integrated path lines for the 
steady ABC field with integration time T = 10, 
while Figure 4b shows integrated path lines for the 
unsteady ABC field with T = 8. For comparison, 
Figure 4c depicts the distribution of the finite-time 
Lyapunov exponent (FTLE) field of the steady ABC 
flow.7 FTLE fields provide a visualization of the 
corresponding LCSs (for more on this, see the “Re-
lated Work on Fluid Transport Behavior” sidebar.)

Figure 5 (next page) visualizes momentum, ki-
netic energy, local shear rate, vorticity, Q, and 2 
for ABC flow (Rows 1, 3, and 5) and the advec-
tion filter’s corresponding results (Rows 2, 4, and 
6). (In this article, T distinguishes the convoluted 
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Figure 4. ABC (Arnold-Beltrami-Childress) flow: (a) path lines of steady ABC flow for integration time T = 10, (b) path lines of 
unsteady ABC flow starting at t = 0 for T = 8, and (c) the finite-time Lyapunov exponent (FTLE) field of steady ABC flow.6 These 
figures visualize the path lines used for convolution; the Lagrangian coherent structures (LCSs) revealed by the FTLE field are 
important transport structures that we use to compare our results. (Courtesy of George Haller, Massachusetts Inst. of Technology.)
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field from the corresponding local-property field.)
In Figure 5, the first image in Rows 1 and 2 depicts 

the momentum field. Clearly, the advection struc-
ture in the convoluted momentum field strictly fol-
lows the corresponding LCS (depicted by the FTLE 
field in Figure 4c). The local maximums in the FTLE 
field correspond to the local minimums in the con-
voluted momentum field. It’s reasonable that there’s 
weak momentum advection near the LCS.

To analyze the correspondence, we make a scatter 
plot of these two fields (the top left of Figure 6). Al-

though simple global functions can’t describe these 
two fields’ relationships, we can still see the general 
inverse mapping between the fields. Furthermore, we 
see that this mapping is formed with several bundle 
structures, which might indicate local correlations.

For further analysis of these local correlations, 
we select areas with simple obvious patterns and 
observe the scatter plot of these two fields on the 
restricted area. Figure 7 selects an area on an x-y 
slice, while Figure 8 (page 32) selects an area on an 
x-z slice. In the upper-left scatter plot in Figure 7, 

Momentum1

2

3

4

Kinetic energy Local 
shear rate

Momentum

Vorticity Qλ2

Vorticity Q

Kinetic energy Local 
shear rate

λ2

Figure 5. 
Steady ABC 
flow. Rows 1 
and 3 visualize 
the original 
property fields; 
Rows 2 and 4 
visualize the 
advection 
filter’s 
corresponding 
results for 
T = 10. The 
result of the 
advection 
filter reveals 
the advection 
behavior of the 
corresponding 
properties 
under the flow 
field.
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we see that the two fields have strong inverse corre-
lations, although they aren’t linearly related. In the 
upper-left scatter plot in Figure 8, we see two types 
of mappings, which correspond to the two types 
of similarities between the momentum advection 
structure and the corresponding LCS.

In the remaining images in Figures 5–7, we can 
see again similarities between the advection struc-
tures and the LCSs. Although the relationships of 
these similarities are different, the local correlations 
between the patterns are clear and agree with the vi-

sual observations between the corresponding fields.
In Figure 9, (page 33) we apply our approach to the 

unsteady ABC field and compare it with the corre-
sponding classic FTLE fields. The first image in Rows 1 
and 2 visualize FTLE fields computed at time t = 0 and 
t = 8 with T = 8 (forwards) and T = −8 (backwards). 
The rest of Figure 9 depicts the corresponding results of 
the advection filter for the investigated properties, and 
these distributions uncover the transport structures.

