
Extraction of Parallel Vector Surfaces in 3D Time-Dependent Fields
and Application to Vortex Core Line Tracking

Holger Theisel ∗

MPI Saarbrücken
Jan Sahner †

ZIB Berlin
Tino Weinkauf ‡

ZIB Berlin
Hans-Christian Hege §

ZIB Berlin
Hans-Peter Seidel ¶

MPI Saarbrücken

Figure 1: Flow behind a circular cylinder. Shown are vortex core lines in a certain frame of reference. Their evolution over time is tracked by
our algorithm and depicted using transparent surfaces. Red color encodes the past while gray shows the future.

ABSTRACT

We introduce an approach to tracking vortex core lines in time-
dependent 3D flow fields which are defined by the parallel vectors
approach. They build surface structures in the 4D space-time do-
main. To extract them, we introduce two 4D vector fields which
act as feature flow fields, i.e., their integration gives the vortex core
structures. As part of this approach, we extract and classify local bi-
furcations of vortex core lines in space-time. Based on a 4D stream
surface integration, we provide an algorithm to extract the complete
vortex core structure. We apply our technique to a number of test
data sets.

CR Categories: I.3.3 [Computer Graphics]: Line and Curve Gen-
eration I.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism

Keywords: flow visualization, vortex core lines, bifurcations

1 INTRODUCTION

Flow fields play a vital role in many research areas. Examples are
burning chambers, turbomachinery and aircraft design in industry
as well as blood flow in medicine. As the resolution of numerical
simulations as well as experimental measurements like PIV have
evolved significantly in the last years, the challenge of understand-
ing the intricate flow structures within their massive result data sets
has made automatic feature extraction schemes necessary.

Among the features of interest, vortices are the most prominent.
They play a major role in many research areas due to their wanted
or unwanted effects on the flow. In turbomachinery design, vortices
reduce efficiency, whereas in burning chambers, vortices have to be
controlled to achieve optimal mixing of oxygen and fuel. In aircraft
design, vortices can both increase and decrease lift.

∗e-mail: theisel@mpi-inf.mpg.de
†e-mail: sahner@zib.de
‡e-mail: weinkauf@zib.de
§e-mail: hege@zib.de
¶e-mail: hpseidel@mpi-inf.mpg.de

Thorough overviews of algorithms for the treatment of vortical
structures in time-independent flow fields can be found in the liter-
ature [13, 12]. We give a short introduction here. Vortex detection
schemes can be classified in two major categories:

• Vortex region detection is based on scalar vortex region quan-
tities that are used to define a vortex as a spatial region where
the quantity exhibits a certain value range. Examples are re-
gions of high magnitude of vorticity or negative λ2-criterion
[8]. Isosurfaces or volume rendering are common approaches
for visualizing these quantities.

• Vortex core line extraction aims at finding line type features
that are regarded as centers of vortices. Different approaches
exist. Sujudi and Haimes consider lines where the flow ex-
hibits a swirling motion around it [19, 12]. Banks and Singer
extract vorticity lines seeded at critical points and corrected
towards pressure minima [2]. Roth and Peikert consider
stream lines of zero torsion [14]. While those methods de-
pend on the reference frame, recently a vortex core line ex-
traction method was proposed that is Galilean invariant by ex-
tracting extremum lines of scalar region quantities [15], i.e.,
this method is invariant under adding constant flow fields.

All vortex core line methods mentioned above can be implemented
using the parallel vectors (PV) operator, a popular line feature ex-
traction approach for static flow fields [12]. The idea of the PV
approach is to derive two vector fields w1, w2 out of a given 3D
vector field v, such that the desired vortex core lines are the lo-
cations where w1 and w2 are parallel. Several ways of extracting
these lines exist [12], either based on extracting and intersecting
isosurfaces [9], Newtonian iterations on grid faces, analytic solu-
tions for triangular faces, or curve following schemes [1]. All these
solutions (except [1]) have in common that they are based on an
underlying grid and a simple (linear or trilinear) interpolation in-
side the grid cells. In fact, these solutions find intersection points
of the vortex core lines on grid faces and connect them afterward
by local connection strategies. Also [1] computes the intersection
of the vortex core lines with certain faces which are locally set by
a predictor step. Then the actual intersections with the vortex core
lines are computed in a corrector step.

Flow dynamicists are interested in tracking vortex core lines over
time for several reasons:

• When the impact of a feature on the flow is measured by
certain criteria (rotation strength [16], pressure [10], Okubo-
Weiss-criterion [7]), feature tracking becomes necessary to
answer the question, whether the impact of a feature on the
flow increases or decreases, when time evolves, as the corre-
spondence problem of features in different time steps is not
a trivial task. With the full feature surface of our method at
hand, the problem can be solved by simply checking, if two
features at different times lie in the same connected compo-
nent of the surface.

• Also, the spatial evolution over time is interesting e.g. in burn-
ing chambers, where the location and extent of vortices are the
key ingredient for a complete burning process.

A first approach to tracking PV-based vortex core lines over time
was given in [3] which focused on scale-space as the additional
dimension. There, a marching-cubes-like algorithm is performed to
extract 4D triangular structures in regular 4D hypercubes building
the cells of the space-time domain.

In this paper we introduce a new method to extract and track
vortex core lines which are based on a PV formulation. This method
is based on the concept of feature flow fields (FFF) [21]: we derive
appropriate vector fields such that the searched vortex core lines are
stream lines on them. This way, the extraction/tracking of vortex
core lines is reduced to a simple stream line/surface integration of
vector fields. We choose this approach because of the following
reasons:

• Numerical stream line/surface integration is well-understood
in the Visualization community. A variety of fast and stable
algorithms exist for this purpose. [6, 24, 4, 17]

• The stream surface integration approach is independent of an
underlying grid, giving a subcell accuracy and relieving us of
finding appropriate local connection strategies.

