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Summary

We present a unified feature extraction architecture consisting of only three core
algorithms that allows to extract and track a rich variety of geometrically defined,
local and global features evolving in scalar and vector fields. The architecture builds
upon the concepts of Feature Flow Fields and Connectors, which can be imple-
mented using the three core algorithms finding zeros, integrating and intersecting
stream objects. We apply our methods to extract and track the topology and vortex
core lines both in steady and unsteady flow fields.

1 Introduction

As the resolution of numerical simulations as well as experimental measurements
like PIV have evolved significantly in the last years, the challenge of understand-
ing the intricate structures within their massive result data sets has made automatic
feature extraction schemes popular. Exploratory techniques alone do not suffice to
analyze massive result data sets. Due to the sheer size of the data they have to be
complemented by automatic feature extraction schemes, which give a reliable basis
for subsequent manual explorations.

In this paper we focus on the treatment of flow fields. They play a vital role
in many research areas. Examples are combustion chambers, turbomachinery and
aircraft design in industry as well as visualization and control of blood flow in
medicine. For this class of data, topological and vortical structures are among the
features of interest. Extraction of those structures helps in understanding processes
inherent to the flow. This knowledge is the basis for manipulating those processes
in terms of flow control.

While [13] gives an overview on flow visualization techniques focusing on fea-
ture extraction approaches, we give a short introduction here. Topological methods
have become a standard tool to visualize 2D and 3D vector fields because they offer
to represent a complex flow behavior by only a limited number of graphical primi-
tives. [6] and [5] introduced them as a visualization tool by extracting critical points
and classifying them into sources, sinks and saddles, and integrating certain stream
lines called separatrices from the saddles in the directions of the eigenvectors of



the Jacobian matrix. Later, topological methods have been extended to higher order
critical points [16] [28], boundary switch points [3] and curves [27], closed separa-
trices [32] [23], and saddle connectors [22]. In addition, topological methods have
been applied to simplify [3] [25] [30], smooth [31], compress [9] and design [19]
vector fields.

While they aim at the segmentation of a vector field into areas of different flow
behavior, vortex oriented methods highlight turbulent regions of the flow. Recently
some work has been done to link these different areas: [4] [26] employ topological
methods to analyze the phenomenon of vortex breakdown. Vortices play a major role
due to their wanted or unwanted effects on the flow. In turbomachinery design, vor-
tices reduce efficiency, whereas in burning chambers, vortices have to be controlled
to achieve optimal mixing of oxygen and fuel. In aircraft design, vortices can both
increase and decrease lift. Algorithms for the treatment of vortical structures can be
classified in two major categories:

– Vortex region detection is based on scalar quantities that are used to define a
vortex as a spatial region where the quantity exhibits a certain value range. We
refer to them as vortex region quantities. Examples of this are regions of high
magnitude of vorticity or negative λ2-criterion [8]. In general, these measures
are Galilean invariant, i.e., they are invariant under adding constant vector fields.
This is due to the fact that their computation involves derivatives of the vector
field only. Isosurfaces or volume rendering are common approaches for visual-
izing these quantities, which requires the choice of thresholds and appropriate
isovalues or transfer functions. As shown in [14], this can become a difficult
task for some settings.

– Vortex core line extraction aims at extracting line type features that are regarded
as centers of vortices. Different approaches exist. [18] [12] consider lines where
the flow exhibits a swirling motion around it. [1] extracts vorticity lines seeded
at critical points and corrected towards pressure minima. [15] considers stream
lines of zero torsion. All of these approaches include a Galilean variant part,
i.e., they depend on a certain frame of reference. In contrast to vortex region
detection described above, the extraction of those lines is parameter free in the
sense that their definition does not refer to a range of values. This eliminates the
need of choosing certain thresholds.

In this paper we present an unified approach to extracting and tracking a variety
of flow features. Hereby we define the term feature as follows:

– A feature is an n-dimensional geometrical structure embedded into a m-dimensional
domain.

– It is located inside the domain of the analyzed data.
– It yields certain “insight” into the data.

