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Abstract
We present an implicit method for globally computing all four classic types of integral surfaces – stream, path,
streak, and time surfaces – in 3D time-dependent vector fields. Our novel formulation is based on the represen-
tation of a time surface as implicit isosurface of a 3D scalar function advected by the flow field. The evolution of
a time surface is then given as an isovolume in 4D space-time spanned by a series of advected scalar functions.
Based on this, the other three integral surfaces are described as the intersection of two isovolumes derived from
different scalar functions. Our method uses a dense flow integration to compute integral surfaces globally in the
entire domain. This allows to change the seeding structure efficiently by simply defining new isovalues. We pro-
pose two rendering methods that exploit the implicit nature of our integral surfaces: 4D raycasting, and projection
into a 3D volume. Furthermore, we present a marching cubes inspired surface extraction method to convert the
implicit surface representation to an explicit triangle mesh. In contrast to previous approaches for implicit stream
surfaces, our method allows for multiple voxel intersections, covers all regions of the flow field, and provides full
control over the seeding line within the entire domain.

1. Introduction

Visualizing 3D flows using integral surfaces is common
practice these days. There are four types of such surfaces,
each of them suitable for a different scenario: stream and
path surfaces trace out a family of particle trajectories started
from a line in steady or unsteady flows, respectively. Streak
and time surfaces mimic the behavior of smoke or dye in
real-world experiments. Integral surfaces are an intuitive tool
to reveal vortex structures, laminar flow, regions with con-
vergent or divergent flow behavior, and many other flow fea-
tures. Integral surfaces often prove advantageous over a set
of integral lines, since surface shading, two-sided lighting,
and hidden surface removal provide better perceptual cues.

At the same time, their computation is involved. Attesting
to that fact are the large number of methods for computing
integral surfaces. In one way or another, most of these meth-
ods build upon Hultquist’s advancing front method [Hul92]
for stream and path surfaces. Stalling [Sta98] as well as
Peikert and Sadlo [PS09] developed extensions that work
better in the proximity of critical points. Scheuermann et
al. [SBM∗01] exploited the linearity in tetrahedral meshes
to create stream surfaces of high accuracy. Garth et al.
[GKT∗08] separated the integration and triangulation stages
to achieve well-conditioned meshes. Recently, also streak
and time surfaces have gained attention in the visualization
community [vFWTS08, BFTW09, KGJ09].

All these methods compute integral surfaces explicitly as
triangle or quad meshes. In other areas such as Geometric
Modeling, both explicit and implicit representations of sur-
faces are well-established. In fact, in Geometric Modeling

the relation between explicit and implicit representation is
well-researched. It is known [BKP∗10] that both represen-
tations have their own strengths and weaknesses, which are
complementary in the sense that the strength of one repre-
sentation is the weakness of the other, and vice versa. This
has led to an intensive research in conversion algorithms be-
tween explicit and implicit representations. A disadvantage
of explicit representations is that they come with a partic-
ular surface parametrization. It is challenging to ensure the
quality of the parametrization during different surface op-
erations. Contrary, implicit representations do not have this
problem: they are parametrization-free by definition. Fur-
thermore, implicit representations can usually live on simple
regular grids. Moreover, an explicit representation describes
one particular surface, while an implicit representation de-
scribes a whole family of surfaces at once.

Considering the points mentioned above, it does not come
as a surprise that implicit methods have been developed for
integral surfaces as well. The concept of implicit stream sur-
faces has been introduced by van Wijk [vW93] for steady
3D vector fields. The main idea is to advect a 2D scalar field
from the domain boundary into the 3D domain: a stream line
is traced backwards from each vertex of a uniform grid. If it
reaches the boundary, the corresponding scalar value is as-
signed to the vertex. Figure 1 gives an illustration. This de-
fines a 3D scalar field on a uniform grid whose isosurfaces
are a family of stream surfaces of the vector field.

