
Grid-Independent Detection of Closed Stream Lines in 2D Vector Fields

Holger Theisel1 Tino Weinkauf2 Hans-Christian Hege2 Hans-Peter Seidel1

1 MPI Informatik, Saarbr̈ucken, Germany –{theisel,hpseidel}@mpi-sb.mpg.de
2 Zuse Institute Berlin (ZIB), Germany –{weinkauf,hege}@zib.de

Abstract

We present a new approach to detecting isolated
closed stream lines in 2D vector fields. This ap-
proach is based on the idea of transforming the
2D vector field into an appropriate 3D vector field
such that detecting closed stream lines in 2D is
equivalent to intersecting certain stream surfaces in
3D. Contrary to pre-existing methods, our approach
does not rely on any underlying grid structure of the
vector field. We demonstrate the applicability and
stability by applying it to a test data set.

1 Introduction

Topological methods are standard tools for the visu-
alization of 2D vector fields. The main idea behind
them is to segment the flow into areas of similar
flow behavior by extracting critical points and sep-
aratrices. Visualizing the topological skeleton is at-
tractive since even a complex flow behavior can be
represented by a limited number of graphical prim-
itives.

After the introduction of topological methods to
the visualization community in [6], an intensive
research has been done in this field. [12] treat
higher order critical points, i.e. critical points with
a possibly vanishing Jacobian. In [3], separatri-
ces starting from boundary switch points are dis-
cussed. Topological methods are used to simplify
[3, 4, 20, 21], smooth [26], compress [10] and de-
sign [15] vector fields. In [9, 2, 17], topology-based
2D vector field metrics are defined. The topologi-
cal behavior of time-dependent vector fields is an-
alyzed in [22, 23, 16, 19]. Topological features
of 3D vector fields are extracted and visualized in
[7, 5, 11, 18, 24, 25].

Most topological features of a 2D vector field can
be obtained by a local analysis. For example, to de-
cide whether a pointx is a critical point or boundary
switch point in a vector fieldv, the consideration of

Figure 1: Example vector field with an isolated
closed stream line.

v atx and its neighborhood is sufficient. Since crit-
ical and boundary switch points also act as starting
points of certain separatrices, they can also be ob-
tained by a local analysis. However, there are also
topological features which can only be detected by
a global analysis ofv. Here we treat isolated closed
stream lines in a vector field. They are important
topological features because they separate a vector
field into two areas of different flow behavior: in-
side and outside the closed stream line. Figure 1
shows an example of a simple vector field with an
isolated closed stream line. Note that in this ex-
ample stream lines close to the closed stream line
converge to it without actually reaching it.

A first approach to detecting closed stream lines
was given in [27] which uses the underlying grid
structure of a piecewise linear vector field: each
grid cell is analyzed concerning the re-entering be-
havior of the stream lines starting at its boundaries.
Based on this approach, [28] tracks closed stream
lines over time by applying a contouring & connect-
ing - like approach: at each time step closed stream
lines are detected independently of each other, then
the corresponding lines in adjacent time steps are
connected. Another approach to tracking closed

VMV 2004 Stanford, USA, November 16–18, 2004

stream lines in 2D time dependent vector fields was
presented in [19]. There, a new closed stream line is
detected close (in space-time) to an already known
one. This process starts at Hopf bifurcations and
periodic blue sky bifurcations. However, closed
stream lines may also occur in the first time step
of the time-dependent data set, and may move over
time until the last time step without undergoing any
bifurcation. Because of this, it is also necessary to
have a stable algorithm which detects closed stream
lines for 2D (steady) vector fields.

In this paper we present an alternative approach
for detecting closed stream lines. This approach
does not rely on any underlying grid and is therefore
more general than pre-existing solutions. The main
idea is to transform a 2D vector fieldv into an ap-
propriate 3D vector fieldw such that the search for
closed stream lines inv is equivalent to the search
of intersection curves of certain stream surfaces in
w. This approach is motivated by the fact that re-
cently robust algorithms to intersect stream surfaces
have been proposed ([18]) and applied to extract a
number of topological features of 3D ([24]) and 2D
time dependent ([19]) vector fields.