Finally, the actual definition of a feature depends on the application. In this paper,
we mainly treat topological and vortical structures of flow fields. The paper is orga-
nized as follows. Section 2 explains the unified feature extraction architecture, while



sections 3 and 4 treat the main concepts behind it, namely Feature Flow Fields and
Connectors. We apply our method in section 5 to a number of data sets and feature
definitions. Conclusions are drawn in section 6.

2 Unified Feature Extraction Architecture

Almost every feature can be extracted and tracked using a combination of the fol-
lowing core algorithms:

– Finding zeros
– Integrating stream objects
– Intersecting stream objects

We show in section 3 how the first two algorithms can be combined in the Feature
Flow Field approach to extracting and tracking features that are defined locally.
The intersection of stream objects becomes necessary, where the features we are
interested in have a global nature, like closed stream lines. Here the Connectors
approach can be applied (section 4).

We now briefly comment on each of the above algorithms.

2.1 Finding Zeros

We are interested in extracting isolated zeros of functions f : Rn → Rn. Several
approaches exist, some depending on the interpolation scheme:

– Newton-Raphson: use the first derivative to repeatedly predict a zero [12].
– In piecewise linear fields, e.g. tetrahedral grids, the zeros can be computed ex-

plicitely.
– In piecewise trilinear fields, e.g. regular grids, a component wise change-of-

sign test is a necessary condition for a zero inside the grid cell. Based on this
test, a recursive domain decomposition can be applied to the cell that converges
to a zero. This method extends to finding zeros of functions f : Rn → Rm, is
quick, robust, and easy to implement. So we favor this method over the Newton-
Raphson-approach for trilinear fields.

2.2 Integration of Stream Objects

Given a flow field f : Rn → Rn we aim at constructing m + 1-dimensional stream
objects from m-dimensional seeding structures.

– For m = 0 we obtain a stream line or integral curve.
– For m = 1 we obtain a stream surface by triangulating stream lines seeded

equidistantly on the seeding line, see [7] for a thorough treatment of this topic.
– Starting from seeding surfaces, we obtain flow volumes, see [10] for implemen-

tation details.



Naively integrating stream objects from a seeding structure might result in passing
through the whole dataset for each stream object, a costly undertaking, when the
dataset is too large to fit into main memory and the number of stream objects is high.
Nevertheless Weinkauf et al. showed in [29] that it is possible for a huge subclass of
features to do all stream object integrations by sequentially loading the dataset only
once, keeping just two consecutive time steps in memory at a time.

Where section 3 shows that finding zeros and integration of stream objects suf-
fices for finding features that are locally defined, stream object integration becomes
necessary if such a definition is not at hand.

2.3 Intersection of Stream Objects

Given a flow field f : Rn → Rn and two m-dimensional (m > 1) stream objects
R (integrated in forward direction) and A (integrated in backward direction) we aim
at extracting the intersection of R and A, i.e., the m− 1-dimensional stream object
that both R and A share.

– For m = 2 we obtain a stream line which lies in both intersecting stream sur-
faces.

– For m = 3 we obtain a stream surface which lies in both flow volumes.

Figure 2 shows an example for m = 2, where two stream surfaces share a common
stream line.

3 Feature Flow Fields

The concept of feature flow fields was first introduced in [21]. It follows a rather
generic idea:

Consider an arbitrary point x known to be part of a feature in a (scalar, vector,
tensor) field v. A feature flow field f is a well-defined vector field at x pointing into
the direction where the feature continues. Thus, starting a stream line integration of
f at x yields a curve where all points on this curve are part of the same feature as x.

FFF have been used for a number of applications, but mainly for tracking fea-
tures in time-dependent fields. Here, f describes the dynamic behavior of the fea-
tures of v: for a time-dependent field v with n spatial dimensions, f is a vector field
IRn+1 → IRn+1. The temporal evolution of the features of v is described by the
stream lines of f . In fact, tracking features over time is now carried out by trac-
ing stream lines. The location of a feature at a certain time ti can be obtained by
intersecting the stream lines with the time plane ti. Figure 1a gives an illustration.

Depending on the dimensionality of the feature at a certain time ti, the feature
tracking corresponds to a stream line, stream surface or even higher-dimensional
stream object integration. The stream lines of f can also be used to detect events of
the features:



(a) Tracking features by tracing stream
lines. Features at ti+1 can be
observed by intersecting these
stream lines with the time plane
t = ti+1.