However, the concept of implicit stream surfaces has not
been picked up by the Visualization community. We see the
reason for this in three serious drawbacks of the approach
in [vW93]:
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• Limited domain coverage
Stream lines may start and end inside the domain with-
out ever reaching the boundary.This occurs due to sources,
sinks, closed orbits, and vortex structures. The approach
of [vW93] fails to create stream surfaces in these regions.

• Limited voxel intersections
The isosurface of a trilinear scalar field intersects a voxel
only a few times (usually only once). A stream surface, on
the other hand, can intersect a voxel multiple times. This
is especially the case in the vicinity of vortex structures,
where the stream surface curls up and intersects a voxel
repeatedly.

• Limited control of the seeding line
The seeding line can only be chosen at the boundary, but
not placed freely within the 3D domain.

Furthermore, the approach of [vW93] cannot easily be ex-
tended to path and streak surfaces, since they self-intersect
in space, but an isosurface does not. In fact, the approach
of [vW93] is limited to steady flows.

In this paper, we introduce a novel concept for implicit
integral surfaces. In unsteady flows, it describes path, streak
and time surfaces. It can also be applied to steady flows,
where it yields implicit stream surfaces, but our algorithm
solves all the problems mentioned above.

Our method is based on the advection of 3D scalar func-
tions in the flow field (Section 2). This creates a 4D scalar
field and we will show that its isosurfaces describe evolv-
ing time surfaces of the underlying flow. Based on that, we
define implicit stream, path, and streak surfaces as intersec-
tions of two isovolumes in 4D (Section 3), for which we
provide three novel visualization techniques (Section 4). We
show applications of our method in Section 5.

To the best of our knowledge, we present the first ap-
proach that is able to handle path and streak surfaces implic-
itly. Furthermore, we are not aware of any other approach –
implicit or explicit – that provides a single framework for all
four integral surfaces at once.

Further Previous Implicit Approaches for Flow
Visualization

Implicit stream surfaces are used in further approaches.
Kenwright and Mallinson [KM92] compute stream lines as
the intersection of different stream surfaces. Cai and Heng
[CH97] define special implicit stream surfaces which aim to
depict the topology of an irrotational flow.

It shall be noted that van Wijk [vW93] and Westermann
et al. [WJE00] also provided a scheme to compute implicit
time surfaces in steady flows. To this end, each vertex of the
uniform grid is assigned the amount of integration time it
takes from the boundary to the vertex. Again, these methods
work only for steady flows.

For 3D unsteady flows, a number of methods have
been developed for dye advection [Wei04,CKSW08]. These
methods allow for path and streak volumes as well as time

Figure 1: Schematic sketch of van Wijk’s [vW93] advection
concept for implicit stream surfaces. A scalar value is as-
signed to a grid vertex based on where its stream line hits the
boundary. Stream lines may hit different boundaries, which
can be handled with some effort. But stream lines may also
never reach the boundary due to e.g. critical points or closed
orbits (blue ellipse). These regions cannot be handled by this
approach.

surfaces. A major difference to our approach is that we im-
plicitly define an infinitely large family of integral surfaces,
whereas dye advection methods aim at creating these struc-
tures for a small set of seeds.

2. Background

We consider a 3D time-dependent vector field v(x, t)
over the spatial domain D = [xmin,xmax] × [ymin,ymax] ×
[zmin,zmax] and the temporal domain T = [tmin, tmax]. We
write derived (3+1)-dimensional variables with a bar like p̄,
and derived (3+2)-dimensional variables with a double bar
like ¯̄q. Locations in space-time are denoted as x̄ = (x, t)T =
(x, t). All vectors throughout the paper are column vectors,
we often omit the explicit ()T notation.

For explanations and illustrative purposes, we will often
refer to the well-known time-dependent Double Gyre exam-
ple from Shadden [Sha05] – originally a 2D unsteady flow,
but here artificially blown up to a 3D unsteady flow to keep
the illustrations simple and comprehensible. We consider it
in the spatial domain [0,1]3 and the temporal domain [0,12].

