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(a) 184 first order critical points. The box around the molecule represents
the chosen area for topological simplification.

(b) Topologically simplified representation with one higher order critical
point elucidates the far field behavior of the benzene.

Figure 1: Topological representations of the electrostatic field of the benzene molecule.

ABSTRACT

This paper presents an approach to extracting and classifying higher
order critical points of 3D vector fields. To do so, we place a closed
convex surface s around the area of interest. Then we show that the
complete 3D classification of a critical point into areas of different
flow behavior is equivalent to extracting the topological skeleton of
an appropriate 2D vector field on s, if each critical point is equipped
with an additional Bit of information. Out of this skeleton, we cre-
ate an icon which replaces the complete topological structure inside
s for the visualization. We apply our method to find a simplified vi-
sual representation of clusters of critical points, leading to expres-
sive visualizations of topologically complex 3D vector fields.

CR Categories: I.3.3 [Computer Graphics]: Line and Curve Gen-
eration I.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism

1 INTRODUCTION

Topological methods have become a standard tool to visualize 2D
and 3D vector fields because they offer to represent a complex flow
behavior by only a limited number of graphical primitives. [6] in-
troduced them as a visualization tool by extracting critical points
and classifying them into sources, sinks and saddles, and integrat-
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ing certain stream lines called separatrices from the saddles in the
directions of the eigenvectors of the Jacobian matrix. Later, topo-
logical methods have been extended to higher order critical points
[12], boundary switch points [2], and closed separatrices [22]. In
addition, topological methods have been applied to simplify [2] [3]
[17] [18], smooth [21], compress [7] and design [15] vector fields.
The topology of 3D vector fields is visualized in [5], [8], [9], [16],
[19]. [11] gives an overview on flow visualization techniques fo-
cusing on feature extraction approaches.

In general we see that there is still a rather small amount of re-
search done for topological methods of 3D vector fields. Similar
to 2D vector vector fields, 3D vector fields can have higher order
critical points. Also, there can be clusters of critical points which
should be combined to a more simple representation.

In this paper we present an approach to extracting higher order
critical points of 3D vector fields which can be used as a topologi-
cal simplification method. Although the extraction of higher order
critical points [12] and the topological simplification [17] are well-
researched for 2D vector fields, we are not aware of any topological
simplification or higher order critical point extraction approaches
for 3D vector fields.

The solution which we present here can be considered as a 3D
extension of [17]. There, a convex closed polygon is placed around
an area of interest (i.e., a cluster of critical points) and the potential
location c of the higher order critical point is set inside the poly-
gon. Then a segmentation into areas of different flow behavior is
achieved by analyzing number and order of the points x on the poly-
gon where the vector of the vector field is either parallel or perpen-
dicular to x− c.

Similar to [17], our solution for a 3D vector field v first assumes
that the location of a higher order critical point is known. Then a
closed convex surface s with genus zero is placed around c, and the
topological classification of c is achieved by analyzing the flow be-
havior towards c for stream lines starting from each point of s. The



result is a segmentation of s into areas of different flow behavior
around c. For this, an icon is created which represents the higher
order critical point in the visualization.

Although this approach primarily assumes that s surrounds a
very small area around a critical point, it can also be used to cover
larger areas, for instance clusters of critical points. In this case, the
location of the critical point c has to be set inside s (for instance at
the average position of all critical points inside s). Then the result is
an icon for a higher order critical point which replaces the complete
topological skeleton of the area inside s in the visualization. This
way the algorithms acts as a topological simplification technique.

This paper can also be seen as an extension of [10] which puts a
closed surface around a region of interest as well in order to com-
pute the index of the circumscribed area by an geometric algebra
approach. However, our approach does not focus on the index of a
critical point but on segmentation of areas of different flow behav-
ior. Also, [10] mainly aims in the detection of critical points while
our approach is applied to simplify 3D vector fields.