As with steady ABC flow, the transport structures 
for unsteady ABC flow are similar to the LCS for all 
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Figure 6. 
Steady ABC 
flow: scatter 
plots of the 
advection-
filter-
convoluted 
fields and 
corresponding 
FTLE fields 
for different 
physical 
properties. 
For all graphs, 
T = 10. These 
images show 
that there 
are special 
relations 
between the 
finite advection 
structures and 
the LCSs.
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Figure 7. Steady 
ABC flow. The 
upper images 
visualize the 
fields for a 
selected area at 
slice z = 2. The 
lower images 
visualize scatter 
plots of these 
fields and the 
corresponding 
FTLE fields. 
For all images, 
T = 10. Here 
we explore 
a special 
correspondence 
between these 
results and the 
LCS in a certain 
area with a 
simple pattern.
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the investigated properties. It’s reasonable that in 
these cases, because the fluids are inviscid, no dis-
sipation occurs during flow advection. So, the fluid 
transport is well behaved, and structurally no dif-
ference exists between material transport, momen-
tum transport, or other property transports.

2D time-dependent cylinder flow
We also analyzed a 2D time-dependent version of 
the flow near a circular cylinder. The cylinder is 
placed at the origin, with a radius of 0.5. This is 
an incompressible laminar viscous flow.8 The data 
set’s spatial domain is [−9, 49.5] × [−11, 11], and 
it involves temporal periodic flow with one period 
[0, 32]. We focus on the area behind the cylin-
der ([0, 28] × [−3.5, 3.5]) and make a sampling of 
1,000 × 250. For our analyses, we set T = 5.

Figure 10a (page 34) shows a visualization of inte-
grated path lines starting at t = 0. Figure 10b shows 
a color coding of the corresponding FTLE field.

In Figure 11 (page 34), Rows 1, 3, and 5 depict 
the original local-property fields for six of the in-
vestigated properties. Rows 2, 4, and 6 depict the 
results of applying our advection filter along the 
path lines. The transport structures differ signifi-
cantly from the local structures. The low values of 
the filtered field indicate weak flow advections. The 

advection is strong in the center area behind the 
cylinder but weakens as the flow moves forward. 
The momentum and kinetic-energy transport 
structures in the filtered fields are similar to the 
LCSs near the circular cylinder, but for the other 
properties, the similarity isn’t so obvious. The sim-
ilarity decreases when the flow travels forward.

To analyze the similarities, we pick areas with 
strong similarity and make the scatter plots in Fig-
ure 12 (page 35). These scatter plots reveal again 
the clear mapping bundles for momentum and ki-
netic energy.

This flow is viscous, and momentum and energy 
dissipation exist during transport. This means that 
the transport behavior of momentum and kinetic-
energy advection is similar to that of material ad-
vection at the early stage. It also means that these 
property transport structures diffuse gradually as 
dissipation effects increase during flow transport. 
The momentum transport structures diffuse more 
slowly than the kinetic-energy transport structures.

Five-jet flow
Finally, we applied our approach on a 3D time-
dependent flow simulating five jets flying through 
a domain.9 The data set’s spatial domain is [0, 
3.81 m]3 and its temporal domain is [0, 0.06 s]. 
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Figure 8. 
Steady ABC 
flow. The 
upper images 
visualize the 
fields for a 
selected area at 
slice y = 2. The 
lower images 
visualize scatter 
plots of these 
fields and the 
corresponding 
FTLE fields. For 
all images, 	
T = 10. Here we 
explore again 
the special 
correspondences 
between these 
results and the 
LCS in an area 
with another 
simple pattern.
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The inflow velocity is 100 m/s. This data set is 
compressible-flow data for which FTLE fields aren’t 
available. We focus on the center area ([0.8 m, 
3.01 m]3), where the jets fly through, and make a 
sampling of 100 × 100 × 100.