2.1. Integral Lines and Integral Surfaces

There are four classic types of integral lines for time-
dependent vector fields: stream, path, streak and time lines.
Figure 2 accompanies the following explanations. Stream
and path lines are the trajectories of massless particles in
steady or unsteady vector fields, respectively. A streak line
is the locus of all particles passing through a specific location
over time. They can easily be visualized in real-world flow
experiments by means of dye injection. Note that stream,
path and streak lines coincide in steady vector fields.

This is in contrast to time lines, which differ from the
other ones in both steady and unsteady fields. In particu-
lar, they are not seeded at spatial point locations, but rather
at a line. A time line is then the collection of all particles
started from this line and integrated in the flow for some
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(a) Stream lines at different time steps visualized using LIC.

(b) Path line seeded
from red point.

(c) Streak line seeded
from red point.

(d) Time line seeded
from the red line.

Figure 2: All four classic types of integral lines in the exam-
ple vector field, shown in the xy-plane.

time. An analogon in the real world is an infinitely flexible
yarn or wire thrown into a river, which gets transported and
deformed by the flow.

There is another distinction between stream/path lines on
the one hand, and streak/time lines on the other hand: a
stream/path line denotes the trajectory of a single particle
over integration time, whereas a streak/time line gives the
location of several particles at a constant time step.

In this paper, we are concerned with integral surfaces.
They are simply families of the corresponding integral lines.
Stream, path and streak surfaces are seeded from a line,
while time surfaces are seeded from a surface.

We refer the interested reader for a more detailed analy-
sis of integral lines and surfaces to Weinkauf et al. [WT10,
WHT12].

2.2. Flow Maps and Scalar Field Advection
To describe implicit integral surfaces, we use the concept of
flow maps. The flow map φ : D×T ×ϒ→ D describes the
spatial location of a particle seeded at (x, t) and integrated
over a time interval τ ∈ ϒ, denoted as φτ

t (x) = φ(x, t,τ). In
other words, φ maps the start point of a particle integra-
tion to its end point. Many recent flow analysis methods
use this concept. For example, Finite Time Lyapunov Expo-
nents (FTLE) [Hal01] or Streak Line Vector Fields [WT10]
require the gradient of the flow map. Our work here requires
only the flow map itself, not its gradient.

Furthermore, our method builds on the concept of advec-
tion, which describes the transport of a substance or quantity
in a vector field – a 3D scalar function in our case. We use di-
rect Lagrangian back tracking, which integrates backwards
in time to find the original scalar value at the start of the
advection process. In more formal terms: given are a contin-
uous 3D scalar function as : D→ IR and a certain time step t.

seeding field as(x)
φ
−τ
t+τ(x)flow map

a(x, t,τi)

a(x, t,τi+1)

a(x, t,τi+2)

advected scalar field

Figure 3: Schematic sketch of our advection concept for im-
plicit integral surfaces. A scalar value is assigned to each
grid vertex based on the end point of a particle integration
over a time interval τ. This is done efficiently by looking up
the end point in the flow map φ. The advected scalar field de-
pends on τ and the start time of the integration. It is defined
everywhere except for particles that leave the domain.

We refer to as as the seeding field. We want to advect as(x)
in the flow field over time from t to t + τ. To achieve this,
we integrate backwards from t + τ to t. This can be done ef-
ficiently by looking up the end point of the integration in the
flow map. The advected scalar field a(x, t,τ) is then given as

a(x, t,τ) = as
(
φ
−τ
t+τ(x)

)
a : D×T ×ϒ→ IR. (1)

Note that for τ = 0, we have a(x, t,0) = as(x), i.e., the ad-
vected scalar field is the seeding field before any integration
took place. We will use one or more seeding fields later to
implicitly define seeding lines and surfaces. Figure 3 illus-
trates our advection scheme.