The rest of the paper organized as follows: sec-
tion 2 recollects an approach to intersecting stream
surfaces in 3D vector fields. Section 3 describes the
core of our approach: how to get a 3D vector field
w from v, and how to find seeding lines inw such
that closed stream lines inv correspond to inter-
secting stream surfaces inw. Section 4 describes
how to find a system of seeding lines inw such that
all closed stream lines inv are guaranteed to be de-
tected. Section 5 presents applications of our algo-
rithm while conclusions are drawn in section 6.

2 Intersecting Stream Surfaces

Given a 3D vector fieldw, a stream surface is
uniquely defined by specifying a seeding linec.
Then the stream surface can be obtained by ap-
plying a numerical stream surface integration start-
ing in c either in forward or in backward direction
([8, 13]). For intersecting stream surfaces, the prob-
lem states as follows: givenw and two stream sur-
faces defined by the seeding curvesc1 (in forward
direction) andc2 (in backward direction), their in-
tersection is in general a finite number of stream

(a) Seeding linesc1

andc2.
(b) Stream surfaces

starting fromc1

(forwards) and
c2 (backwards).

(c) Intersection
curve is a stream
line.

Figure 2: Intersecting stream surfaces in a 3D vec-
tor field.

lines1 ([18]). Each of them starts atc1 and ends
(by applying a forward integration) inc2. Figure 2
gives an illustration.

[18] describes a numerical stream surface inter-
section approach in the context of particular stream
surfaces – namely separation surfaces starting at 3D
saddle points. Fortunately, this algorithm can di-
rectly be extended to extract intersections of general
stream surfaces. So we describe the main idea here
and refer to [18] for details.

To find the intersection between a stream sur-
faces in forward integration and a stream surface
in backward integration, we integrate both stream
surfaces simultaneously until an intersection point
p1 is found. After refining this point (see [18]), a
stream line fromp1 is integrated both backward and
forward until it reachesc1 andc2 respectively. The
algorithm stops if one of the stream surfaces com-
pletely leaves the domain ofw, if a (user defined)
maximal number of intersection curves is found,
or if a (user-defined) maximal number of numeri-
cal stream surface integration steps have been per-
formed.

To find the intersection of stream surfaces, we
only have to consider the evolving front of the cur-
rently integrated stream surface. This front is rep-
resented as a triangular strip. After each integration
step, the front strip is checked for intersections with
the front strip of the other stream surface. Figure 3
illustrates this.

1Here we do not consider the case of partially collapsing stream
surfaces.

666

(a) Front ribbons shortly
before an intersection is
found.

(b) Intersection is found.

Figure 3: Intersecting stream surfaces (from [18]).

3 The Algorithm

In this section we describe the main ingredients of
our approach. Given a 2D vector field

v(x, y) =

(

u(x, y)
v(x, y)

)

and a line

ℓ(t) =

(

x(t)
y(t)

)

in the domain ofv, we want to find all closed stream
lines inv which crossℓ. To do so, we transformv
into a 3D vector fieldw, andℓ into a 3D seeding
curvec in the following way:

w(x, y, z) =





u(x, y)
v(x, y)

0



 , c(t) =





x(t)
y(t)

t



 .

Note thatc is strictly monotonous inz-direction:
for eachz-value there is only one point onc. Then
we apply the stream surface intersection described
in section 2 inw with the seeding linesc1 = c2 =
c(t). This way, each detected intersection curve in
w corresponds to a closed stream line inv. Since
a line inw always consists of points with the same
z-value, simply an omitting of thez-values of the
found intersection curves inw yields the closed
stream lines inv. Figure 4 illustrates this algorithm.

Note that the algorithm detects the same closed
stream line more than one time if it crossesℓ more
than one time. Figure 5 shows an example. The
removal of multiple detected closed stream lines in
w can be done by projecting them onto the plane
z = 0 and comparing their Hausdorff distance: if it
is under a certain small threshold, one of the closed
curves is deleted.

(a)v and lineℓ. (b) w andc.

(c) Stream surfaces started
from c in both forward and
backward direction.

(d) Detected intersection curve
is closed stream line.

