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Abstract
Data sets coming from simulations or sampling of real-world phenomena often contain noise that hinders their
processing and analysis. Automatic filtering and denoising can be challenging: when the nature of the noise is
unknown, it is difficult to distinguish between noise and actual data features; in addition, the filtering process itself
may introduce “artificial” features into the data set that were not originally present. In this paper, we propose
a smoothing method for 2D scalar fields that gives the user explicit control over the data features. We define
features as critical points of the given scalar function, and the topological structure they induce (i.e., the Morse-
Smale complex). Feature significance is rated according to topological persistence. Our method allows filtering
out spurious features that arise due to noise by means of topological simplification, providing the user with a
simple interface that defines the significance threshold, coupled with immediate visual feedback of the remaining
data features. In contrast to previous work, our smoothing method guarantees a C1-continuous output scalar field
with the exact specified features and topological structures.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction
Data sets encountered in scientific computing, computer
graphics, medicine and many other fields often contain
noise, originating from errors in the acquisition process of
real-world phenomena or from numerical instabilities in
simulations. The presence of noise hinders the analysis and
further processing of the data. For example, an isocontour
visualization of a noisy scalar field contains a large num-
ber of connected components which clutter the visualization
and mask the true features in the data. Smoothing of the data
set is a commonly accepted approach to deal with noise. The
common goal of all smoothing methods is to remove “small”
features (noise) and keep “large” features. However, most
methods handle the features in an implicit manner and do
not provide guarantees regarding the removal of noise or the
preservation of features.

Common examples of features include vortices in flow
data sets (indicating, for instance, hurricane locations in at-
mospheric data), spots of high temperature in a physical sim-
ulation, or topographic highlights of a map. The ability to
discriminate between noise and true features is important to
most processing and visualization tasks, since features re-
veal significant insights about the structure and meaning of
the data, while noise causes spurious features that may lead
to poor visualizations, erroneous processing results and gen-
eral misinterpretation of the data. It is desirable to remove

the noise in a way that leaves the true features as close as
possible to their original values. For example, a temperature
peak should retain its value after denoising to allow precise
interpretation of the smoothed data.

In this work we explore a smoothing approach that allows
explicit control over the features in the data. We focus on dis-
crete 2D scalar fields that represent irregular and noisy sam-
plings of phenomena that have a (piecewise) smooth ground
truth. We use a general characterization of features com-
monly used in scientific visualization, namely the critical
points (minima, maxima and saddles) of the scalar field, as
well as the global topological structure they induce, i.e., the
Morse-Smale complex (MS complex). Topology not only
provides an abstract characterization of a scalar function, but
also describes many domain-specific features such as the al-
ready mentioned vortices, temperature peaks, or topographic
highlights, which can all be identified as critical points.

Our goal is to devise a data denoising and smoothing
method that allows the user to explicitly control the fate
of the features. The general idea is to capture all features
(“small” and “large”), sort them according to a well-defined
importance measure and allow the user to identify the thresh-
old in this sorted list that discriminates between noise and
true features. Based on this decision we guarantee the re-
moval of the noise and the preservation of the true features.
Furthermore, we guarantee that no additional features are in-
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(a) Input and smoothed scalar fields. (b) Original and simplified MS complex.
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Figure 1: The Pressure data set. The top row shows the noisy input scalar field, and the bottom row our results. The original
topology contains spurious critical points which have low persistence values and are removed by the simplification process.
The persistence histogram on the right shows the number of topological simplification operations (cancellations) as function of
their persistence; the obvious drop in the histogram around a persistence value of 0.01 hints the user at the appropriate noise
threshold. The peak signal-to-noise ratio (PSNR) between noisy input and smoothed result is 30.8 dB.

troduced by the method. Note that standard smoothing meth-
ods generally cannot guarantee feature preservation and may
even introduce new features in the output that were not part
of the original data. For example, it is well known that Lapla-
cian smoothing is prone to form singularities and new criti-
cal points in the data [GZ06].