Implementation Details We compute the flow map as a
dense integration (4th-order Runge-Kutta) of the vector field
in a preprocessing step. It is sampled on an uniform grid with
three spatial dimensions x,y,z, a time dimension t, and a di-
mension for the time interval τ. In most our applications, we
choose a distinct time step such as tmin or tmax, which sig-
nificantly reduces the amount of space required for the flow
map. Furthermore, the flow map can be re-used for other vi-
sualization methods such as FTLE. The flow map is used di-
rectly to do the scalar advection. The seeding field can either
be given as an analytic expression, or as a sampled scalar
field on a grid.

3. Implicit Integral Surfaces
With our advection concept from (1) at hand, we can now
define all four types of integral surfaces implicitly.

3.1. Implicit Time Surfaces
For time surfaces, we just need a single seeding field as(x).
Any isosurface as(x) = a0 can serve as an implicitly given
seeding surface. Now we define a start time ts for the
advection and get the corresponding advected scalar field
a(x, ts,τ). This is a 4D scalar field where the τ-dimension

c© The Eurographics Association 2012.



T. Stöter & T. Weinkauf & H.-P. Seidel & H. Theisel / Implicit Integral Surfaces

(a) Implicit definition of the seed-
ing line as intersection of
two isosurfaces of the seeding
fields as,bs.

(b) Both scalar fields are advected with the flow field. This advects the
two isosurfaces and makes them time surfaces seeded from the sur-
faces in the first step. Note how their intersection line is advected
as well.

(c) Collecting all intersection
lines gives the path surface.
(Actual computations take
place in 4D, see text.)

Figure 4: Implicit path surfaces as the intersection of two evolving time surfaces. Seeding fields: as(x) = x and bs(x) = y.

describes the amount of time that has been passed since the
time surface was seeded at ts. The time surface of a certain
τi is then given as the isosurface of the 3D scalar field

a(x, ts,τi) = a0. (2)

We can observe the temporal evolution of the time surface
by slicing through the τ-dimension: τ0 ≤ τi ≤ τn. Figure 5a
shows that.

Note that we just defined an infinitely large family of time
surfaces: changing the isovalue a0 yields instantly a different
time surface with its entire evolution. See Figure 5b.

Mathematically, we can describe the evolution of a time
surface also as an isovolume in the 4D scalar field a(x, ts,τ).
This point of view might be helpful for the following sec-
tions.

3.2. Implicit Path Surfaces
A path surface is seeded from a line. We define the seed-
ing line implicitly using two seeding fields as(x) and bs(x)
together with two isovalues a0,b0. Then

[ as(x) = a0 , bs(x) = b0 ] (3)

gives a line structure as solution: it is the intersection of
the two isosurfaces (Figure 4a). This seeding line can be
changed instantly by choosing different isovalues a0,b0.
Shape and location of the seeding line depend on as(x) and
bs(x) as well as the chosen isovalues. This gives a large
amount of freedom for defining the seeding line and it can
be placed anywhere in the domain.

A path surface describes the advection of the seeding
line over time. We obtain it using the advected scalar fields
a(x, ts,τ) and b(x, ts,τ). The intersection of the two isovol-
umes in 4D

[ a(x, ts,τ) = a0 , b(x, ts,τ) = b0 ] (4)

is our implicit path surface. It is a 2D manifold in the 4D
domain D×ϒ. See Figure 5c.

This can also be seen less formally: the seeding line is the
intersection of two isosurfaces of two 3D scalar fields as(x)
and bs(x) (Figure 4a). This is before any integration took
place, i.e., τ0 = 0. Now we advect both scalar fields and ar-
rive at τ1. This advects the two isosurfaces and their inter-
section line as well (Figure 4b). Collecting the intersection
lines over all τi gives us the path surface (Figure 4c).