(b) Events: at the time tb a new feature
is born, at the time ts it splits into two
features.

Figure 1 Feature tracking using feature flow fields.

– A birth event occurs at a time tb, if the feature at this time is only described by
one stream line of f , and this stream line touches the plane t = tb “from above”
(i.e., the stream line in a neighborhood of the touching point is in the half-space
t ≥ tb).

– A split occurs at a time ts, if one of the stream lines of f describing the feature
touches the plane t = ts “from above”.

– An exit event occurs if all stream lines of f describing the feature leave the
spatial domain.

The conditions for the reverse events (death, merge, entry) can be formulated in a
similar way. Figure 1b illustrates the different events.

Integrating the stream lines of f in forward direction does not necessarily mean
to move forward in time. In general, those directions are unrelated. The direction in
time may even change along the same stream line as it is shown in figure 1b. This
situation is always linked to either a birth and a split event, or a merge and a death
event.

Even though we treated the concept of FFF in a rather abstract way, we can
already formulate the basics of an algorithm to track all occurrences of a certain
feature in a time-dependent field:

Algorithm 1 General FFF-based tracking

1. Get seeding points/lines/structures such that the stream object integration of f
guarantees to cover all paths of all features of v.



(a) Two stream surfaces starting from
saddle points.

(b) The intersection of the stream
surfaces connects both saddles.

Figure 2 Intersection of stream objects.

2. From the seeding structures: apply a numerical stream object integration of f in
both forward and/or backward direction until it leaves the space-time domain.

3. If necessary: remove multiply integrated stream objects.

Algorithm 1 is more or less an abstract template for a specific FFF-based track-
ing algorithm. Before showing how this template can be used to track critical points
and extract and track vortex core lines in flow fields in the applications section 5, we
can already note, how the steps of algorithm 1 correlate to the core algorithms given
in section 2: the seeding points are usually extracted as critical points of some fields.
Then we use the stream object integration from section 2.2 to track the feature.

But what can be done, if the feature of interest does not admit a local definition?
Here the connectors approach comes into play.

4 Connectors Approach

Given a flow field f : Rn → Rn and two m-dimensional (m > 1) stream objects
R (integrated in forward direction) and A (integrated in backward direction) we aim
at extracting the intersection of R and A, i.e., the m− 1-dimensional stream object
that both R and A share. Figure 2 shows an example for m = 2, where two stream
surfaces share a common stream line. Since the intersection of R and A always starts
at the repelling seeding structure of R and ends at the attracting seeding structure of
A, it is called a connector. A connector is a global feature, i.e., it can not be locally
defined.

An algorithm for the extraction of line-type connectors has been treated in [22].
To find the intersection between a separation surface in forward integration and a
separation surface in backward integration, we integrate both separation surfaces
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(a) Setup of the problem. (b) Shortly before the
intersection.

(c) Intersection found.

Figure 3 Finding the intersection of two separation surfaces reduced to the problem of
intersecting the front triangles of one stream surface with the front line of the other surface.

simultaneously until a first intersection point p1 is found. After refining this inter-
section point (see [22] for details), a stream line from p1 is integrated both forwards
and backwards. This stream line is the connector. Figure 3 gives an illustration of
this algorithm.

5 Applications

In this section we apply the Feature Extraction Architecture to a variety of feature
extraction settings. In section 5.1, topological features are focused while section
5.2 shows how to extract and track vortex core lines using the Feature Extraction
Architecture.

5.1 Topological Feature Extraction

Critical points, i.e. isolated points at which the flow vanishes, are perhaps the most
important topological feature of vector fields. For static fields, their extraction and
classification is well-understood both in the 2D [6] and the 3D case [27]. Critical
points also serve as the starting points of certain separatrices, i.e. stream lines/surfaces
which divide the field into areas of different flow behavior. Where the direct visu-
alization of those stream surfaces result in cluttered images, Theisel et al. showed
in [22] how restricting the display to the intersection lines of those surfaces, called
saddle connectors, increases the comprehensibility. This has been achieved by using
the connectors approach. In [23] and [24] Theisel et al. showed how to extract and
track closed stream lines using the connectors approach.