The algorithmic core for the noise/feature discrimination
of our technique consists of discrete Morse theory [For98]
and topological simplification based on persistence [EHZ03]
or similar importance measures (Section 4). We supply the
user with a simple and intuitive interface to select the impor-
tance threshold in the form of a slider over the persistence
histogram (see Figure 1c). Features whose importance is be-
low the threshold are considered noise and are removed by
means of topological simplification. The result is still a valid
Morse-Smale complex, but with fewer critical points. The
system provides immediate visual feedback of the remain-
ing features and a preliminary C0 scalar field obeying the
topological structure as a faithful preview of the end result
(Section 5).

Our main contribution is the construction of a smooth
function from the simplified Morse-Smale complex. After
fairing the discrete embedding of the separatrices we run a
constrained bi-Laplacian optimization of the entire domain,
where the constraints are deduced from the monotonicity en-
coded in the simplified Morse-Smale complex (Section 6).
The result is a C1-continuous scalar field which closely fits
the input data and obeys the desired topology. The positions
and values of the remaining critical points are preserved ex-
actly as they have been found in the input data. Thanks to
the rigorous theoretical foundations, we are able to provide
sound guarantees regarding the structure of the output, up to
numerical precision. To summarize, the technical contribu-
tions of this work are:

• an algorithm that couples topological simplification and
bi-Laplacian optimization to smooth scalar functions;
• real-time faithful preview of the end result;

• constrained bi-Laplacian smoothing algorithm that pro-
duces C1 output, interpolates the desired features and
guarantees monotonicity within each Morse cell.

We demonstrate the effectiveness of our approach on simu-
lated and experimentally measured data sets (Section 7).

2. Related work
Topology-based smoothing of scalar fields is a common ap-
proach in scientific visualization. Carr et al. [CSvdP04] sim-
plify the contour tree of the input data set, thereby suppress-
ing small topological features. Gingold and Zorin [GZ06]
modify existing filters, such as Laplacian smoothing or
anisotropic diffusion, to disallow “illegal” changes in the
isocontour topology (i.e., creation of new features). This ap-
proach enables one to remove some topological noise but
does not provide explicit control over the resulting topolog-
ical structure.

A setup similar to ours is given by Bremer et al. [BEHP04]
in the sense that the Morse-Smale complex is simplified and
a corresponding scalar field is obtained. There are two major
differences between our method and [BEHP04]: first, they
provide only C0-continuity between Morse-Smale cells of
the resulting scalar field, whereas we provide C1-continuity
there. This makes our method better suited for applications
that require derivatives of the smoothed scalar field. We also
describe a C0 method that we use as a real-time preview,
which is comparable to the result of [BEHP04], but obtained
much faster thanks to the second major difference between
[BEHP04] and our approach: they smooth the function in the
interior of a Morse-Smale cell after each cancellation step in
order to obey the changed topological structure. The smooth-
ing step itself is a complex, time-consuming procedure in-
cluding 1D gradient smoothing and 2D iterative Laplacian
smoothing. Since usually a large number of cancellations
is necessary to remove noise, this iterative approach leads
to very long computation times. In contrast, we construct a
topologically valid function after all cancellation steps have
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(a) Original function
with critical
points.

(b) Simple
reconstruction
after topological
simplification.

(c) Smooth
reconstruction.

Figure 2: Overview of our algorithm using a 1D example.

been carried out. This is significantly faster and allows us
to provide an interactive response for our C0 method. Note
that our C0 method is comparable to the result of [BEHP04]
since their 2D iterative Laplacian smoothing leads after sev-
eral steps to the same harmonic function that we construct
in Section 5 in a single step. In summary, both C0 methods
provide comparable results, but ours is much faster to com-
pute. More importantly, we devise a novel scheme to provide
C1-continuity.

It is worth noting that harmonic functions have been
used for constructing Morse functions on 2-manifold do-
mains [NGH04]. In that work, minima and maxima of the
scalar field were prescribed; we use a similar machinery for
our interactive C0 preview but we prescribe the topology
fully, including saddle points and separatrices.