The connection to time surfaces is now straightforward:
an implicit path surface is obtained by repeatedly intersect-
ing two implicit time surfaces over the course of their evolu-
tion. In fact, the two isovolumes in (4) represent two evolv-
ing time surfaces.

Again, we just defined an infinitely large family of path
surfaces: changing the isovalues a0,b0 yields instantly a dif-
ferent path surface. See Figure 5d.

3.3. Implicit Stream Surfaces

The setup from the last section can directly be applied to
steady vector fields, where (4) describes an implicit stream
surface. Our method is different than van Wijk’s approach
[vW93] and solves the three shortcomings discussed in Sec-
tion 1:

• Full domain coverage
Our seeding fields as and bs are defined in the whole do-
main and not only at the boundary. Hence, we can cre-
ate stream surfaces in all regions, even in the presence of
closed orbits or vortex structures.

• Multiple voxel intersections
Stream surfaces intersecting a voxel multiple times are ac-
counted for by the additional τ-dimension.

• Full control of the seeding line
The seeding line can be placed anywhere in the domain,
not only at the boundary.

Figure 5e shows implicit stream surfaces obtained with our
approach.
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(a) Evolution of an implicit time
surface from its seeding sur-
face (red) over time (green,
blue).

(b) A different time surface evo-
lution is instantly obtained
by selecting a different iso-
value a0.

(c) Implicit path surface. Com-
pare to Figure 2b. See also
Figure 4.

(d) A different implicit path sur-
face is instantly obtained by
selecting different a0,b0.

(e) Implicit stream surfaces.
Compare to Figure 2a (left).

(f) Implicit streak surfaces. Com-
pare to Figure 2c.

Figure 5: All four types of implicit integral surfaces in the
example vector field. The time surfaces are given as tem-
poral evolution of an isosurface through a 4D scalar field.
Path, stream and streak surfaces are the intersections of two
isovolumes in 4D. Seeding fields: as(x) = x and bs(x) = y.

3.4. Implicit Streak Surfaces

A streak surface is the collection of all particles that went
through a common seeding line at different times during
their integration. More precisely, a streak surface is formed
at a time te by time lines that have been seeded from the same
spatial seeding line at different times.

We describe the seeding line implicitly as we did it for
path and stream surfaces: as an intersection of two isosur-
faces of two seeding fields, see (3). The difference is in how
we slice through the t,τ-dimensions of the advected scalar
fields a(x, t,τ) and b(x, t,τ) from (1). In contrast to path sur-
faces, a streak surface gives the location of particles at a con-
stant time step (Section 2.1). Denoting this time step as te,
we are interested in all particles seeded at ts = te − τ and

(a) Projection into a 3D voxel grid. (b) Raycasting in 4D.

Figure 6: Visualization methods that exploit the implicit na-
ture of the integral surfaces. Shown is a path surface from
the example vector field – same data as in Figure 5c.

integrated in the flow over the time interval τ. Hence, the
implicit streak surface is given as the solution of

[ a(x, te− τ,τ) = a0 , b(x, te− τ,τ) = b0 ] (5)

Again, this is an intersection of two isovolumes in 4D, which
gives a 2D manifold. As before, we just defined an infinitely
large family of streak surfaces: changing the isovalues a0,b0
yields instantly a different streak surface. See Figure 5f.

4. Visualization Methods

Implicit time surfaces are the isosurfaces of the 3D scalar
field (2). They can be visualized using any known volume
visualization method such as direct volume rendering or
Marching Cubes.

The other three implicit integral surfaces are the intersec-
tion of two isovolumes in 4D. We are not aware of any ex-
isting visualization method for this. In this section, we intro-
duce three new visualization methods for this kind of data.
The first two exploit the implicit nature of our integral sur-
faces: projection of the 4D field into a 3D volume (Section
4.1) and raycasting the 4D field directly (Section 4.2). The
third visualization option allows to extract the surface as an
explicit triangle mesh (Section 4.3).