Considering a stream line oriented topology of time-dependent vector fields,
critical points smoothly change their location and orientation over time. In addition,
certain bifurcations of critical points may occur. To capture the topological behavior
of time-dependent vector fields, it is necessary to capture the temporal behavior of
the critical points. Theisel et al. introduced in [21] a FFF-based approach to track
critical points, which matches algorithm 1. We now show, how the Feature Extrac-
tion Architecture can be applied to this setting.



Figure 4 Tracking 2D critical points:
all points on a stream line of f have the
same value for v. Note that the depicted
stream line is a tangent curve of the fea-
ture flow field f and not of the original
velocity field v.

Critical Point Tracking Let v be a 3D time-dependent vector field, which is given
as

v(x, y, z, t) =

 u(x, y, z, t)
v(x, y, z, t)
w(x, y, z, t)

 (1)

in the 4D space-time domain D = [xmin, xmax] × [ymin, ymax] × [zmin, zmax] ×
[tmin, tmax]. We can construct a 4D vector field f in D with the following proper-
ties: for any two points x0 and x1 on a stream line of f , it holds v(x0) = v(x1).
This means that a stream line of f connects locations with the same values of v.
Figure 4 gives an illustration in 2D. In particular, if x0 is a critical point in v, then
the stream line of f describes the path of the critical point over time. To get f , we
search for the direction in space-time in which both components of v locally remain
constant. This is the direction perpendicular to the gradients of the three components
of v:

f ⊥ grad(u) = (ux, uy, uz, ut)T , f ⊥ grad(v) , f ⊥ grad(w).

This gives a unique solution for f (except for scaling)

f(x, y, z, t) =


+det(vy,vz,vt)
−det(vz,vt,vx)
+det(vt,vx,vy)
−det(vx,vy,vz)

 . (2)

Theisel et al. showed in [24] that two classes of seeding points guarantee that all
paths of critical points are captured: the intersections of the paths with the domain
boundaries, i.e. critical points on the boundaries of the space time domain and fold
bifurcations, locations where a pair of critical point emerges or vanishes. Fold bi-
furcations can be characterized by

[ v(x) = (0, 0, 0)T , det(Jv(x)) = 0 ] . (3)

Applying the Feature Extraction Architecture, we do the following:

– Extraction of seeding structures boils down to finding zeros in the following
flow fields: for intersections with the domain boundary, find zeros of the 4 3D



(a) At ti. (b) Entries. (c) Births. (d) Integration. (e) At ti+1.

Figure 5 Critical points tracked in one sweep through the data by applying the Feature
Flow Fields concept.

flow fields

v(x, y, z, tmin) = 0 and v(x, y, z, tmax) = 0 for the unknowns x, y, z,

v(x, y, zmin, t) = 0 and v(x, y, zmax, t) = 0 for the unknowns x, y, t,

v(x, ymin, z, t) = 0 and v(x, ymax, z, t) = 0 for the unknowns x, z, t,

v(xmin, y, z, t) = 0 and v(xmax, y, z, t) = 0 for the unknowns y, z, t.

As mentioned above, also the fold bifurcation serve as seeding points. To extract
those, a 4D zero extraction has to be applied to formula (3).

– Trace out f from each of the seeding points to obtain the evolution paths of
the critical points. In a postprocessing step remove all lines that are integrated
twice, e.g. resulting from stream lines that leave the domain at two different
locations.

Example: Out-of-core tracking of critical points Weinkauf et al. showed in [29]
how to track critical points in 2D and 3D time-dependent vector fields in an effective
out-of-core manner: in one sweep and by loading only two slices at once. We applied
this algorithm to a random 2D time-dependent data set. Random vector fields are
useful tools for a proof-of-concept of topological methods, since they contain a
maximal amount of topological information. Figure 5 shows the execution of the
tracking algorithm between two consecutive time steps ti and ti+1.