Figure 4: Detecting closed stream lines crossing a
line ℓ.

(a)v and lineℓ. (b) w andc.

(c) Intersecting stream surfaces
and closed stream line
detected two times.

(d) Projection ontoz = 0.
One closed stream line
remains.

Figure 5: Detection and projection of a closed
stream line crossing a lineℓ twice.

666

4 Choosing the Seeding Lines

Up to now we are able to detect all closed stream
lines which cross a certain given lineℓ. What re-
mains is to chooseℓ in such a way thatall closed
stream lines inv are guaranteed to be detected. To
do so, we use the following

Theorem 1 Given a 2D vector fieldv, inside each
isolated closed stream line there must be at least
one critical point with index+1, i.e. a source, sink
or center.

This theorem follows directly from the index theo-
rem of 2D vector fields [1]: considering the area of
v inside a closed stream line, this area has a global
index of+1. Hence, at least one critical point with
the index+1 must be contained within the area in-
side the closed stream line.

Because of theorem 1, a lineℓ with the following
conditions detects all closed stream lines ofv:

• All critical points of v with an index+1 are
on ℓ.

• Either the start or end point ofℓ is on the
boundary of the domain ofv.

Here we constructℓ as a polygon in the following
way:

1. Detect all critical pointsp1,p2, ...,pn of v

with an index+1.
2. Detect the pointp0 on the boundary of the do-

main ofv which is closest top1.
3. The polygon(p0,p1, ...,pn) is the lineℓ (Fig-

ure 6a).
Note that ℓ may have self-intersections and a

rather strange shape, due to the fact that the ordering
of the detected critical points is arbitrary. However,
the 3D seeding curvec derived fromℓ (see section
3) does not have self-intersections.

As the integration at and near the critical points
is numerically unstable, these small areas must be
excluded (Figures 6a-b). To achieve this, we split
the polygonℓ into its line segments(pi,pi+1). Ev-
eryp coinciding with a critical point is moved away
from it by a small amountε along the line segment
vectorsi = pi+1 − pi. This is done for every seg-
ment separately. Thus, we yield the new segments:

(

pi + ε ·
si

|si|
, pi+1 − ε ·

si

|si|

)

.

There are two ways to transform the line seg-
ments into 3D seeding curves:

(a) Polygonℓ connecting all
sources/sinks and one
boundary point.

(b) Polygonℓ splitted around
the critical points.

(c) Seeding curves: Transformation according to location onℓ.

(d) Seeding curves: Transformation according to location on line
segment.

Figure 6: Finding seeding lines to detect all closed
stream lines ofv.

1. Transform each point according to its location
t on ℓ. This yields seeding curves with non-
overlappingz-value ranges. Thus, the algo-
rithm of section 3 can be applied in a parallel
manner. (Figure 6c)

666

2. Transform each point according to its location
t on the line segment itself. The resulting seed-
ing curves have overlappingz-value ranges.
Therefore, the algorithm needs to be applied in
a serial manner, i.e. each curve must be treated
separately. (Figure 6d)

We found the latter type of transformation to be
more robust, as the seedings curves have a fixedz-
value range and a guaranteed minimal length. In
this case, choosing a fixed resolution for the stream
surface integration of all curves yields to robust re-
sults for our test data sets. Though a different reso-
lution for each curve depending on the line segment
length might speed up the computation in some ar-
eas.

5 Applications

Figures 6 and 7 visualize a random 2D data set de-
fined on a20 × 16 grid. Random vector fields are
useful tools for a proof-of-concept of topological
methods, since they contain a maximal amount of
topological information.

We detected 5 saddle points, 3 sinks and 2
sources in this data set. They can be distinguished in
the color plot of figure 7c: saddles are yellow, sinks
are blue and sources are red. Sources and sinks have
an index of+1. How the polygonℓ and the corre-
sponding seeding curves are constructed from this
information can be seen in figure 6. Note, that here
the excluded area around the critical points has been
enlarged for demonstration purposes only. For the
calculations presented in figure 7 the excluded area
is an order of magnitude smaller. This difference
can be seen by comparing figures 6d and 7d.