For the sake of simplicity and to treat stream, path and
streak surfaces alike, we will use t in the following to refer
to the fourth dimension of the advected scalar fields. Hence,
we want to visualize the implicit surface defined by

[ a(x, t) = a0 , b(x, t) = b0 ]. (6)

We assume the two advected scalar fields a(x, t) and b(x, t)
to be piecewise quadro-linear fields sampled over an uniform
4D grid.

4.1. Projection into 3D

The probably simplest way to visualize the implicit surface
defined by (6) is to project it into 3D on a per-voxel basis. To
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do so, we initialize a 3D voxel grid with zeros. We call it pro-
jected grid and it has the same spatial dimensions as our 4D
grid. Next, we visit each 4D voxel and check whether both
isovolumes a(x, t) = a0 and b(x, t) = b0 run through this
voxel. Checking for the existence of an isovolume through
a 4D voxel is done by comparing the scalar values si at all
16 corners to the isovalue: there is no isovolume through
this voxel, if all si are larger than the isovalue, or if all si are
smaller than the isovalue. In all other cases, the isovolume
runs through this voxel.

If both isovolumes run through a 4D voxel (i, j,k,m), we
set the value “1” in the corresponding 3D voxel (i, j,k) of
the projected grid. Obviously, this is only a rough approx-
imation. The two isovolumes running through a 4D voxel
may actually not intersect, i.e., our condition here is only
necessary, but not sufficient. Furthermore, we loose subgrid
accuracy due to the projection. However, the projection is
very fast to compute since no interpolation takes place, and
it is also very memory efficient since the projected grid just
requires a bit field. Any volume visualization method can be
used to render the projected grid. Figure 6a shows an exam-
ple.

While this is not our visualization of choice, it does pro-
vide a quick preview. Furthermore, the projected grid serves
as an acceleration data structure for the following two visu-
alization methods.

4.2. Raycasting Implicit Surfaces in 4D
Consider a 4D unit cube [0,1]4 with the two quadro-linearly
interpolated scalar fields a,b. Let a ray

x(s) = (1− s) x0 + s x1 (7)

intersect the 3D spatial unit cube, where x0 and x1 are the
entry and exit points, respectively. Then we search for our
implicit surface (6) along the ray, i.e., we have to solve

[ a(x(s), t) = a0 , b(x(s), t) = b0 ] (8)

for the two unknowns (s, t). Both equations in (8) are cubic
in s, but only linear in t. Each of them can be solved for t,
inserting this into the other one gives a sixth degree poly-
nomial in s. The zeros of this polynomial are the intersec-
tions of the ray with our implicit surface. For each 3D voxel
(i, j,k) intersected by the ray, we have to compute (8) for all
corresponding 4D voxels (i, j,k,m = 0 . . .mmax). For proper
Phong lighting, we compute the normal of the implicit sur-
face using the partial derivatives of the scalar fields a,b:

n(x, t) =

axbt −atbx
aybt −atby
azbt −atbz

 . (9)

Implementation Details We send a ray from the camera
through each pixel of the image plane into the 3D scene.
If it hits the 3D bounding box of our data set, we traverse
the ray through the volume, thereby visiting each 3D voxel
intersected by the ray. This is done from front to back. Upon

visiting a 3D voxel, we first look up its value in the projected
grid (previous section). If the voxel is not set, then the im-
plicit surface cannot go through it. This is a very fast test
and it speeds up the raycasting a lot. If the voxel is set, how-
ever, we solve (8) for all corresponding 4D voxels through
which the surface may run. In fact, we keep a list of such 4D
voxels for each 3D voxel. It is obtained while computing the
projected grid.

Solving (8) is straightforward with any standard polyno-
mial root finder. We use the well-known Jenkins-Traub al-
gorithm [Jen75] (the variation for real coefficients), which
gave us stable results in all our examples and test cases.