The rest of the paper is organized as follows: section 2 gives a
short overview about the topological behavior around general 3D
critical points. Section 3 gives the main theoretical contribution of
the paper. It shows that the complete segmentation of a 3D critical
point can be done by extracting the topological skeleton of a suit-
able 2D vector field on a closed surface where each critical point
is equipped with an additional Bit of information. While section
4 presents an appropriate icon for 3D higher order critical points,
section 5 applies our method to simplify a topologically complex
vector field. Section 6 draws conclusions and mentions issues for
future research.

2 THE TOPOLOGY OF A 3D CRITICAL POINT

Given is a 3D vector field v which has an isolated critical point c.
This means that v(c) = (0,0,0)T , and v(x) 6= (0,0,0)T in a certain
neighborhood of c. If the Jacobian at c fulfills det(J(c)) 6= 0, c is
a first order critical point which can be classified as a source, sink
or saddle by an eigenvalue/eigenvector-analysis of J (see [19] for
details).

In this paper we are particularly interested in higher order crit-
ical points, i.e. critical points with det(J(c)) = 0. To capture the
topoloogical behavior of such a point c, we consider a small closed
surface s around c which has as well-defined surface normal almost
everywhere. A variety of different shapes for s can be chosen. For
the theoretical explanation in this section we use a sphere, whereas
later for the introduction of our algorithm we use a box. In order to
capture the topology of c only, the surface s has to be chosen that
small that the flow at any point on s is governed by c. In particular,
no other critical point except c must be inside s. Then every point
x on s can be classified by considering the stream line of v starting
in x in both forward and backward direction. In one of those direc-
tions the stream line can have two kinds of behavior concerning c:
it may run into c, or it may diverge away from c. Then x can be
classified in the following way:

• x belongs to an inflow sector (parabolic) if the forward inte-
gration of v from x ends in c while the backward integration
diverges away from c.

• x belongs to an outflow sector (parabolic) if the forward in-
tegration diverges away from c and the backward integration
ends in c.

• x belongs to a hyperbolic sector if both forward and backward
integration diverge away from c.

• x belongs to a elliptic sector if both forward and backward
integration end in c.

Figure 2: F-classification of x concerning the behavior of the stream
line in forward and backward direction: x belongs to a) an inflow
sector, b) an outflow sector, c) a hyperbolic sector, d) an elliptic
sector.

forward backward F-classi- color
integration integration fication scheme
ends in c diverges from c inflow blue

diverges from c ends in c outflow red
diverges from c diverges from c hyperbolic yellow

ends in c ends in c elliptic green

Table 1: F-Classification: 3D flow behavior of a stream line with
respect to c.

In the following we call this classification the F-classification of
x. "F" stands for flow because we analyze where the flow (both
in forward and backward direction) starting from a point converges
to. Figure 2 gives an illustration, whereas table 1 summarizes it.
This table already introduces the color coding which later will be
used to visualize areas of different F-classification. Note that for a
classification of a point x ∈ s it is not sufficient to check whether
v(x) points inside or outside s. Figure 3a shows an example where
v(x) points outside s while the stream line integration starting from
x yields that x is part of an inflow sector.

Now a topological segmentation of c simply means to find a
segmentation on s into areas of different F-classification. To do
so, certain separation curves on s have to be extracted. These are
curves with the property that all points on them have the same F-
classification, while the adjacent points on at least one side of the
curve have another F-classification. Examples of separation curves
are shown in figure 3b. Here the red and blue closed lines on s sepa-
rate a hyperbolic sector from an inflow sector and an outflow sector
respectively.

For the Computer Graphics community, a first approach to treat
sectors of different flow behavior around 3D critical points was
given in [20]. However, this approach did not consider the extrac-
tion but the construction of a critical point: separation curves on
s were constructed as closed polygons, then piecewise linear vec-
tor fields of the specified classification were automatically created.
[20] put a number of restrictions onto the separation curves: all
points on them had to have an F-classification of either inflow or
outflow, and the separation curves had to be closed curves. Figures
3b-d show an example. However, as we will show later in this pa-
per, separation curves on s can also be hyperbolic or elliptic, and
they do not have to be closed.