The topology of scalar fields is a subset of the topol-
ogy of vector fields. Theisel and Weinkauf et al. construct
a 2D or 3D vector field based on a given topological skele-
ton [The02, WTHS04]. These methods construct piecewise-
linear vector fields with C0-continuity and cannot avoid the
appearance of additional critical points (i.e., in addition to
the ones that have been prescribed by the user). Chen et
al. [CML∗07] use Morse decomposition to edit the topology
of vector fields on surfaces.

Feature-preserving smoothing is an active research area
in image and geometry processing, where one strives to
denoise the data without smoothing out features such as
salient edges of a triangle mesh. Examples are anisotropic
diffusion [HP04] and bilateral filtering [TM98]. Traditional
low-pass filtering techniques such as Laplacian smoothing
can also be constrained to interpolate prescribed feature
points [Tau95]. However, none of these methods can gener-
ally guarantee that the features are exactly preserved and no
new features are created in the smoothing process: for exam-
ple, Laplacian or mean-curvature flows may have asymptotic
singularities and may create novel features [GZ06,EPT∗07].
Depending on the application domain, other types of guaran-
tees on the smoothing result have been explored, such as vol-
ume preservation [DMSB99, EPT∗07] or bounded distance
from input data [HP07].

3. Overview
Our smoothing algorithm consists of three main steps:
(i) Persistence-based topological simplification of the

Morse-Smale complex. The noisy input function contains a
large amount of critical points (Figure 2a). Certain pairs of
them can be assigned a well-accepted importance measure
called persistence [ELZ02]. Pairs of critical points whose
persistence is lower than a user-defined threshold are re-
moved in a way that maintains a valid topological struc-
ture (Section 4). (ii) Creation of a quick preview reconstruc-
tion of the scalar field. Left with fewer critical points (Fig-
ure 2b), we create a preview reconstruction of the smoothed
scalar field by computing a harmonic function within each
cell of the Morse-Smale complex (Section 5). The harmonic
function is guaranteed to obey the monotonicity requirement
within each cell, but it is only C0 along the cell boundaries.
(iii) Final smooth scalar field construction by constrained
bi-Laplacian optimization. We compute a C1 function by
constrained bi-Laplacian smoothing of the input scalar field,
where the constraints are inequalities which force the scalar
field to be monotonic within each Morse cell (Section 6 and
Figure 2c). We convert the problem into an unconstrained
nonlinear optimization problem by change of variables and
solve it numerically using a standard truncated Newton min-
imization package.

4. Filtering Features

We identify the features of the input scalar field using topol-
ogy. The topology of a scalar function consists of critical
points as well as their relationship to each other. Critical
points are found at locations where the gradient of the func-
tion vanishes. They are closely related to the behavior of the
connected components of an isocontour when considering an
increasing isovalue. There are three types of critical points:
minima, where components emerge; saddle points, where
they merge or split; and maxima, where components disap-
pear. Four separatrices emanate from every saddle, which
are forwards/backwards integrated gradient curves connect-
ing the saddle with two maxima and two minima. It may
happen that either both minima or both maxima coincide.
Critical points and separatrices form a graph structure which
gives rise to a domain decomposition called the Morse-
Smale complex. It contains 2-dimensional Morse-Smale cells
that are bordered by one minimum, one maximum, and one
or two saddles (Figure 3a). The combination of all Morse-
Smale cells around a single maximum is called a Morse cell
as shown in Figure 3b. Note how the border of a Morse cell
consists of minima, saddle points, and the separatrices con-
necting them. The scalar function behaves monotonically in-
side a Morse cell with respect to the gradient: the function
values are always monotonically increasing along a gradient
curve, and any gradient curve started within the Morse cell
ends at its sole maximum. Also, the Morse cells around all
maxima provide a complete decomposition of the domain.
Similar statements hold for Morse cells around minima.

4.1. Computing the Morse-Smale Complex

We have chosen Forman’s discrete Morse theory [For98,
For02] as the basis for the computation of the Morse-Smale
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(a) 2-dimensional
Morse-Smale cells.