• Bifurcations (i.e. events of sudden changes of the behavior
of vortex core lines over time) play an important role in the
understanding of the dynamical behavior of vortex core lines.
Contrary to pre-existing methods, the FFF approach permits
to localize, characterize and classify these bifurcations. To the
best of our knowledge, this has not been done in the Visual-
ization community before.

The rest of the paper is organized as follows: sections 2–5
describe our FFF based approach of extracting and tracking
vortex core lines. Since the approach is exclusively based on the
PV formulation, we describe the approach independently of the
vortex core background. We call the solutions of the PV operator
in the static case PV lines, while their sweeping over time in
time-dependent fields are called PV surfaces. Section 2 explains
the FFF approach to extract PV lines in static fields. Based on this,
section 3 introduces the feature flow fields to track PV lines over
time. Section 4 gives a complete classification of local bifurcations
of PV lines over time. Section 5 describes the final algorithms
to tracking PV lines. Section 6 shows the application of our
technique to a number of test data sets, among them the particular
PV realization for vortex core lines defined by Sujudi and Haimes
[19] in a Galerkin model of a flow behind a circular cylinder.

Notation: In this paper we consider points, vectors and vec-
tor fields both in 3D and 4D. To make a clear distinction between
them, we write a 4D structure as p̃, ṽ, ..., while for 3D structures
we simply write p, v.

2 EXTRACTING PV LINES IN STATIC FIELDS

In this section we shortly describe the parallel vectors (PV) operator
[12] and explain how to use the concept of feature flow fields (FFF)
in order to extract PV lines in a 3D static field. This will later be
the foundation of an FFF-based algorithm for tracking PV lines in
unsteady fields.

Given two continuous 3D vector fields w1 and w2, the PV oper-
ator extracts all points in the domain where the vectors of w1 and
w2 point in the same direction, i.e. w2 = λw1 for some real λ 1, or
w1 ‖ w2 in shorthand notation.

Peikert and Roth [12] list examples of reasonable choices of w1
and w2 to extract line type features like vortex core lines in flow
fields or extremum lines in scalar fields. As the theory presented
here can be formulated completely in terms of the PV operator, we
keep the derivation as general as possible and just choose particular
vector fields w1 and w2 in section 6.

Aiming at extracting PV lines of (w1, w2) in the domain D =
[xmin,xmax]× [ymin,ymax]× [zmin,zmax], we define the vector field s
as

s(x,y,z) =

 k(x,y,z)
m(x,y,z)
n(x,y,z)

 = w1×w2. (1)

Then the PV lines consist of all locations (x,y,z) with s(x,y,z) =
(0,0,0)T . If w1 and w2 are continuous, then the PV lines are in-
deed continuous line structures, i.e. point sets of dimensionality 1
[12]2. PV structures of dimensionality 0 or dimensionality 2 are
structurally unstable in 3D, i.e. they disappear by adding noise to
the data. For this reason we do not consider them here.

The FFF approach [21] (originally introduced to track critical
points of time-dependent vector fields) was already used for ex-
tracting particular Galilean invariant vortex core lines without using
the PV approach [15]. To apply the FFF concept to PV lines, the
following steps are necessary:

1. A vector field f is defined which fulfills the FFF property.
This means that given a point x0 = (x0,y0,z0) with s(x0) =
(0,0,0)T , each point x on the stream line of f starting from x0
fulfills s(x) = (0,0,0)T as well. In other words: PV lines of
(w1, w2) are stream lines of f.

2. A set of starting points is defined which guarantees that the
stream line integration of f starting from them covers all PV
lines.

Then all PV lines of (w1, w2) can simply be extracted by applying
a stream line integration of f. We treat the two parts of the approach
in the following subsections.

2.1 Obtaining the feature flow field f

In this section we show that f essentially consists of an appropriate
combination of the first order partials sx, sy, sz of s. We denote the
gradients of the components of s in (1) by

∇k =

 kx
ky
kz

 , ∇m =

 mx
my
mz

 , ∇n =

 nx
ny
nz

 .

Then f should point into a direction where the components of s
remain constant. This means that f has to be perpendicular to the

1λ =±∞ is also allowed, i.e., w1 ‖ w2 holds if w1 or w2 vanishes.
2Note that this statement gives that these line structures cannot be ob-

tained by replacing s(x,y,z) = (0,0,0)T by ‖s(x,y,z)‖ = 0 and applying a
simple scalar field analysis of ‖s‖, since the zeros of general scalar fields
are structures of dimensionality 2.

gradients of the components of s. We define

f1 = ∇m×∇n =

 det(sy,sz,(1,0,0)T)
det(sz,sx,(1,0,0)T)
det(sx,sy,(1,0,0)T)

 . (2)

which is perpendicular to ∇m and ∇n. Hence, all points on a stream
line of f1 have constant components m and n. In a similar way we
define f2 and f3 as

f2 = ∇n×∇k =

 det(sy,sz,(0,1,0)T)
det(sz,sx,(0,1,0)T)
det(sx,sy,(0,1,0)T)

 (3)

f3 = ∇k×∇m =

 det(sy,sz,(0,0,1)T)
det(sz,sx,(0,0,1)T)
det(sx,sy,(0,0,1)T)

 . (4)