3 EXTRACTING THE SECTORS AROUND A CRITICAL POINT

In this section we describe how to segment s into areas of different
F-classification. We first assume that we know the location of a
higher order critical point c in v, such that a small closed surface s
can be placed around it. However, in practice higher order critical
points rarely appear because they are usually split into clusters of
first order critical points. Our approach works for these cases as
well: s is placed around the cluster, and in addition the location of
c has to be set inside s. To do so, we either choose the average



Figure 3: a) although v(x) points outside s, x is part of an inflow
sector; b) critical point consisting of two closed separation curves:
outflow (red), and inflow (blue) separating three sectors; c) modelled
closed polygons on s representing separation surfaces; d) final icon
(from [20]).

Figure 4: A vector field v and a closed surface s with its center c.

position of the critical in the cluster, or we simply choose the center
of s. In fact, our approach can be applied to any region of v giving
a valid topological description of it.

The main contribution of this section is to show that the segmen-
tation of s into areas of different F-classification essentially corre-
sponds to the extraction of the topological skeleton of an appropri-
ate 2D vector field u on s where every critical point of u is provided
with an additional Bit of information. The segmentation of s is done
entirely by sampling v on s: the behavior of v outside s is not con-
sidered. This approach is reflected by the introduction of a new 3D
vector field w which is a simplified version of v: v and w coincide
on s but may differ in other areas. We start with the introduction of
u and w as well as some other auxiliary vector fields.

3.1 Auxiliary vector fields

Again, we consider a 3D vector field v, a closed surface s in the do-
main of v, and a point c inside s. Here we use an axis-parallel box
which simplifies the following implementations: vector operation
on s become operations on a collection 2D plane vector fields. Fig-
ure 4 gives an illustration of a 2D example. Out of this, we define a
number of auxiliary vector fields:

• Let v|s be the restriction of v to the domain s. This means that
v|s is a map from the 2D domain s to IR3. Figure 5a illustrates
this. v|s is the only part of v which is used to classify c.

(a) v|s: restriction of v to s. (b) u: projection of v|s onto s.

Figure 5: Restriction to and central projection onto s.

(a) for nv ≥ 0. (b) for nv < 0.

Figure 6: Obtaining the central projection vector field u.

Figure 7: a) Auxiliary 3D vector field w; b) x is a w-outflow critical
point of u; c) x is w-inflow critical point of u; d) the central projection
of a stream line of w is a stream line of u.

• Let n be the normalized outward normal at each point of s.

• Let u be the central projection of v|s onto s with the projection
center c. For every point x ∈ s, u(x) can be computed as

u = α r+β v

with

r = sign(n v) · (x− c)

α =
−(n v)

(n r)+(n v)
, β =

(n r)
(n r)+(n v)

.

Figure 6 explains this. Figure 5b illustrates u for the 2D ex-
ample.

• Let w be constructed in the following way: given a point x ∈
IR3 with x 6= c, we intersect s with the line segment (x,c). This
gives a unique intersection point sx on s which can be written
as sx = (1−λx) c+λx x for a certain λx ≥ 0. Then we com-
pute w(x) = v(sx)/λx. In addition we set w(c) = (0,0,0)T .
Figure 7a illustrates the definition of w.

Note that u is a 2D vector field on the surface s, while v and w are
3D vector fields. w can be considered as a simplified version of v:
v and w are identical on s, while all other vectors of w are obtained
by a linear interpolation between c and a point on s. Since we only
use v|s for the classification, we are allowed to do the classification
for w instead for v.