Example: Cavity Figure 6 shows the visualization of a vector field describing the
flow over a 2D cavity. This data set was kindly provided by Mo Samimy and Edgar
Caraballo (both Ohio State University) [2] as well as Bernd R. Noack (TU Berlin).
1000 time steps have been simulated using the compressible Navier-Stokes equa-
tions; it exhibits a non-zero divergence inside the cavity, while outside the cavity
the flow tends to have a quasi-divergence-free behavior. The topological structures
of the full data set visualized in Figure 6a elucidate the quasi-periodic nature of the
flow. Figures 6b-c show approximately one period – 100 time steps – of the full data
set, while Figures 6d-e point out some topological details.

Figures 6b-c both reveal the overall movement of the topological structures – the
most dominating ones originating in or near the boundaries of the cavity itself. The



(a) 1000
time
steps.

(b) Stream line oriented topology
of the first 100 time steps.

(c) Path line oriented topology of
the first 100 time steps.

(d) Tracked closed stream line
starting and ending in a Hopf
bifurcation.

(e) Detail view with a saddle
connection and a fold
bifurcation.

Figure 6 2D time-dependent flow at a cavity. The datasets consists of 1000 time steps
which have been visualized in (a). All other images show the first 100 time steps.

quasi-divergence-free behavior outside the cavity is affirmed by the fact that a high
number of Hopf bifurcations has been found in this area. The tracked closed stream
line in Figure 6d starts in a Hopf bifurcation and ends in another one – thereby
enclosing a third Hopf. Figure 6e shows a detailed view of time step 22, where a
saddle connection has been detected. In the front of this figure a sink is going to join
and disappear with a saddle, which just happened to enter at the domain boundary.

5.2 Vortex Core Line Extraction And Tracking

We apply the Feature Extraction Architecture to Vortex Core Line Extraction. While
[12] gives a good overview of existing vortex core line definitions, we use the most



prominent technique by Sujudi and Haimes [18]. Using the notation of [12] and
denoting w1 := v,w2 := ∇v · v, we define a vortex core line as locations where

w1 ‖ w2, (4)

where ‖ denotes vector parallelity and v is a time dependent flow field as in (1).
In this setting, the Feature Extraction Architecture can solve different tasks:

1. Extract vortex core lines at some time step t0.
2. Track a given vortex core line in time, i.e., given a vortex core line at some

time t0, compute the evolution path of this vortex core line in the 4D-spacetime
domain. This will assemble a surface.

3. Extract the complete vortex core line surface from 2 at once and use it for vortex
core line display and tracking in time.

Spatial Extraction of Vortex Core Lines By (4), a point x is on a vortex core line,
whenever

s(x, y, z, t) :=

 k(x, y, z, t)
m(x, y, z, t)
n(x, y, z, t)

 := v ×∇v · v = w1 ×w2 = 0. (5)

Given a point x0 = (x0, y0, z0, t0)T ∈ D = [xmin, xmax] × [ymin, ymax] ×
[zmin, zmax] × [tmin, tmax] on a vortex core line (i.e. s(x0) = 0), we can trace
stream lines of the following feature flow field f from [20] to extract vortex core
lines from the seed point x0 at time t0:

f(x, y, z, t0) =

 e
f
g

 =

det(sy, sz,a)
det(sz, sx,a)
det(sx, sy,a)

 . (6)

For the choice of a we refer to [20].
In the notation of the Feature Extraction Architecture, the complete skeleton of

vortex core lines at t0 can be extracted as follows:

– From [20] we know, that all vortex core lines are either closed or cross the
boundary. Therefore, we extract as starting points all intersections of the vortex
core lines with the 2D spatial domain boundary [xmin, y, z, t0]∪[xmax, y, z, t0]∪
[x, ymin, z, t0]∪ [x, ymax, z, t0]∪ [x, y, zmin, t0]∪ [x, y, zmax, t0]∪ at timestep
t0, e.g. at xmin:

s(xmin, y, z, t0) = (0, 0, 0)T . (7)

This is a function R2 → R3 with isolated zeros due to the dependencies of the
components in the cross product (5). Closed vortex core lines can be detected
by finding isolated zeros in the field

[ s(x) = (0, 0, 0)T , e(x) = 0 ], (8)

a function R3 → R4, see again [20] for details.
– Given those seeding points, we can extract all vortex core lines at time step t0

by tracing stream lines of f .



(a) Shortly before. (b) The event. (c) Shortly after.