(b) Morse cell around a maximum.

(c) Discrete embedding with a
combinatorial gradient vector field.

Figure 3: Topological concepts.

complex, since it allows purely combinatorial and thus con-
sistent computations, whereas a numerical scheme based on
root finding and gradient curve integration would be im-
paired by the noise of the underlying function. Discrete
Morse theory utilizes the notion of a cell complex, which
in our case of a triangular mesh consists of vertices (0-cells),
edges (1-cells), and triangles (2-cells). In this discrete space,
minima live on vertices, saddles on edges, and maxima on
triangles. A separatrix connecting a saddle with a minimum
is an alternating sequence of edges and vertices. Likewise, a
separatrix from a saddle to a maximum is an alternating se-
quence of edges and triangles. Figure 3c illustrates this. This
way of embedding the topology into the cell complex pro-
vides guarantees regarding the graph structure of the Morse-
Smale complex. For example, two maxima (i.e., triangles)
cannot exist next to each other without having a saddle (i.e.,
an edge) between them, and similarly for two minima. Fur-
thermore, saddles can be connected to at most two maxima
and two minima. The so-called monkey saddles (connected
to more than two minima/maxima) are not possible. A con-
sistent topological structure is highly important since we can
then rely on valid topology for which the simplification oper-
ations are well defined, and a function that realizes the topol-
ogy is guaranteed to exist.

The basis for discrete Morse theory is a combinatorial
vector field – in our case a combinatorial gradient vector
field. The value space of such a field is discrete. It is defined
on the cell complex such that an n-cell points to a single
incident (n + 1)-cell, i.e., vertex → edge and edge → tri-
angle. Furthermore, it is required that a cell does not point
to any of its neighbors if it is already being pointed to by
one of them. Critical points are cells which neither point to
a neighbor nor does a neighbor point to them (zero gradi-
ent). To compute the combinatorial gradient vector field, we
follow the spanning-tree approach of Lewiner [Lew02] and

(a) Before and after the
cancellation of M,Sa.

(b) Persistence in 1D.

Figure 4: Persistence-based simplification by removing
pairs of critical points.

Cazals et al. [CCL03]. It is a watershed-like algorithm that
sweeps through the data in ascending order to establish the
links between 0-cells and 1-cells, and in descending order
for the links between 1-cells and 2-cells. Details of the im-
plementation can be found in [WG09]. Figure 3c shows an
example of a combinatorial vector field (note that it is com-
puted from the negative gradient). To compute the Morse-
Smale complex of a 3D scalar field, the method of Gyulassy
et al. [GBHP08] provides a practical approach.

4.2. Persistence-Based Topological Simplification
Topological simplification is the process of successively re-
moving critical points from the Morse-Smale complex under
the condition that the Morse-Smale complex is in a topolog-
ically consistent state after each simplification step. Consis-
tency is only maintained if a saddle-minimum or a saddle-
maximum pair is removed, which corresponds to merging
two neighboring Morse cells (see Figure 4a). This is called a
cancellation. In our implementation, we identify the order of
cancellations using persistence as introduced by Edelsbrun-
ner et al. [ELZ02, EHZ03], which is a measure of impor-
tance: critical points with lower persistence will be removed
before ones with higher persistence. Loosely speaking, per-
sistence measures the lifetime of connected components of
an isocontour in a 2D scalar field when considering an in-
creasing isovalue. More precisely, it measures the difference
in function value between acts of creation (minima and splits
at saddles) and acts of destruction (maxima and merges at
saddles). Figure 4b illustrates the idea behind persistence us-
ing a simple 1D example: sweeping through the data in an
ascending manner collects the minima (blue) and maxima
(red) in the shown order. Every maximum (act of destruc-
tion) is then paired with a preceding minimum (act of cre-
ation) and the function value difference between these points
is their persistence. Note how the global minimum and max-
imum have been assigned the highest persistence. A detailed
algorithm for computing persistence for Morse-Smale com-
plexes of 2D scalar fields can be found in [EHZ03]. This in-
cludes the pairs of critical points to be removed together. It
has to be noted that paired critical points are not necessarily
adjacent to each other in the initial Morse-Smale complex,
but they will be adjacent right before their cancellation, as
asserted by the Adjacency Lemma proven in [EHZ03].
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A revealing insight into the noise level of a scalar field
is often given by a simple histogram showing the number
of cancellations over persistence, as depicted in Figure 1.
Usually, a very high percentage of cancellations takes place
at very low persistence levels. This makes it rather easy to
identify a threshold discriminating between noise and true
features of a data set. We use this histogram as a guidance
for the user to determine the threshold.