Due to the construction of u and w, there are a number of rela-
tions between them: x ∈ s is a critical point of u iff v(x) = γ(x−c)
for a certain γ 6= 0. In this case, the stream line of w starting in x
is a straight line from x to c, either in forward or in backward in-
tegration. Hence, every critical point of u can be classified by two
criteria:

• concerning the classical topological classification of a critical
point of a 2D vector field, i.e. as a source, sink, or saddle.
(The structurally unstable case of a center is not considered
here.)



(a) Inflow sector. (b) Outflow sector.

(c) Hyperbolic sector. (d) Elliptic sector.

Figure 8: F-classification of a single point x on s depends on the w-
inflow/outflow behavior of the end points of the stream line through
x in u.

end point xB end point xF F-classification
backward integration forward integration of x

w-inflow w-inflow inflow
w-outflow w-outflow outflow
w-inflow w-outflow hyperbolic
w-outflow w-inflow elliptic

Table 2: F-classification of a single point x on s.

• concerning the sign of γ: x is called a w-inflow point if γ < 0,
i.e., w(x) points to c. For γ > 0, x is called a w-outflow point.
Figures 7b and 7c illustrate this.

Another relation between u and w can be established concerning
their stream lines. Let x 6= c be a point in the 3D domain of w.
Considering the stream line of w starting in x, it turns out that its
central projection onto s is a stream line of u. This follows directly
from the definition of u and w. Figure 7d illustrates this relation.

3.2 F-classification of a single point on s

After establishing the relations between u and w, we can get the
F-classification of an arbitrary point x ∈ s in a simple way. Instead
of integrating w starting from x and observing whether or not the
stream line ends in c, we apply a 2D stream line integration of u
starting from x. This integration ends in two certain critical points
of u: xB by backward and xF by forward integration. Usually xB
is a source and xF is a sink, but they might be saddles as well –
in case that x lies on a separatrix of the topological skeleton of u.
However, the F-classification of x can simply be obtained by con-
sidering the w-inflow/outflow behavior of xB and xF respectively,
as summarized in table 2 and illustrated in figure 8.

The goal of this paper is to segment s into areas of different F-
classification. Since we are now able to F-classify any point on this
surface, we could naively do so for a high number of sample points.
In figure 9 we did this for a test data set (a region in the benzene
data set, which will be explained in detail in section 5 – we use
this test data set throughout the rest of this section for algorithmic

Figure 9: Naive approach of
F-classifying s: 2562 points on
each face have been F-classified
according to table 2 by integrat-
ing stream lines starting/ending
in the depicted sources/sinks.
Computation time: 700 seconds
(P4 3.4GHz).

(a) Extracted skeleton of u. (b) F-classified skeleton of u.

Figure 10: Exploiting the topology of u to F-classify s.

explanations). It clearly shows distinctive areas of color coded flow
behavior. There are three major reasons, why this approach is not
satisfying:

• It takes a rather long time to integrate the stream lines for a
reasonable resolution. In this example, we started a stream
line integration at 2562 sample points on each face of the box.
This took more than 700 seconds on a Pentium 4 with 3.4
GHz.

• It only yields a visual representation of the different sectors.
One still needs to apply some other algorithm in order to get
a feature-based separation, i.e. lines or points.

• It does not capture all features on s. Even already for first or-
der 3D saddles enclosed by s there are points and lines on the
surface with a different F-classification than their surround-
ing area (hyperbolic area vs. inflow/outflow points and lines).
Even for very high resolutions, such points and lines are only
hit by accident.

In the following subsections we present an algorithm which cap-
tures all features of w and is orders of magnitude faster.