We performed two analyses starting at t = 0.018 s 
and t = 0.024 s, with T = 0.024 s. Figure 13 (page 
36) shows the integrated path lines. In the top row 
in Figure 14 (page 36), we apply our approach on 
the density field. The left image visualizes the local 
density field; the middle and right images visualize 
the resulting fields of the advection filter for the 
two start times. In each resulting field, the high-
value area indicates the region with strong mass 
advection, which describes the trend of mass con-
centration. The low-value area indicates the region 
of weak mass advection and the possible separa-
tion of mass advection.

These mass transport structures present signifi-
cantly different information than the original lo-
cal property fields and depend little on integration 

time when it’s long enough to uncover the struc-
ture. The underlying mass transport might behave 
asymmetrically even in a symmetric local setting.1

In the bottom row of Figure 14, we apply our 
approach to the energy field. In each resulting field 
(the middle and right images), the high-value area 
indicates the energy concentration trend. The low-
value area indicates weak energy advection and 
the possible separation of that advection. These 
energy transport structures are inherently asym-
metric, although the local field is symmetric. They 
have some coherence and depend weakly on the 
integration time.

Unfortunately, we can’t achieve accuracy in 
both the static and dynamic information 

space. The observation of dynamic transport be-
haviors results in the reduction of static details or 
even information loss. Nevertheless, this dynamic 
transport information provides unique views of 
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Figure 9. 
Unsteady 
ABC flow. The 
first image in 
Rows 1 and 2 
visualizes the 
FTLE fields; the 
other images 
visualize the 
advection-filter-
convoluted 
results. Rows 1 
and 3 start at 
t = 0 with T = 
8; Rows 2 and 
4 start at t = 8 
with T = –8. We 
visualize again 
the LCS and the 
advection-filter-
convoluted 
results and see 
again special 
correspondences 
between these 
fields.
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transport and contributes significantly to our vi-
sual understanding of fluid dynamics. Also, we 
focus here only on the visual analysis of transport 
structures; theoretical analysis or proof is beyond 
this research’s scope.

For future research, we could modify the convo-

lution kernel to include other transport behaviors 
such as diffusion or radiation. Implementing the 
general transport filters directly from PDEs would 
also be worthwhile. Also, we could develop an al-
gorithm that accelerates convolution, for interac-
tive applications.�

2.5 50

0.25 0.7–0.2

(a)

(b)

Figure 10. 
2D dynamic 
cylinder flow: 
(a) path lines 
starting at 	
t = 0 with T = 
5 and (b) the 
corresponding 
FTLE field. 
These images 
visualize the 
path lines used 
for convolution; 
the LCSs 
revealed by the 
FTLE fields are 
an important 
transport 
structure that 
we use to 
compare our 
results.

Momentum1

2

3

4

5

6

Momentum

Kinetic energy

Kinetic energy

Local shear rate

Local shear rate

Vorticity

Vorticity

Acceleration

Acceleration

λ2

λ2

Figure 11. 
2D dynamic 
cylinder flow. 
Rows 1, 3, and 
5 visualize the 
local property 
fields; Rows 
2, 4, and 6 
visualize the 
corresponding 
advection-
filter-
convolution 
results. The 
result of the 
advection filter 
reveals again 
the advection 
behavior of the 
corresponding 
properties 
under the flow 
field.
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in a certain 
area and see 
relations 
between these 
fields.
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Figure 13. Path 
lines of five-jet 
flow starting 	
at (a) t = 0.018 
s and (b) t = 
0.024 s. The 
path lines 
visualized here 
are used for 
the convolution 
shown in Figure 
14.
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Figure 14. 
Five-jet flow: 
(a) the local 
density and 
energy fields, 
(b) the result of 
advection filter 
convolution 
starting at t = 
0.018 s, and 	
(c) the result of 
advection filter 
convolution 
starting at 	
t = 0.024 s. For 
(b) and (c), 	
T = 0.024 s The 
result of the 
advection filter 
reveals again 
the advection 
behavior of the 
corresponding 
properties 
under the 
flow field, 
which differs 
significantly 
from the 
properties’ 
corresponding 
static 
structures.