Upon finding an intersection between ray and implicit sur-
face, we compute the normal of the surface at this position
using (9), which serves as input for the Phong lighting. Fur-
thermore, this is also the moment in the algorithm, when any
kind of color- or alpha-mapping should take place. For ex-
ample, one could map the time-component as a color onto
the surface. Finally, after traversing through the entire vol-
ume, we synthesize the final pixel color by alpha-blending
all found intersections from back to front. Figure 6b shows
a semi-transparent example with two-sided lighting.

4.3. Conversion to an Explicit Surface Representation

To convert our implicit surfaces to explicit triangle meshes,
we follow the basic principles of the Marching Cubes algo-
rithm [LC87]: it computes the intersection points of an im-
plicit isosurface with the edges of a 3D voxel. The triangu-
lation of these intersection points yields the explicit surface
representation. Transferring this to 4D, we need to search
for the intersection points of our implicit surface with the
boundary faces of a 4D voxel.

We think of a 4D voxel as time-dependent 3D voxel and
describe it as unit hypercube [0,1]4 as shown in Figure 7. It
has 24 boundary faces, each of them lies in either the xy-,
xz-, yz-, xt-, yt-, or zt−plane, and the two remaining compo-
nents are fixed to either 0 or 1. In Figure 7 for example, the
yz-plane for (x = 0, t = 0) is highlighted in green, and the
xt-plane for (y = 1,z = 1) is highlighted in red. Recall that
Equation (6) describes the intersection of two time surfaces
changing over time. This intersection gives a time-dependent
3D line structure. For a constant time, this line intersects a
3D voxel in two points and slices through it with increasing
time. This evolution is illustrated in Figure 8.

The quadro-linear scalar fields a(x, t) and b(x, t) reduce to
bi-linear fields when restricted to a boundary face of the 4D
voxel, such that a(x, t) = a0 and b(x, t) = b0 describe two
isolines. This simplifies (6) to a quadratic equation, which
now describes the intersection of the two isolines on the
boundary face. Solving this yields up to two isoline inter-
sections per boundary face. We do this for all 24 boundary
faces to find all points where our implicit surface intersects
the 4D voxel.

Next, we search for a 3D triangulation of these points. We
consider them as 3D time-dependent points on the faces of a
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Figure 7: 4D hypercube with
highlighted boundary faces.

t ≥ 0 0 < t < 1 t ≤ 1

Figure 8: Time-varying 3D line structure intersecting a 3D voxel over time, and correspond-
ing triangulation.

(a) Implicit stream surfaces. (b) Seeding fields.

Figure 10: Implicit stream surfaces and their seeding fields
in the steady Benzene data set.

3D voxel. Note that all points found in the xt-, yt-, zt-planes
live on the edges of the 3D voxel, while the ones found in
the xy-, xz-, yz-planes live on its faces. Now we sort all the
points in time and find the shortest circuit on the faces of the
3D voxel, as illustrated in Figure 8. Then we create triangle
fans along this circuit to get the desired triangle mesh.

5. Applications
All our applications have been computed on a laptop with
an Intel Xeon E31225 (3.1GHz) CPU and 8 GB RAM. This
CPU has four cores and we used OpenMP to parallelize the
computations.

Figure 9 shows the 3D unsteady flow around a confined
square cylinder. This is a direct numerical Navier Stokes
simulation by Camarri et al. [CSBI05]. The implicit path
surface of this flow (Figure 9a) has been computed in for-
ward and backward direction for τ =±30, starting from the
depicted green seeding line at t = 130 using the seeding
fields as(x) = x and bs(x) = y with the isovalues a0 = 12 and
b0 = 1. This is near the end of the flow simulation, where the
flow is highly unsteady. Computing the flow map for this ex-
ample took about 3 hours. Once this has been done, advect-
ing the seeding fields is rather fast and took under a minute.
In Figure 9a we rendered the path surface using an explicit
triangle mesh. Converting the implicit representation took
about 3 minutes.