3.3 F-classification of all points on s

For the F-classification of a single point, we utilized the stream line
of u through that point and looked at the w-inflow/outflow behavior
of its start and end point. Those start and end points are critical
points of u. It is easy to see, that all points x have the same F-
classification, if all their stream lines start and end in the same pair
of critical points. Thus, the topological skeleton of u gives the de-
sired segmentation of s. We give the following algorithm:

1. Extract the topological skeleton of u. It consists of critical
points and separation curves (Figure 10a).

2. F-classify all critical points of u concerning their w-in-
flow/outflow property (Figure 10b).



Figure 11: a) a topological substructure of u consisting of a source
xR (red), a sink xA (blue), two saddles xSa1,xSa1 (yellow), and 4 sepa-
ratrices; b) classification of the topological segment on u concerning
the w-inflow/outflow behavior of the critical points; c),d) other topo-
logical substructures of u.

(a) Substructure of figure 11a.

(b) Substructure of figure 11c.

(c) Substructure of figure 11d.

Figure 12: Cases for F-classifying the substructures of the topological
skeleton of u. Colored according to table 1.

3. F-classify all separatrices of u. To do so, consider the w-
inflow/outflow property of the two critical points where the
separatrix starts and ends (Figure 10b).

4. F-classify the remaining areas. To do so, consider the w-
inflow/outflow property of the two critical points where the
integration in forward and backward direction starts and ends
(Figure 10b).

We describe details of this algorithm at an example. Figure 11a
shows a certain substructure of a topological skeleton of u consist-
ing of a source xR, a sink xA and two saddles xSa1, xSa2. From each
saddle, two separatrices have been integrated (one in forward and
one in backward direction) which end in xR and xA respectively. In
our example we assume that xR, xA are w-outflow while xSa1, xSa2
are w-inflow, as shown in figure 11b. Note that the color coding
of figure 11b is different than figure 11a: here the red color means
w-outflow, and the blue color means w-inflow. Then the separatri-
ces from the source xR to both saddles have elliptic behavior, while
the separatrices from both saddles to the sink xA possess hyperbolic
behavior (see table 2). All points inside the area surrounded by the
four separatrices have the property that a forward integration of u
starting from them ends in xA while a backward integration ends in
xR. Hence they are part of an outflow sector (table 2).

3.4 A complete system of 2D topological substructures

The example of figures 11a-b shows that the elements (i.e., critical
points, separatrices, inner area) of a topological substructure may
have a different F-classification. Since the F-classification is en-
tirely based on the w-inflow/outflow behavior of the critical points,
there are 16 cases of F-classifying this topological substructure with

4 critical points. Figure 12a illustrates this: the location of critical
points is the same as in figure 11a for each of the cases. The color
coding here corresponds to table 1 and gives the F-classification of
the critical points, separatrices, and inner areas respectively.

Another possible topological substructure of u is shown in figure
11c: both outflow separatrices of a saddle xSa end in the same sink
xA, whereas inside the surrounded area there is a source with a sep-
aratrix to the saddle as well. A similar substructure with exchanged
source and sink is shown in figure 11d. Figures 12b-c show the F-
classification of the 8 possible cases for each of those two types of
substructures.

Finally we show that the topological substructures of figure 11
are essentially the only ones which can appear in u. We do so by
considering the following facts:

• Each topological substructure consists of exactly one source
and one sink. In fact, the inner area of a substructure describes
exactly the area where the flow goes from this source to this
sink. If there were for instance two sources, we would have
another separation between them.

• Each separatrix goes from a saddle to a source or a sink. This
means that we do not allow structurally unstable saddle con-
nections (i.e., stream lines from one saddle to another).

• Each source/sink must not have more than two separatrices
of the substructure ending in it. If a source/sink had three
separatrices ending in it, the middle one would define another
separation.

From these points it follows that the maximal number of separa-
trices involved in a substructure is 4. This gives that at most two
saddles can be involved. The only case with two saddles is shown
in figure 11a, the two cases with one saddle are shown in figures 11c
and 11d. There is also a trivial case with no saddles involved: if u
has only one source, one sink and no saddles, and the complete flow
on u goes from the source to the sink. In this case, the complete area
of s (except the critical points themselves) gets the F-classification
concerning to the F-classification of the critical points.