In general, f1, f2, f3 describe different directions. However, if we
are on a PV line, we can write w2 = λw1 for a certain λ . Inserting
this into the computation of the derivatives of (1), we get

sx = (w1x×w2)+(w1×w2x) = w1× (w2x−λw1x)
sy = (w1y×w2)+(w1×w2y) = w1× (w2y−λw1y) (5)

sz = (w1z×w2)+(w1×w2z) = w1× (w2z−λw1z)

which shows that sx, sy, sz are coplanar perpendicular to w1 and w2.
(5) and (2)–(4) give that f1, f2, f3 are parallel on a PV line. Thus,
almost every linear combination of f1, f2, f3 can act as feature flow
field. Setting f = α f1 +β f2 + γ f3 and a = (α,β ,γ)T , we obtain

f =

 e
f
g

 =

 det(sy,sz,a)
det(sz,sx,a)
det(sx,sy,a)

 . (6)

Choosing the vector field a:
In order to choose a suitable vector field a, we rewrite f as

f =

 b1 ·a
b2 ·a
b3 ·a

 (7)

with
b1 = sy× sz , b2 = sz× sx , b3 = sx× sy. (8)

On a PV line, the coplanarity of sx, sy, sz together with (8) gives
w1 ‖ w2 ‖ b1 ‖ b2 ‖ b3. Consequently, the only condition we have
to put on a is that it must not be perpendicular to w1 and w2 respec-
tively on a PV line. If we know that w1 never vanishes on a PV line,
the simple choice a = w1 does the job. A similar statement holds
for w2. In case that both w1 and w2 may vanish on a PV line, we
choose

a =
{

w1 if ‖w1‖ ≥ ‖w2‖
w2 otherwise,

which guarantees a to be continuous in direction but not in orienta-
tion. Thus, f has to be integrated as an orientation-free vector field
(similar e.g. to an eigenvector field of a tensor field), i.e., the lo-
cal orientation has to be obtained from the information where the
integration of the line has come from.

A number of vortex core line extraction concepts based on par-
allel vectors use w1 = v and w2 = M v (see for example [19] with
M = ∇v or [20] with M = (∇v)T). For these approaches, both w1
and w2 vanish at critical points of v causing both s(x) = (0,0,0)T

and f(x) = (0,0,0)T there. To deal with this problem, we equiv-
alently reformulate w2 as an appropriate eigenvector of M. This
eigenvector does not vanish along the vortex core line, but since
eigenvectors have no orientation, an orientation-free integration of
f is necessary here as well.

Figure 2: (a) two kinds of PV lines: ending in the boundary points
x1, x2, or closed: in this case we extract two starting points x3,x4;
(b) PV structures are surfaces in 4D.

2.2 Starting points for integrating f

Given the definitions above, we first analyze whether an integration
of f along a PV line may get stuck in a critical point of f. This hap-
pens at a location x ∈D with s(x) = (0,0,0)T and f(x) = (0,0,0)T .
Both conditions independently build structures of dimensionality
1 in D, i.e., they are line structures3. If these line structures in-
tersect, the intersection points are structurally unstable, i.e., they
disappear by adding noise to the data. Because of this we assume
that such intersections do not exist in D. However, we mention
that [s(x) = (0,0,0)T , f(x) = (0,0,0)T] gives stable solutions in a
time-depending setting. We treat this in section 4.

If [s(x) = (0,0,0)T , f(x) = (0,0,0)T] does not have solutions
in D, every PV line ends either on the boundary faces of D (for
both forward and backward integration), or builds a closed stream
line in f [12]4. To get the starting points for the first case, we
search for the intersections of the PV lines with the boundary of
D: for the boundary face x = xmin, we search for all points (y,z)
with s(xmin,y,z) = (0,0,0)T . To do so, different numerical solvers
can be applied. We use a simple subdivision approach in the (y,z)-
domain: a rectangular cell C is checked whether one of the com-
ponents k,m,n is positive/negative at all 4 corners of C. If so, no
PV line intersection is found inside C. Otherwise, we recursively
subdivide C into 4 subcells until their size is smaller than a certain
threshold. In a similar way we compute the intersections of the PV
lines with the remaining 5 faces.

To find a starting point on a closed PV line, it is sufficient to
identify an arbitrary point on the line. We have chosen to extract
points x with

[s(x) = (0,0,0)T , e(x) = 0] (9)

with e from (6). To do so, we apply a similar 3D subdivision
approach as described above for the 2D case. Since a closed
PV line must consist of points with both positive and negative e-
components, each closed PV line must consist of at least two points
fulfilling (9). Figure 2a illustrates an example. Clearly, (9) may
also deliver solutions on open PV lines, but it guarantees to find at
least two solutions for each closed PV line5. Finally, we do an in-
tegration of f starting from all detected points and remove multiply
obtained curves.

3This has been shown for s, as it defines PV lines [12]. To show that
f(x) = (0,0,0)T builds line structures as well, we have to show that f can
also be formulated using the PV operator. (2)–(4) give that we can rewrite f
as f = (α ∇m−β ∇k)× (∇n− γ

β
∇m). Hence, f = (0,0,0)T corresponds to

(α ∇m−β ∇k) ‖ (∇n− γ

β
∇m).

4This statement implies that our approach does not have to incorporate
algorithms to detecting closed stream lines in flow fields [26], since we
know in advance that our stream lines of interest in f are closed.

5If a closed PV line completely lies in the y−z plane by chance, (9) gives
many solutions. In this case, e(x) = 0 can simply be replaced by f (x) = 0
in (9) to reduce the number of solutions.

3 FEATURE FLOW FIELDS FOR TRACKING

Now we consider PV structures in time-dependent 3D vector fields
(w1(x,y,z, t),w2(x,y,z, t)). To do so, we first note that all the 3D
static vector fields w1, w2, s, ∇k, ∇m, ∇n, f1, f2, f3, f, a which were
introduced in section 2 can be defined in a similar way for the time-
dependent case as well. In the following we consider these vector
fields to be time-dependent, i.e. they are maps for the 4D domain
D̃ = D× [tmin, tmax] to IR3.