Several alternatives to persistence have been proposed in
the literature that take geometric properties [CSvdP04] or
application-specific aspects into account. Since our main
contributions (Sections 5 and 6) are independent of the par-
ticular choice of a simplification metric, we restrict ourselves
to persistence for the rest of the paper and leave a study of
alternative metrics to future work.

4.3. From the Cell Complex to a Vertex-Based
Representation

The goal of this work is to create a smooth version of the in-
put scalar field containing only the simplified Morse-Smale
complex. The necessary reconstruction of the function (Sec-
tions 5 and 6) is easier to handle if it is only carried out on
the vertices of the mesh, but the discrete Morse-Smale com-
plex lives partly on edges and triangles as described earlier.
To accommodate these structures in a vertex-based repre-
sentation, we insert new vertices and triangles around max-
ima, saddles, and the separatrices connecting them. To do so,
we follow each separatrix from the saddle to the maximum,
which is an alternating sequence of edges and triangles. We
insert a new vertex in the center of every edge and triangle
along the path and triangulate accordingly. An example of
this can be seen in Figure 6. Note that this allows an un-
ambiguous description of the Morse-Smale complex on the
vertices of the mesh and is only needed for the simplified
topology, i.e., only for a relatively small number of critical
points and separatrices.

5. Reconstruction I: Interactive Preview
Given a simplified Morse-Smale complex, we create a fast
“preview” version of the scalar field, which provides the user
with a faithful view of the end result. It is “faithful” in the
sense that it has exactly the topology prescribed by the sim-
plified Morse-Smale complex and interpolates the values of
the critical points. To do this, we first compute a valid value
assignment for the separatrix curves (recall that after sim-
plification, the values of the original function along the new
separatrices are no longer monotonic). For each separatrix,
we fix the critical points at its ends to their original values,
and all the intermediate vertices are assigned a linearly in-
terpolated value according to the arc-length parameter. Note
that in the discrete setting, when tracing a separatrix from
the starting saddle point, it is possible that we reach a junc-
tion where another separatrix with already assigned values
joins; in this case we stop and take the junction vertex value
as the end point for the linear interpolation. Figure 5a shows
the resulting “linearized” separatrices.

(a) CP with their connectivity and linearized separatrices.

(b) Harmonic reconstruction as heightfield and in the 2D domain.

Figure 5: Constructing a faithful preview of the smoothed
scalar field. The abstract connectivity of the simplified
Morse-Smale complex (top left) is supplied with valid val-
ues by linearly interpolating between the endpoints of each
separatrix (top right). A harmonic function is then computed
with the separatrices as boundary conditions (bottom). Refer
to Figure 9a for the input scalar field.

Once valid values along the separatrices have been set,
we solve the Laplace equation ∆ f = 0 on the domain, with
the values along the separatrices and the critical points as
Dirichlet boundary conditions. The solution f is a harmonic
function that has no interior critical points in the domain:
since the boundary conditions are monotonic, we obtain a
valid scalar field that obeys the prescribed topology. The har-
monic function f is C∞ in the interior of the domain and C0

at the boundary curves, i.e., the separatrices (Figure 5b).