3.5 Obtaining a minimal skeleton

In section 3.3 we extracted the topological skeleton of the projected
2D vector field u. While these critical points and separation curves
segment u into areas of different flow behavior, not all of them are
necessarily needed to do the segmentation into areas of different
F-classification. A redundancy with respect to the segmentation
of w is introduced to that skeleton since only the w-inflow/outflow
behavior has to be considered in order to do the segmentation. In
other words, some neighboring substructures of the 2D skeleton
may have the same F-classification and thus, the separation between
them does not reflect different sectors of F-classification. Figures
13a-b illustrate this.

A minimal skeleton representing the different sectors of the F-
classification only has to be found: structural elements of the 2D
skeleton with identical behavior as their neighbors have to be either
merged with them or completely removed. For this, we convert
the 2D skeleton into a graph representation, where critical points
reflect nodes, separation curves correspond to edges between two
nodes, and inner areas are represented by their associated curves
and points. We consider a graph to emphasize that any geometrical
information can be discarded for the following. To minimize the
skeleton, we have to

• remove edges, if they exhibit the same F-classification as their
neighboring areas,

• merge areas, if an edge belonging to all of them has been re-
moved,



(a) Redundant skeleton. (b) Substructures of the upper
face.

(c) Minimal skeleton. (d) Upper face after removal
and merging.

Figure 13: F-classified topological skeleton of u before and after the
removal of redundant elements.

• remove unconnected nodes (i.e., not connected to an un-
deleted edge), if they have the same F-classification as their
surrounding area,

• remove nodes, if they possess the same F-classification as all
their connected edges,

• merge two edges, if both have been connected to the same
deleted node.

Figures 13c-d illustrate the outcome of this process. Note that nodes
cannot be merged since they correspond to isolated critical points
in the skeleton, and areas can not be removed since their union cov-
ers the whole 2D domain on s. The obtained graph represents the
minimal skeleton needed to distinguish between sectors of different
F-classification. Critical points in this skeleton correspond to direc-
tions of straight inflow/outflow, while the remaining curves give the
separation surfaces in between the different sectors (i.e., areas).

Our algorithm needed 4 seconds on our hardware to extract, F-
classify and minimize the skeleton of the test data set. This is much
faster than the naive approach depicted in figure 9. Furthermore,
our algorithm guarantees to capture all features on s. For example,
figure 13c shows in contrast to figure 9 an outflow separation curve
between two hyperbolic areas on the upper face.

4 ICONIC VISUALIZATION

To visualize a critical point, we place an appropriate icon into its
location. Our approach is very similar to [20] with the difference
that we do not put the restriction on the separation surfaces to be
either inflow or outflow. Those surfaces are constructed from the
remaining curves of the minimal skeleton by creating a triangle fan
between the curve and the critical point c. To perceptually enhance

(a) Higher Order example of
section 3.

(b) First Order saddle inside
non-minimized skeleton.

Figure 14: Icons.

their visualization, the curves on the box are displayed using cylin-
drical meshes. If a separation surface degenerates to a line (i.e.,
point in the skeleton denoting direction of straight inflow/outflow),
we visualize it using a 3D arrow. Color coding is according to the
F-Classification.

It remains to visually depict the sectors of different 3D flow be-
havior. Inflow/outflow sectors are represented by filling the areas
with an opaque surface using the respective color. For elliptic sec-
tors we do the same with a semi-transparent surface. Hyperbolic
sectors are left open. Figure 14a shows the icon for the example
used in section 3. In the end it turns out, that this visualization
scheme yields icons for first order critical points similar to [16, 19]
(Figure 14b).

5 APPLICATIONS

Figures 1, 15 and 16 visualize the electrostatic field around a ben-
zene molecule. This data set was calculated on a 1013 regular grid
using the fractional charges method described in [13]. Its topolog-
ical richness is shown in figure 1a: it consists of 184 first order
critical points.