Figures 7a-b show the stream surfaces emanating
from the seeding curves. As discussed in section 4
only the two surfaces coming from the same seed-
ing curve are tested for intersection against each
other.

Figure 7d shows in conjunction with figure 7c
that our algorithm found a stream surface intersec-
tion at all places where a seeding curve crosses a
closed stream line. Thus, some of the closed stream
lines are detected multiple times. As explained in
section 3 this can be dealt with by projecting them
onto the planez = 0 and comparing their Haus-
dorff distance. This reduces the number of 9 found
intersections to 5 unique closed stream lines – as it
can be seen in figure 7c. Our algorithm needed ap-

proximately 90 seconds to extract the closed stream
lines (Pentium 4, 1.7GHz).

One of the closed stream lines in the upper left
corner of figure 7c is very close to a critical point
(a source). Figure 7e shows a closeup of that area.
This exemplifies that our algorithm works reliable
even in a rather small distance away from a critical
point.

6 Conclusions

We have introduced a new approach to detecting
closed stream lines in 2D vector fields. Based on
the fact that this detection is equivalent to intersect-
ing certain stream surfaces in appropriate 3D vector
fields, we were able to apply a previously developed
numerical stream surface intersection algorithm for
our purposes. The resulting approach does not de-
pend on any underlying grid structure of the vector
field.

In particular, our approach fills a gap in the
closed stream line tracking approach for 2D time-
dependent vector fields described in [19]. There the
tracking started at Hopf and periodic blue sky bi-
furcations. Since closed stream lines may already
be present in the first time step, a stable detection
approach for a particular time step is necessary to
guarantee to track all closed stream lines.

Future research clearly goes into the direction
of detecting closed structures in 3D vector fields.
The extension of our approach to 3D vector fields
seems to be possible but is not straightforward,
since in this case 3D stream-hypersurfaces of 4D
vector fields have to be intersected.

Acknowledgments

We thank Bernd R. Noack, Ivanka Pelivan and Jan
Sahner for the fruitful discussions.

All visualizations in this paper have been cre-
ated using AMIRA – a system for advanced
3D visualization and volume modeling [14] (see
http://amira.zib.de/).

666

(a) Intersecting stream surfaces of all 5 seeding curves shown at once. They must be treated separately as they
have overlappingz-value ranges.

(b) Each curve
treated separately.

(c) Projection ontoz = 0: 5 closed stream lines remain.

(d) 9 detected intersection curves.

(e) Closeup of the upper left corner.

Figure 7: Test data set: 5 closed stream lines have been detected.

666

References

[1] D. Asimov. Notes on the topology of vec-
tor fields and flows. Technical report, NASA
Ames Research Center, 1993. RNR-93-003.

[2] R. Batra, K. Kling, and L. Hesselink. Topol-
ogy based vector field comparison using graph
methods. InProc. IEEE Visualization ’99,
Late Breaking Hot Topics, pages 25–28, 1999.

[3] W. de Leeuw and R. van Liere. Collapsing
flow topology using area metrics. InProc.
IEEE Visualization ’99, pages 149–354, 1999.

[4] W. de Leeuw and R. van Liere. Visualization
of global flow structures using multiple levels
of topology. InData Visualization 1999. Proc.
VisSym 99, pages 45–52, 1999.

[5] A. Globus, C. Levit, and T. Lasinski. A
tool for visualizing the topology of three-
dimensional vector fields. InProc. IEEE Vi-
sualization ’91, pages 33–40, 1991.

[6] J. Helman and L. Hesselink. Representation
and display of vector field topology in fluid
flow data sets.IEEE Computer, 22(8):27–36,
August 1989.

[7] J. Helman and L. Hesselink. Visualizing vec-
tor field topology in fluid flows. IEEE Com-
puter Graphics and Applications, 11:36–46,
May 1991.

[8] J. Hultquist. Constructing stream surfaces in
steady 3D vector fields. InProc. IEEE Visual-
ization ’92, pages 171–177, 1992.

[9] Y. Lavin, R.K. Batra, and L. Hesselink. Fea-
ture comparisons of vector fields using earth
mover’s distance. InProc. IEEE Visualization
’98, pages 103–109, 1998.