PV structures in (w1(x,y,z, t),w2(x,y,z, t)) can be considered as
lines in D sweeping over time while smoothly changing their shape
and location. In addition, certain bifurcations may occur. Hence,
the PV structures in D̃ have the dimensionality 2, i.e. they are sur-
faces in D̃. Figure 2b gives an illustration. Here a PV line at time t0
(red) moves to the blue line at time t1. Each point on the swept sur-
face between the two lines is actually a 4D point: in addition to the
spatial values it is provided with a t-value. In figure 2b (as well as
in the following figures) we color code the t-values of points, lines
and surfaces.

In order to extract the PV surfaces in D̃, we need to define two
4D feature flow fields f̃ and g̃. The first one can easily be defined as

f̃(x,y,z, t) =
(

f(x,y,z, t)
0

)
(10)

where f is defined in (6). It gives a PV line at a certain time level, i.e.
all points on a stream line of f̃ have the same t-value. The evolution
in time of a PV line should be covered by the 4D feature flow field
g̃. Keeping mind that PV structures in D̃ are surfaces, a family of
different g̃ could be chosen such that each linear combination of f̃
and g̃ is a FFF. Among them, we choose the g̃ with f̃⊥g̃. This gives
a unique g̃ (except for scaling). We obtain

g̃(x,y,z, t) =
(

h× f
‖f‖2

)
=

(
h× f

e2 + f 2 +g2

)
(11)

with

h(x,y,z, t) =

 det(sx,st ,a)
det(sy,st ,a)
det(sz,st ,a)

 (12)

and f defined in (6). Figure 2b illustrates f̃ and g̃ at a certain point
(red) on the PV surface.

To prove that g̃ is indeed the desired feature flow field, we con-
sider the gradients in D̃ of the components of s:

∇̃k =

 kx
ky
kz
kt

 , ∇̃m =

 mx
my
mz
mt

 , ∇̃n =

 nx
ny
nz
nt

 .

Then we have to show that from w1 ‖w2 (i.e. for s = (0,0,0)T) the
following four properties can be deduced:

∇̃k · g̃ = ∇̃m · g̃ = ∇̃n · g̃ = f̃ · g̃ = 0

where · denotes the 4D dot product. This can be shown by a
straightforward exercise in algebra.

We note that Theisel et al. already proposed a FFF for PV track-
ing [21] which appears not to work: the FFF proposed there is con-
stantly vanishing on a PV line and therefore unable to track it.

4 LOCAL BIFURCATIONS

Although in general PV lines change smoothly over time, there are
certain points D̃ in which the behavior of the PV lines changes

Figure 3: local bifurcations of PV lines: (a) inflow boundary bifur-
cation; (b) outflow boundary bifurcation; (c) closed collapse bifurca-
tion; (d) saddle bifurcation.

(a) Shortly before. (b) The event. (c) Shortly after.

Figure 4: Saddle bifurcation.

abruptly. These bifurcation are a vital ingredient for assuring the
complete extraction of PV surfaces. Furthermore, knowing what
kind of bifurcations may occur contributes to understanding the par-
allel vectors operator. In this section we characterize local bifurca-
tions and show how to extract them. In general, we can distinguish
between two kinds of bifurcations: inner bifurcations and boundary
bifurcations. We treat them separately in the following sections.

4.1 Inner bifurcations

An inner bifurcation is characterized by the fact that the integration
of f̃ on a PV surface in D̃ ends in a critical point of f̃. This means
that an inner bifurcation occurs at a location c̃ ∈ D̃ with

[s(c̃) = (0,0,0)T , f(c̃) = (0,0,0)T]. (13)

Since both s(c̃) = (0,0,0)T and f(c̃) = (0,0,0)T gives surfaces in
D̃ as solutions6, their intersections are stable isolated points in D̃.
To get them, we use a subdivision approach in 4D similar to the one
already explained in 2D and 3D.

In order to analyze the behavior of the PV lines around an inner
bifurcation, we analyze the Jacobian matrix of f̃ in c̃ which is a
common approach in the field of vector field topology to classify
critical points of 2D [5] and 3D [25] vector fields. On c̃ fulfilling
(13) we know from (7) that b1 = b2 = b3 = (0,0,0)T . This and (8)
gives that sx ‖ sy ‖ sz, i.e. we can set sy = p sx and sz = q sx for

6This is due to the fact that both s(c̃) = (0,0,0)T and f(c̃) = (0,0,0)T

can be interpreted as sweeping lines over time.

(a) Shortly before inflow
bifurcation.

(b) The event of inflow
bifurcation.

(c) Shortly after inflow
bifurcation.

(d) Shortly before closed
collapse bifurcation.

(e) The event of closed
collapse bifurcation.

Figure 5: Inflow bifurcation and closed collapse bifurcation.

certain p,q. Inserting this into the derivatives of (8), we get

b1x = (syx× sz)+(sy× szx) = sx× (p szx−q syx)
b1y = (syy× sz)+(sy× szy) = sx× (p szy−q syy)

b1z = (syz× sz)+(sy× szz) = sx× (p szz−q syz)
b2x = (szx× sx)+(sz× sxx) = sx× (q sxx− szx)
b2y = (szy× sx)+(sz× sxy) = sx× (q sxy− szy) (14)

b2z = (szz× sx)+(sz× sxz) = sx× (q sxz− szz)
b3x = (sxx× sy)+(sx× syx) = sx× (syx− p sxx)
b3y = (sxy× sy)+(sx× syy) = sx× (syy− p sxy)

b3z = (sxz× sy)+(sx× syz) = sx× (syz− p sxz).