This field describes the force of the electrostatic potential of the
benzene molecule upon a positive point charge given in a certain
location. If such a point charge is situated very close to the mole-
cule, the closest atom will exert the highest force on it, i.e., attract
or repel it. The influence of a single atom decreases the farther the
point charge is located from the whole molecule. Instead, all atoms
have nearly the same influence. One might say that the molecule as
a whole is exerting force on a somewhat far located point charge.
Thus, it is possible to distinguish between a near and a far field.
Furthermore, the critical points of the electrostatic field represent
minima and maxima of the potential. See [1] for a further discus-
sion of classifying atoms and molecules based on field topology.

These properties give a good setting for our algorithm. By plac-
ing a large box around the whole molecule, we yield a high level of
abstraction. Figure 15a shows the box around the whole molecule
together with the extracted and F-classified topological skeleton of
the projected 2D vector field u. The minimal skeleton is depicted in
figure 15b. As it can be seen here, there is a star-shaped inflow area
(blue), an outflow line (red), and an elliptic area (green) between
them in the visible parts of the box. Figure 1b shows the icon for
this area together with stream lines of w. It clearly shows the be-
havior of the far field of the benzene molecule, if one compares it
with figure 15c.

In figure 16 we lowered the abstraction level by subdividing the
domain in 3 (figure 16a) or 9 (figure 16b-c) subareas. This clearly
shows the presence of a more complex topological behavior if we
zoom into regions of interest. This is due to the fact that these de-



(a) Extracted and F-classified skeleton.

(b) Minimal skeleton.

(c) Icon. Stream lines of the original vector field have been seeded inside
the yellow boxes at the bottom and top.

Figure 15: Benzene data set: High level of topological abstraction.

tailed regions are governed by the near field because the influence of
the individual atoms increases. Figure 16 shows that topologically
rather complex structures are present which consist of complex ar-
eas of different F-classification.

The application of our technique to this topologically complex
data set shows its usefulness at various levels of simplification: if a
large area of interest is chosen, a rough global topological impres-
sion about the global behavior of the vector field can be obtained.
Focusing the area of interest to particular smaller areas inside, topo-
logically more complex structures become visible and provide a
deeper insight into the topological behavior of the vector field.

6 CONCLUSIONS

In this paper we made the following contributions:

• We presented a method to segment the regions around a higher
order critical point into areas of different 3D flow behavior (F-
classification).

• We showed that this segmentation can be done by extracting
and minimizing the topological skeleton of a 2D vector field
on a closed surface circumscribing the critical point. For this,
each critical point of the 2D vector field had to be equipped
with an additional Bit of information.

• We represented the segmentation of the areas around a 3D
higher order critical point by an appropriate icon.

• We applied the method not only to analyze the topological
behavior around higher order critical points but to any area of
interest, e.g., around clusters of critical points. This way we
have a topological simplification tool for 3D vector fields by
replacing the topological skeleton inside the area of interest
by the created icon.

• We applied the topological simplification approach to a topo-
logically complex test data set.

There are a number of issues left for future research:

• Our current approach is based on the assumption that the com-
plete topological segmentation of u is given by critical points
and separatrices starting from them. However, there may also
be isolated closed stream lines on u which topologically act
as sources or sinks. This tends to happen when a swirling
behavior of v inside s is present, making the approach in the
presented form fail. The additional consideration of isolated
closed stream lines on u is intended to be included into the
approach.

• The approach can be extended to work on areas with critical
lines passing through.

• Although for 2D vector fields there is a simple relation be-
tween the number of sectors of different flow behavior around
a higher order critical point and its index [4], we are not aware
yet of a similar relation for the 3D case.
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(a) Medium level of abstraction.

(b) Low level of abstraction. View from side. (c) Low level of abstraction. Front view.

Figure 16: Benzene data set: Medium and low level of abstraction.
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