[10] S.K. Lodha, J.C. Renteria, and K.M. Roskin.
Topology preserving compression of 2D vec-
tor fields. InProc. IEEE Visualization 2000,
pages 343–350, 2000.

[11] K. Mahrous, J. Bennett, B. Hamann, and
K. Joy. Improving topological segmentation
of three-dimensional vector fields. InData Vi-
sualization 2003. Proc. VisSym 03, pages 203–
212, 2003.

[12] G. Scheuermann, H. Krüger, M. Menzel, and
A. Rockwood. Visualizing non-linear vector
field topology. IEEE Transactions on Visu-
alization and Computer Graphics, 4(2):109–
116, 1998.

[13] D. Stalling.Fast Texture-based Algorithms for

Vector Field Visualization. PhD thesis, FU
Berlin, Department of Mathematics and Com-
puter Science, 1998.

[14] D. Stalling, H.-C. Hege, and M. Westerhoff.
Amira – a highly interactive system for vi-
sual data analysis. In Christopher R. Johnson
and Charles D. Hansen, editors,Visualization
Handbook. Academic Press, 2004.

[15] H. Theisel. Designing 2D vector fields of ar-
bitrary topology. Computer Graphics Forum
(Eurographics 2002), 21(3):595–604, 2002.

[16] H. Theisel and H.-P. Seidel. Feature flow
fields. InData Visualization 2003. Proc. Vis-
Sym 03, pages 141–148, 2003.

[17] H. Theisel and T. Weinkauf. Vector field met-
rics based on distance measures of first order
critical points. InJournal of WSCG, volume
10:3, pages 121–128, 2002.

[18] H. Theisel, T. Weinkauf, H.-C. Hege, and H.-
P. Seidel. Saddle connectors - an approach to
visualizing the topological skeleton of com-
plex 3D vector fields. InProc. IEEE Visual-
ization 2003, pages 225–232, 2003.

[19] H. Theisel, T. Weinkauf, H.-C. Hege, and H.-
P. Seidel. Stream line and path line oriented
topology for 2D time-dependent vector fields.
In Proc. IEEE Visualization 2004, 2004.

[20] X. Tricoche, G. Scheuermann, and H. Hagen.
A topology simplification method for 2D vec-
tor fields. InProc. IEEE Visualization 2000,
pages 359–366, 2000.

[21] X. Tricoche, G. Scheuermann, and H. Hagen.
Continuous topology simplification of planar
vector fields. InProc. Visualization 01, pages
159 – 166, 2001.

[22] X. Tricoche, G. Scheuermann, and H.Hagen.
Topology-based visualization of time-
dependent 2D vector fields. InData
Visualization 2001. Proc. VisSym 01, pages
117–126, 2001.

[23] X. Tricoche, T. Wischgoll, G. Scheuermann,
and H.Hagen. Topology tracking for the visu-
alization of time-dependent two-dimensional
flows. Computers & Graphics, 26:249–257,
2002.

[24] T. Weinkauf, H. Theisel, H.-C. Hege, and H.-
P. Seidel. Boundary switch connectors for
topological visualization of complex 3d vec-
tor fields. InData Visualization 2004. Proc.
VisSym 04, 2004.

666

[25] T. Weinkauf, H. Theisel, H.-C. Hege, and H.-
P. Seidel. Topological construction and visual-
ization of higher order 3D vector fields.Com-
puter Graphics Forum (Eurographics 2004),
23(3), 2004.

[26] R. Westermann, C. Johnson, and T. Ertl.
Topology-preserving smoothing of vector
fields. IEEE Transactions on Visualization
and Computer Graphics, 7(3):222–229, 2001.

[27] T. Wischgoll and G. Scheuermann. Detection
and visualization of closed streamlines in pla-
nar flows.IEEE Transactions on Visualization
and Computer Graphics, 7(2):165–172, 2001.

[28] T. Wischgoll, G. Scheuermann, and H. Ha-
gen. Tracking closed stream lines in time-
dependent planar flows. InProc. Vision, Mod-
eling and Visualization 2001, pages 447–454,
2001.

666