Figure 9b shows implicit time surfaces of this flow. Ren-
dering the time surfaces is very fast since it just involves
computing isosurfaces of a 3D scalar field. We re-used one

of the advected scalar fields from the path surface: this ex-
emplifies that our approach is not limited to a certain type of
integral surfaces. While it is expensive to compute the flow
map, this is somewhat made up for by being able to switch
between different integral surfaces at will.

An example for our 4D raycaster is shown in Figure
9c, where a streak surface in the flow behind the square
cylinder is shown. We needed to downsample the advected
scalar fields drastically for this example, since our proof-of-
concept raycasting implementation is not yet ready for prime
time. In fact, it runs entirely on the CPU. We measured its
performance for the shown streak surface and found that it
traces 10k rays per second in a single thread, which makes
about 40k rays per second with OpenMP support on our
hardware.

Figure 10 visualizes the electrostatic field around a ben-
zene molecule. It is a steady 3D vector field that exhibits
184 critical points. We chose this example to show that
our method can deal with topologically complex 3D vec-
tor fields. Figure 10a shows four implicit stream surfaces.
They have been computed using the same advected scalar
fields, but with different isovalues a0,b0. Figure 10b shows
the seeding fields as(x) = x2 + y2 and bs(x) = z2 as well as
the intersections of their isosurfaces, which serve as seed-
ing lines. Note that the two blue stream surfaces have been
computed in one run: the chosen seeding field bs allows to
create two planes that intersect the cylindrical seeding field
as. Similarly for the two red stream surfaces.

6. Conclusions and Future Work

We presented a novel method for generating and visualizing
implicit integral surfaces in 3D time-dependent vector fields.
Our implicit definition of integral surfaces provides the first
single framework to create all four classic types of integral
surfaces. Moreover, our approach offers a whole family of
seeding structures and their corresponding integral surfaces
at once. For visualizing our implicit integral surfaces, we de-
scribed three approaches, two of which also exploit the im-
plicit nature of our surfaces. We demonstrated our method
for one steady and one unsteady example vector field, show-
ing the four classic types of integral surfaces.

The method presented here requires a large amount of
processing power due to the dense flow integration for pre-
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(a) Implicit path surface in forward (red) and back-
ward (blue) direction.

(b) Implicit time surfaces (forward) from
t = 130 with as(x) = x and a0 = 5.

(c) Implicit streak surface rendered using the
4D raycasting algorithm.

Figure 9: Implicit integral surfaces in the square cylinder data set near the highly unsteady end of the flow simulation.

computing the flow map. In terms of computational ef-
ficiency, our method cannot compete with explicit meth-
ods. However, the computation of the advected scalar fields
yields much more information than a single integral surface.
In fact, the advected scalar fields describe a family of sur-
faces from which the user can choose by changing the iso-
values. For unsteady flows, this goes even one step further:
two advected scalar fields suffice to describe path, streak,
and time surfaces at the same time. This has been shown for
the square cylinder data set in Figures 9c and 9.

Our method samples the domain to describe integral sur-
faces. Hence, sampling artifacts are unavoidable. Explicit
methods do not suffer from that. At the same time, explicit
methods require a careful implementation, since they need
to take care of the underlying surface parametrization that
is intrinsic to explicit methods. Our method, on the other
hand, is straightforward to implement: it basically consists
of particle integration, and root finding for the subsequent
visualization. As such, it lends itself to massively parallel
architectures. All operations can be carried out without any
communication between parallel threads. For explicit meth-
ods, this is not necessarily the case: while some parts of these
algorithms can be run in parallel, there is always a need for
synchronization between threads; especially when it comes
to taking care of the surface parametrization, e.g., when re-
fining or coarsening the front line. Since hardware architec-
tures of the future will rather be more parallel than they are
already today, it seems reasonable to assume that massively
parallel methods such as ours will benefit more from these
developments.
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