This shows that the 9 vectors in (14) are coplanar perpendicular to
sx, sy, sz. In addition, the following statements follow directly from
(14):

b1x + p b2x +q b2x = (0,0,0)T (15)

b1y + p b2y +q b2y = (0,0,0)T (16)

b1z + p b2z +q b2z = (0,0,0)T (17)

b1x +b2y +b3z = (0,0,0)T . (18)

Keeping b1 = b2 = b3 = (0,0,0)T in mind, we can write the Jaco-
bian matrix of f(c̃) as

Jf(c̃) =

 b1x ·a b1y ·a b1z ·a
b2x ·a b2y ·a b2z ·a
b3x ·a b3y ·a b3z ·a

 . (19)

(15)–(17) show that the lines of Jf(c̃) are not independent, which
gives det(Jf(c̃)) = 0. Hence, one eigenvalue of Jf(c̃) is zero. From
(18) we infer that the trace of Jf(c̃) is zero. As the trace of a matrix
equals the sum of its eigenvalues, we see that also the remaining
eigenvalues of Jf(c̃) add to zero. So they can be written as

0 , −
√

r ,
√

r

for some real, possibly negative r. Hence we can classify three
kinds of inner bifurcations. The first, r = 0, is a generally unstable
higher order inner bifurcation and not considered here. For r 6= 0,
exactly two stable kinds of inner bifurcations are possible depend-
ing on the sign of r:

A closed collapse bifurcation appears if (13) and r < 0 hold. In
this case, the two non-zero eigenvalues of Jf(c̃) are purely imagi-
nary indicating a rotational behavior of f around c̃. While figure
3c illustrates this, figure 5 depicts this bifurcation using a test data

(a) Shortly before. (b) The event. (c) Shortly after.

Figure 6: Reversed outflow boundary bifurcation.

set, see section 6 for details on the used visualization scheme. Now
imagine a closed PV line p̃0 at the time t0. While moving forward
in time (t = t1), the closed PV line p̃1 becomes smaller until at a
certain time t2 it collapses to a point c̃ and disappears. Note that the
inverse case of a closed collapse bifurcation exists as well indicat-
ing the birth of a (small) closed PV line.

A saddle bifurcation appears if (13) and r > 0 hold. See figure
3d for an illustration and figure 4 for an example from a test data
set. Two PV lines p̃0, q̃0 at the time t = t0 move towards each other
(t = t1), share a common point c̃ at the time t = t2, and move away
from each other (t = t3). The directions of the PV lines out of c̃ are
the directions of the two eigenvectors of Jf(c̃) corresponding to the
non-zero eigenvalues.

4.2 Boundary bifurcations

A boundary bifurcation is characterized by the fact that f̃ on a PV
surface is tangential to the boundary surface of D̃. A boundary
bifurcation c̃ = (xc̃,yc̃,zc̃, t̃c) on the boundary face x = xmax is the
solution of

[s(c̃) = (0,0,0)T , xc̃ = xmax , e(c̃) = 0] (20)

which gives isolated points in the stable case. To get them, we
may apply a 3D subdivision approach (in (x,y, t)-space) similar as
described in section 2.2. However, there is a faster approach which
will be explained later in section 5. In a similar way we compute
the boundary bifurcations for the remaining boundary faces of D.

At a boundary bifurcation c̃, the integration of f̃ starting from c̃
(both in forward and backward direction) may enter D̃, or it may
leave D̃ immediately after starting the integration. To distinguish
these two kinds of behavior, we check whether directional deriva-
tive ∇f · f of f points inside or outside D. In the first case, we have
an inflow boundary bifurcation. See figure 3a for an illustrating ex-
ample. Imagine two PV lines p̃0 and q̃0 at the time t = t0 which
leave D̃ at the points x̃0 and ỹ0 respectively. While moving forward
in time (t = t1), the exit points x̃1, ỹ1 of the current PV lines p̃1, q̃1
move towards each other until at a certain time t2 they collapse to

Figure 7: (a) PV line fold bifurcations do not exist! (b) tracking an
open PV line.

a point c̃. At c̃ the current PV lines p̃2, q̃2 get smoothly connected
and build a single PV line p̃3 from this moment on. The point c̃
denotes the inflow boundary collapse bifurcations.

An outflow boundary bifurcation illustrated in figure 3b and
shown in figure 6 within a test data set. Here, the PV line p̃0 at the
time t0 enters and leaves D̃ at the points x̃0 and ỹ0. While moving
forward in time (t = t1), the exit points x̃1, ỹ1 move towards each
other, until at a certain time t2 they collapse in the point c̃ making
the PV line disappear.

Also for boundary bifurcations the reverse cases exist. At an
inflow boundary bifurcation a PV line may split up into two lines,
and at an inflow boundary bifurcation a PV line may appear.

4.3 Further bifurcations

After introducing the local bifurcations above, one may ask whether
there are more bifurcations possible. In particular we check
whether fold bifurcations of (open or closed) PV lines exist. A
fold bifurcation occurs when two PV lines move toward each other,
merge at a certain time and immediately disappear after that7. It
turns out that such a bifurcation cannot exist for PV lines. To show
this, imagine two PV lines p̃0, q̃0 at the time t0 as illustrated in
figure 7a. While moving forward in time (t = t1), the current PV
lines p̃1, q̃1 move towards each other until they merge in the line
p̃2 and disappear. If we pick a point x̃0 on p̃0 and start a stream
line integration of g̃ from x̃0, we end in a point ỹ0 on q̃0. Since x̃0
and ỹ0 have the same t-value t = t0, the integration of g̃ must go
both forward and backward in time. This is a contradiction to (11)
which shows that the last component of g̃ (specifying the evolution
in time) is always non-negative. Therefore, PV fold bifurcations do
not exist.