To solve the Laplace equation, we use the standard vertex-
based linear FEM discretization of the Laplace operator on
our parametric domain mesh, i.e., the cotangent weights
matrix Lcot [PP93, DMSB99], or the mean-value weights
matrix Lmean [Flo03] if the cotangent weights are negative
(positive weights guarantee that the solution of the discrete
Laplace equation has no interior critical points). We there-
fore solve the following linear system of equations for the
vertex values f = ( f1, . . . , fn):

L f = 0, s.t. fi = f̂i ∀i ∈ S, (1)

where S is the set of mesh vertices that belong to the separa-
trices (including the critical points) and f̂i are their fixed val-
ues. The Laplacian matrix L is sparse (7 nonzeros per row on
average), symmetric and positive definite; we therefore use
sparse Cholesky factorization to solve the system [Tol03],
which allows us to obtain the preview scalar field at inter-
active frame rates (some timing statistics are given in Sec-
tion 7).

6. Reconstruction II: C1-smooth Function
The scalar field obtained in the previous section is only
piecewise-smooth. In the following, we describe the recon-
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Figure 6: The parametric embedding of the simplified sep-
aratrices may be jaggy (left) and is smoothed by Laplacian
mesh optimization (right).

struction of a smooth scalar field that obeys the prescribed
Morse-Smale complex and interpolates the values of the crit-
ical points. The smooth reconstruction involves three steps:
first, we optimize the parametric domain so as to smooth
the embedding of the separatrices (this facilitates the re-
construction of the smooth scalar field later). We then op-
timize a smoothing objective functional (specifically, the bi-
Laplacian) in a constrained setting which guarantees mono-
tonicity of the scalar field within each Morse cell, such that
the result is a C1-smooth function that has the prescribed
topology.

6.1. Laplacian-Based Fairing of the Discrete
Embedding of Separatrices

After the topological simplification, depending on the
amount of noise in the input field, we might be left with long
separatrices whose shape meanders through the parameter
domain (see Figure 6, left). Such separatrices inhibit the sub-
sequent smooth reconstruction of the scalar field and cause
visual clutter, so we would like to smooth them in the para-
metric domain first. Since all our discrete topology infor-
mation resides in the elements of the mesh, we would like
to keep the mesh intact and only slightly shift the vertices
in the parametric domain. We therefore employ a particular
form of 2D Laplacian mesh optimization [NISA06], which
does not alter the mesh connectivity.

Each separatrix si is a chain of vertices in the para-
metric domain, starting and ending with a critical point:
(vi

1,v
i
2, . . . ,v

i
ni), vi

j ∈R2. We smooth the spatial embedding
of each si and regularize the spacing of the vertices along it,
so for each inner vertex of each separatrix we have the term:∥∥∥vi

j−0.5
(

vi
j−1 +vi

j+1

)∥∥∥2
j = 2, . . . ,ni−1 . (2)

We also fair the entire mesh to prevent parametric non-
smoothness near the separatrices, by adding an energy term
for each vertex vk not on a separatrix. Fairness is defined via
the cotangent Laplacian operator [NISA06]:∥∥∥∥ ∑

j:(k, j)∈E
wk j(vk−v j)

∥∥∥∥2

, (3)

where wk j are the cotangent weights and E is the set of mesh

edges. To prevent the mesh vertices from moving too much,
we put a soft positional constraint on each vk:

ω‖vk−uk‖2 , (4)

where ui is the original location of vk and ω is a small pos-
itive weight (ω = 0.01 in our experiments). We sum up all
the energy terms in Eqs. (2), (3) and (4) and minimize the to-
tal energy under the hard constraints of fixing the locations
of all the critical points and the domain boundary vertices.
Solving the resulting sparse linear optimization is performed
efficiently by TAUCS [Tol03]. Figure 6 demonstrates the re-
sulting fairing effect.

6.2. Monotonic Reconstruction of a Smooth Function
Our goal is to reconstruct a function f that is (i) smooth, (ii)
passes close to the original input values, (iii) interpolates the
prescribed critical point values and (iv) has exactly the pre-
scribed topology. In the following, we describe the general
idea behind reconstructing a function according to the four
requirements, and then show how we do this specifically for
the 1D separatrices and the 2D scalar field. We will first re-
construct the values along the separatrices, which will then
serve as boundary constraints in the 2D optimization. The
two tasks are solved in essentially the same manner, up to
the particular encoding of the topological requirements.