Figure 7 Example of the visualization of vortex core line surfaces. Shown is a saddle bifur-
cation of vortex core lines. The surfaces are displayed bright for future, dark for past times.

Tracking of Vortex Core Lines in Time For any vortex core line at a given time
t0, [20] shows that stream lines of g seeded from the vortex core line tracks the
temporal evolution of the vortex core line:

g(x, y, z, t) =
(

h× f
‖f‖2

)
=

(
h× f

e2 + f2 + g2

)
(9)

with

h(x, y, z, t) =

det(sx, st,a)
det(sy, st,a)
det(sz, st,a)

 . (10)

A complete Vortex Core Line Skeleton In the 4D space time domain D, the vor-
tex core lines build surface structures. In [20] a detailed algorithm is given, how this
surface structure can be extracted based on a bifurcation analysis of the above fea-
ture flow field. In the Feature Extraction Architecture notation, the algorithm reads
as follows:

– Compute the seeding structures:
1. Compute the intersection curves of the vortex core line surface with the

spatial boundaries of D. This can be done by spatial extraction of vortex
core lines as explained above.

2. Extract all local bifurcations introduced in [20] by finding zeros of some
function R4 → R4.

3. Extract closed vortex core lines at the times t = tmin and t = tmax respec-
tively, pick a point on each extracted closed line, and apply a stream line
integration of g starting from them.

4. Start a stream line integration of g from all inflow boundary bifurcations
(zeros of some function R3 → R3).

– Extract and visualize the vortex core line surface for a time interval [t0, t1] with
tmin ≤ t0 ≤ t1 ≤ tmax ):



Figure 8 Flow behind a circular cylinder. Shown are vortex core lines in a certain frame of
reference. Their evolution over time is tracked by our algorithm and depicted using transpar-
ent surfaces. Dark color encodes the past while bright shows the future.

Figure 9 Flow behind a circular cylinder. The extracted seeding lines elucidate the alter-
nating evolution of the vortical structures in transverse direction.

1. Load the seeding lines obtained above.
2. Identify all parts of the seeding lines with t-values between t0 and t1.
3. Starting from these seeding lines, apply a stream surface integration of f

until it leaves D or returns to its starting point.
4. Visualize the stream surfaces obtained in 3.

As projecting the complete vortex core surface to space leads to self-intersections
already in quite simple settings, we use the following approach to visualize the evo-
lution of vortex core line structures: at a given time we draw the vortex core lines
as solid tubes inside the vortex core surface that is displayed only for a certain time
range for future and past. At the boundary of the space domain the corresponding
seeding lines are given for a larger time interval. Both the surfaces and the seed-
ing lines fade out away from the current time. We use color coding to indicate past
(dark) and future (bright). Figure 7 shows the evolution of a specific inner bifurca-
tion called saddle bifurcation. Note that the width of the surface in figures 7a and 7c
confirms the intuition that the most drastic movements of the vortex core line over
time takes place near the bifurcation points.

Example: Flow behind a Circular Cylinder Figures 8 and 9 demonstrate re-
sults of the Unified Feature Extraction Architecture of vortex core line extraction
in a flow behind a circular cylinder. The data set was derived by Bernd R. Noack



(TU Berlin) from a direct numerical Navier Stokes simulation by Gerd Mutschke
(FZ Rossendorf). It resolves the so called ‘mode B’ of the 3D cylinder wake at a
Reynolds number of 300 and a spanwise wavelength of 1 diameter. The data is pro-
vided on a 265×337×65 curvilinear grid as a low-dimensional Galerkin model [11]
[33]. The examined time range is [0, 2π]. The flow exhibits periodic vortex shedding
leading to the well known von Kármán vortex street. This phenomenon plays an im-
portant role in many industrial applications, like mixing in heat exchangers or mass
flow measurements with vortex counters. However, this vortex shedding can lead
to undesirable periodic forces on obstacles, like chimneys, buildings, bridges and
submarine towers.

6 Conclusions

In this paper we exemplified that a rich variety of flow features can be extracted and
tracked by a combination of only three core algorithms, namely finding zeros, inte-
grating and intersecting stream objects. The so-defined Unified Feature Extraction
Architecture builds upon the concepts of Feature Flow Fields and Connectors.
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