5 THE ALGORITHMS

Before we formulate the algorithms for PV surface extraction in D̃,
we explain the main ideas on a number of simple examples.

Consider figure 7b: suppose there is a PV line p̃0 at the time
t = t0 which leaves D̃ in the points x̃0, ỹ0. While moving forward in
time until t = t1, p̃0 sweeps to the line p̃1 which leaves D̃ in x̃1, ỹ1.
Doing this sweeping, the points where the PV lines leave D̃ form
two lines x̃, ỹ on the boundary of D̃: x̃ connects x̃0 and x̃1, while
ỹ connects ỹ0 and ỹ1. In order to extract the PV surfaces (i.e. the
surface bounded by the curves p̃0, ỹ, p̃1, x̃), we have the choice be-
tween two approaches: One approach is to start with an extraction
of p̃0 and using it as seeding curve for a stream surface integration
of g̃ until we reach p̃1 (or reversely, integrate g̃ backward from p̃1
until we reach p̃0). The second approach is to extract x̃ and use it as
seeding curve of a stream surface integration of f̃ until it reaches ỹ

7In the field of time-dependent vector field topology, we have similar
fold bifurcations for critical points [23] and isolated closed stream lines
(cyclic fold bifurcation [22]).

Figure 8: seeding lines (black) for simple examples.

(or reversely, integrating f̃ from ỹ to x̃). The first approach has two
disadvantages over the second one: first, a stream surface integra-
tion of f̃ is cheaper then a stream surface integration of g̃ because
f̃ has a simpler structure (see section 3). Second, a stream surface
integration of g̃ starting from p̃0 may partially leave D̃ before reach-
ing p̃1. Hence we prefer the second approach. The extraction of x̃
and ỹ turns out to be simple: in the example, x̃ consists of all points
(xmin,y,z, t) with s(xmin,y,z, t) = (0,0,0)T . Keeping xmin constant,
this can be considered as finding PV lines in a steady 3D flow field
in the (y,z, t)-domain. Thus, x̃ can be found by applying the algo-
rithm of section 2 for the (y,z, t)-domain. Similarly we find ỹ.

Another simple example is shown in figure 8a. Here we have a
closed PV line p̃0 at the time t0 which moves over time to the line
p̃1 at t = t1. To extract the PV surface, we might integrate g̃ starting
from p̃0. In order to be consistent with the example before, we
prefer to pick a point x̃0 on p̃0

8 and apply a stream line integration
of g̃ starting from x̃0 until it leaves D̃ in a point x̃1. This stream line
is used as seeding structure for a stream surface integration of f̃.

The last simple example is shown in figure 8b. Here a closed
PV line appears at the time t0 in the closed collapse bifurcation
point p̃0, grows over time (t = t1) to p̃1 until at t = t2 it touches the
boundary of D̃ in the inflow boundary bifurcation point c̃. From this
moment on it is an open PV line p̃3 which creates an intersection
curve x̃ with the boundary of D̃. In order to get a seeding structure
for this example, we first extract x̃ similar to the example in figure
7b. Then we apply a stream line integration of g̃ starting from c̃
until it ends in p̃0.

In order to extract PV surfaces in D̃, we provide two algorithms.
Algorithm 1 describes how to get a seeding structure, i.e., a set
of lines in D̃ such that a stream surface integration of f̃ starting
from them gives the complete PV surface. Based on this, algorithm
2 describes how to extract and visualize the PV surfaces for a
particular time interval.

Algorithm 1 (getting the seeding lines):

1. Compute the intersection curves of the PV surface with the
spatial boundaries of D̃ (see figure 7b for an example).

2. Extract all local bifurcations introduced in section 4.

3. Extract closed PV lines at the times t = tmin and t = tmax re-
spectively, pick a point on each extracted closed line, and ap-
ply a stream line integration of g̃ starting from them until they
leave D̃ or end in a closed collapse bifurcation. Figure 8a
shows an example.

4. Start a stream line integration of g̃ from all inflow boundary
bifurcations until it ends in a closed collapse bifurcation or
leaves D̃ (see figure 8b for an example).

8We use one of the points which were necessary to extract p̃0 – see
section 2

Then the set of all lines obtained in steps 1–4 is the searched seeding
structure. This algorithm needs some comments:
To 1: We have to find the PV lines at the faces of D̃. This means to
apply six times the algorithm for extracting PV lines of static vector
fields as described in section 2.
To 2: All inner bifurcations can be found by applying a recursive
subdivision approach as described earlier. Boundary bifurcations
can be found by checking the lines from step 1 of algorithm 1 for
local extremal values of the t-component.
To 3: We get the closed stream line by applying the static algorithm
of section 2 to find closed PV lines in the first and last time step.

Algorithm 1 can be considered as a preprocess of the actual PV
extraction algorithm described in the following

Algorithm 2 (extract and visualize the PV surface for a time
interval [t0, t1] with tmin ≤ t0 ≤ t1 ≤ tmax):

1. Load the seeding lines obtained from algorithm 1.

2. Identify all parts of the seeding lines with t-values between t0
and t1.

3. Starting from these seeding lines, apply a stream surface inte-
gration of f̃ until it leaves D̃ or returns to its starting point.

4. Visualize the stream surfaces obtained in 3.

Note that although algorithm 2 guarantees that all PV surfaces are
found, it does not guarantee that each surface is found only once.
In fact, an open PV surface is extracted twice, by integrating from
both exit curves of D̃. In the current implementation we did not
consider this problem and visualized parts of the PV surfaces twice.