Smoothness and closeness to the original data are ad-
dressed by defining an objective functional that our function
f should minimize in a constrained setting:

E( f ) =
∫

Ω

|∆ f |2 +ωd
∣∣ f − f̂

∣∣2
dA , (5)

where Ω is our parametric domain, f̂ is the original function
and ωd > 0 is the weight of the data term. Larger values for
ωd lead to results which are closer to the original data. In
our experiments, we used values between 104 and 106 for
ωd . Minimizing E( f ) corresponds to bi-Laplacian smooth-
ing and produces functions that are C1 at the boundary con-
straints and C∞ everywhere else (up to certain discretization
and convergence conditions, see [GGRZ06]). In our discrete
setting, we use the linear FEM discretization of the Laplace
operator, either on a curve or a 2D mesh domain (refer to
Section 5), and formulate the energy in terms of the function
values f = ( f1, . . . , fn) at the vertices:

E(f) = ‖Lf‖2 +ωd‖f− f̂‖2 → min. (6)

The interpolation of critical point values is translated simply
into Dirichlet boundary conditions fi = f̂i where i are the
vertex indices of the critical points.

In order to satisfy the topology requirements, we intro-
duce monotonicity constraints: the function should be mono-
tonic “in-between” adjacent critical points. For 2D domains,
“adjacency” of critical points is defined via the Morse com-
plex; in each Morse cell around a maximum, the function
should decrease from the maximum towards the boundary
of the cell (cf. Figure 3b). We encode monotonicity as a di-
rected, acyclic graph (the monotonicity graph) on the ver-
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tices of the mesh with sources at maxima and sinks at min-
ima. A path in the monotonicity graph then represents an in-
tegral line. We use the monotonicity graph also to represent
the network of separatrices – each chain path in the graph
then corresponds to a separatrix, i.e., the function is decreas-
ing from a maximum to a saddle and increasing from a min-
imum to a saddle. Note that the monotonicity graph for the
separatrices is well-defined.

Assume we have a monotonicity graph defined for our
problem; each interior vertex i then has an incoming edge
in the graph; the origin vertex of that edge is denoted by
parent(i). We assume that any vertex that has more than one
parent (or is a critical point) has a fixed value. For each free
vertex i, the topological constraints can then be formulated
in terms of inequalities:

fi < fparent(i). (7)

We have now theoretically defined the complete problem
setup for the reconstruction of a function that satisfies all
the four requirements: one needs to minimize the energy
E(f) in Eq. (6) under the Dirichlet boundary conditions and
the inequality constraints (7). While the quadratic minimiza-
tion of the bi-harmonic functional under Dirichlet boundary
conditions amounts to merely solving a sparse linear sys-
tem, the additional inequality constraints turn our problem
into quadratic programming, which may be quite complex to
solve in practice. Instead of using general tools for quadratic
programming, we utilize the monotonicity graph to convert
the inequalities into (nonlinear) equalities. We then end-up
with a nonlinear system to solve, but since all our formula-
tions are analytic, it is straightforward to solve by standard
numerical methods for nonlinear optimization.

Since the function values along a path in the graph are
decreasing, the value fi should be between the value of its
parent and the largest value at the end of all paths passing
through fi, denoted by fmi . We can thus write fi as an inter-
polation of the two:

fi = fmi + ti
(

fparent(i)− fmi

)
, 0≤ ti ≤ 1. (8)

We perform a simple change of variables in order to get rid
of the inequalities 0≤ ti ≤ 1: for any free vertex i we attach
a new variable θi, such that

ti = ti(θi) = 0.5+0.5cos(θi) . (9)

The inequalities in (8) are now satisfied by construction, and
the expressions for the function values fi become dependent
on the new variables θi; these expressions are then plugged
into the smooth reconstruction functional (6). The energy
is nonlinear in θi; typical numerical optimization methods
such as Gauss-Newton require expressions for the gradient
and the Hessian of the energy, i.e., first and second partial
derivatives w.r.t. θi’s. Fortunately, these are easy to derive
analytically, and we provide the formulas in the supplemen-
tal material.