Out-of-core considerations:
3D time-dependent fields tend to be larger than the main memory
of high-end workstations. Thus, an out-of-core data handling is
preferable. We show for our algorithm that only a certain part of
the data has to be in memory at once, and that (in worst case) the
whole data set has to be loaded only twice. We assume that certain
time intervals of the data can be loaded into memory separately, e.g.
the data may come as a sequence of static 3D vector fields, one for
each time step: by loading the vector fields of two consecutive time
steps ti and ti+1 and applying a linear interpolation, we obtain the
time-dependent vector field in that interval.

Algorithm 1 can be executed by treating time slices consecu-
tively, but not in one sweep through the data since g̃ needs to be
integrated in both directions. Thus, we make one forward sweep
through the data collecting the local bifurcations and integrating g̃
in forward direction. While doing this, we build up 6 static 3D
vector fields representing the spatial boundaries of the domain over
time. They serve as input for step 1 of this algorithm. In a following
backward sweep we integrate g̃ backwards starting from the already
collected seeding points.

Since a stream line of f̃ always stays in the same time level, the
stream surface integration of algorithm 2 can be applied to smaller
subintervals independently if the data of the original time interval
[t0, t1] does not fit into main memory.

6 APPLICATIONS

Figures 4–6 show examples of local bifurcations in constructed
quadrilinear vector fields w1, w2. We show them both to illus-
trate the bifurcations again and to explain our visualization tech-
nique. As projecting the complete PV surface to space leads to
selfintersections already in quite simple settings, we use the follow-
ing approach to visualize the evolution of PV structures: at a given
time we draw the PV lines as red tubes inside the PV surface that

Figure 9: Saddle bifurcation of
vortex core lines as defined by
v ‖ ∇v ·v in a quadrilinear vector
field.

(a) Critical points and surrounding
stream lines.

(b) Vortex core line together with
its PV surface showing the
evolution of the vortex over
time.

Figure 10: Stuart Vortex moving over time from left to right.

is displayed only for a certain time range for future and past. At
the boundary the corresponding seeding lines from algorithm 1 are
given for a larger time interval. Both the surfaces and the seeding
lines fade out away from the current time. We use color coding to
indicate past (red) and future (gray). Figure 4 shows the evolution
of a saddle bifurcation. Note that the width of the surface in figures
4a and 4c confirms the intuition that the most drastic movements of
the PV line over time takes place near the bifurcation points.

Figure 6 shows a reversed outflow boundary bifurcation leading
to the birth of a PV line. We omitted to display the PV surface for
this and the following example. Figure 5 shows an inflow bifurca-
tion and a subsequent closed collapse bifurcation in the green point.
Note that in figure 5a, the location of the future inflow bifurcation
is already shown by the grey semi-transparent point.

Now we proceed to applying our parallel vector based theory to
vortex core line extraction. To do so, we consider the vortex core
line concept defined by Sujudi and Haimes [19] searching for all
locations with v ‖ ∇v ·v in regions where ∇v has a pair of complex
eigenvalues. As already mentioned in section 2.1, we have equiv-
alently chosen w1 = v and w2 as the eigenvector corresponding to
the only real eigenvalue of ∇v in the regions of interest. Before we
apply the technique to a real data set, we analyze whether the bi-
furcations introduced in section 4 may appear for vortex core lines
defined by [19] for piecewise low-degree vector fields. It turns out
that the inner bifurcations do not exist inside a cell for a piecewise
linear vector field in space-time9. For piecewise quadrilinear vector
fields, all bifurcations can occur inside a cell. Figure 9 shows an ex-
ample of a quadrilinear vector field containing a saddle bifurcation.

Consider Figure 10 that demonstrates our vortex core line track-
ing approach for visualizing a moving Stuart vortex. A Stuart vor-
tex is a well-known vortical structure in fluid dynamics which can
be described by a closed formula. Figure 10a shows that there is
a critical point on the moving vortex core line. Figure 10b shows
the vortex core line together with the PV surfaces indicating its past
and future behavior. It shows that our FFF integration did not get
stuck in the critical point.

Figures 1 and 11 demonstrate the results of our method applied
to vortex core line tracking in a flow behind a circular cylinder.

9This is similar to the fact that e.g. fold bifurcations do not exist inside
a cell for piecewise linear time-dependent vector fields.

Figure 11: Flow behind a circular cylinder. The extracted seeding
lines elucidate the alternating evolution of the vortical structures in
transverse direction.

As above, we chose the vortex core line definition v ‖ ∇v · v. The
data set was derived by Bernd R. Noack (TU Berlin) from a di-
rect numerical Navier Stokes simulation by Gerd Mutschke (FZ
Rossendorf). It resolves the so called ‘mode B’ of the 3D cylin-
der wake at a Reynolds number of 300 and a spanwise wavelength
of 1 diameter. The data is provided on a 265×337×65 curvilinear
grid as a low-dimensional Galerkin model [11, 27]. The examined
time range is [0,2π]. The flow exhibits periodic vortex shedding
leading to the well known von Kármán vortex street. This phenom-
enon plays an important role in many industrial applications, like
mixing in heat exchangers or mass flow measurements with vortex
counters. However, this vortex shedding can lead to undesirable
periodic forces on obstacles, like chimneys, buildings, bridges and
submarine towers.

7 CONCLUSIONS

In this paper, we made the following contributions for 3D time-
dependent fields:

• We presented feature flow fields which are equivalent to the
PV operator.

• Based on the FFF’s, we achieved a complete classification of
stable local bifurcations of tracked PV lines in saddle bifurca-
tions, closed collapse bifurcations, inflow and outflow bound-
ary bifurcations.

• We presented a new algorithm to extract and track PV lines as
a repeated stream line/surface integration of the FFF’s. This
way, the algorithm is independent of a particular underlying
grid of the data. In fact, the accuracy of our method does not
depend on the grid resolution but exclusively on the chosen
technique and step size for the stream surface integration.

There is a number issues left for future research. First, algorithm
1 can be enhanced such that the set of seeding lines is minimal,
i.e., each part of the PV surface is obtained only once. Second,
algorithm 1 can be optimized such that the complete data set has to
be loaded only once instead of twice.

ACKNOWLEDGMENTS

We thank Jan Reininghaus for his great implementational efforts.
We thank Bernd R. Noack for fruitful discussions and providing the
cylinder data set. All visualizations in this paper have been created
using AMIRA – a system for advanced visual data analysis [18] (see
http://amira.zib.de/).

REFERENCES

[1] D.C. Banks and B.A. Singer. Vortex tubes in turbolent flows: Iden-
tification, representation, reconstruction. In Proc. IEEE Visualization
1994, pages 132–139, 1994.

[2] D.C. Banks and B.A. Singer. A predictor-corrector technique for vi-
sualizing unsteady flow. IEEE TVCG, 1(2):151–163, 1995.

[3] D. Bauer and R. Peikert. Vortex tracking in scale space. In Data
Visualization 2002. Proc. VisSym 02, pages 233–240, 2002.

[4] A. Van Gelder. Stream surface generation for fluid flow solutions on
curvilinear grids. In Data Visualization 2001. Proc. VisSym 01, 2001.

[5] J. Helman and L. Hesselink. Representation and display of vector field
topology in fluid flow data sets. IEEE Computer, 22(8):27–36, 1989.

[6] J. Hultquist. Constructing stream surfaces in steady 3D vector fields.
In Proc. IEEE Visualization ’92, pages 171–177, 1992.

[7] J.C.R Hunt. Vorticity and vortex dynamics in complex turbulent flows.
Proc CANCAM, Trans. Can. Soc. Mec. Engrs, 11:21, 1987.

[8] J. Jeong and F. Hussain. On the identification of a vortex. J. Fluid
Mechanics, 285:69–94, 1995.

[9] T. Minagawa and R. Rado. The 3D marching lines algorithm. Graph-
ical Models and Image Processing, 58(6):503–509, 1996.

[10] H. Miura and S. Kida. Identification of tubular vortices in turbulence.
J. Physical Society of Japan, 66(5):1331–1334, 1997.

[11] B.R. Noack and H. Eckelmann. A low-dimensional galerkin method
for the three-dimensional flow around a circular cylinder. Phys. Flu-
ids, 6:124–143, 1994.

[12] R. Peikert and M. Roth. The parallel vectors operator - a vector field
visualization primitive. In Proc. IEEE Visualization 99, pages 263–
270, 1999.

[13] F.H. Post, B. Vrolijk, H. Hauser, R.S. Laramee, and H. Doleisch. Fea-
ture extraction and visualisation of flow fields. In Proc. Eurographics
2002, State of the Art Reports, pages 69–100, 2002.

[14] M. Roth and R. Peikert. A higher-order method for finding vortex core
lines. In Proc. IEEE Visualization ’98, pages 143–150, 1998.

[15] J. Sahner, T. Weinkauf, and H.-C. Hege. Galilean invariant extraction
and iconic representation of vortex core lines. In Proc. EuroVis 2005,
2005.

[16] M. Sato and R. Peikert. Core-line-based vortex hulls in turbomachin-
ery flows. J. Visualization Society of Japan, 23(2):151–154, 2003.

[17] G. Scheuermann, T. Bobach, H. Hagen K. Mahrous, B. Hamann,
K. Joy, and W. Kollmann. A tetrahedra-based stream surface algo-
rithm. In Proc. IEEE Visualization 01, pages 151 – 158, 2001.

[18] D. Stalling, M. Westerhoff, and H.-C. Hege. Amira: A highly inter-
active system for visual data analysis. The Visualization Handbook,
pages 749–767, 2005.

[19] D. Sujudi and R. Haimes. Identification of swirling flow in 3D vector
fields. Technical report, Department of Aeronautics and Astronautics,
MIT, 1995. AIAA Paper 95-1715.

[20] C.K. Tang and G. Medoni. Extremal feature extraction from 3-D vec-
tor and noisy scalar fields. In Proc. IEEE Visualization 1998, pages
95–102, 1998.

[21] H. Theisel and H.-P. Seidel. Feature flow fields. In Data Visualization
2003. Proc. VisSym 03, pages 141–148, 2003.

[22] H. Theisel, T. Weinkauf, H.-C. Hege, and H.-P. Seidel. Stream line
and path line oriented topology for 2D time-dependent vector fields.
In Proc. IEEE Visualization 2004, pages 321–328, 2004.

[23] X. Tricoche, G. Scheuermann, and H. Hagen. Topology-based visu-
alization of time-dependent 2D vector fields. In Data Visualization
2001. Proc. VisSym 01, pages 117–126, 2001.

[24] J. van Wijk. Implicit stream surfaces. In Proc. Visualization 93, pages
245–252, 1993.

[25] T. Weinkauf, H. Theisel, H.-C. Hege, and H.-P. Seidel. Boundary
switch connectors for topological visualization of complex 3D vector
fields. In Proc. VisSym 04, pages 183–192, 2004.

[26] T. Wischgoll and G. Scheuermann. Detection and visualization of
closed streamlines in planar flows. IEEE TVCG, 7(2):165–172, 2001.

[27] H.-Q. Zhang, U. Fey, B.R. Noack, M. König, and H. Eckelmann. On
the transition of the cylinder wake. Phys. Fluids, 7(4):779–795, 1995.