Figure 7: Original function (left) has been reconstructed
based on the topology shown using the C0 preview scheme
(middle, Section 5) and the C1 method (right, Section 6).

6.3. Reconstructing the Scalar Field
We reconstruct the smoothed scalar field using a monotonic-
ity graph describing the Morse decomposition with sources
at maxima and sinks at minima. Each Morse cell contains
a single maximum and its boundary is composed of sad-
dles and minima connected by separatrices (cf. Figure 3b).
The corresponding monotonicity graph is built by perform-
ing a watershed-like algorithm on a function that has the pre-
scribed Morse complex – we use the same harmonic function
that we computed for the interactive preview (Section 5).

As mentioned in the previous section, all free vertices in
the optimization should have a single parent, and we fix all
the vertices that have more than one incoming edge in the
monotonicity graph. Therefore we need to fix the values
along the boundaries of the Morse cells, namely the sepa-
ratrices that run from saddles to minima (as each such sepa-
ratrix has incoming paths that descend from the maximum,
as well as the separatrix path itself). The values on these
boundary separatrices are unknown (recall that we only have
fixed values for the critical points), therefore we first run
the optimization process on the collection of these separa-
trices. For this curve-network optimization we discretize the
1D Laplace operator (i.e., the second derivative) in (6) using
uniform weights. Once the values on the boundary separa-
trices have been computed, we run the optimization of the
entire domain while fixing the critical points and the bound-
ary separatrices, this time using the FEM discretization of
the 2D Laplace operator (as in Section 5). Figure 7 com-
pares the result of the C1 optimization with the C0 preview
reconstruction for a single Morse cell. It clearly shows that
our nonlinear optimization is able to recover the character-
istics of the original function while obeying the prescribed
topology. Also note the smoothness across the (omitted) sep-
aratrices. This is in contrast to the method of [BEHP04],
where iterative Laplacian smoothing inside a Morse-Smale
cell eventually leads to a result similar to our C0 method.

Note that the same discrete Morse decomposition of a
2D mesh domain has many different possible monotonicity
graphs that are topologically valid; each monotonicity graph
implies a function with different gradient lines, so that the
structure of the graph has significant impact on the shape of
the resulting reconstruction. In our reconstruction process,
we prefer monotonicity graphs with as few edges as possi-
ble to prevent overconstraining the optimization. We have
chosen to use the harmonic function as the basis for our
monotonicity graph, observing that it has low variation, but
in future work, it would be interesting to explore the possible
monotonicity encodings further.
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Data set #Vertices In/Out #CP Simpl. time Rec. I time Max/Avg path Rec. II time
Fig. 1, Pressure 11266 499/81 0.01 0.11 175/34.5 719
Fig. 8, Benzene 13377 85/85 – 0.04 173/38.9 981
Fig. 9, random noise 2711 481/19 0.001 0.01 88/25.7 580
Fig. 9, logo overlay 4825 43/19 0.001 0.05 95/28.7 603
Fig. 10, P = 5.0 20126 7733/167 0.04 0.1 344/61.3 2603
Fig. 10, P = 18.6 14758 7733/13 0.05 0.1 432/91.5 3027

Table 1: Experimental statistics. In/Out #CP: number of critical points; Simpl. time: topological simplification time (Section
4.2); Rec. I time: simple harmonic reconstruction time (Section 5); Rec. II time: constrained bi-Laplacian optimization time
(Section 6); Max/Avg path: maximal and average path length within the monotonicity graph. All timings are given in seconds.

Figure 8: Electrostatic field of the Benzene molecule. The
original data set (left) has been reconstructed (right) without
topological simplification. The PSNR is 50.8 dB.

7. Examples
We have implemented our technique in C++ and tested it
on current hardware (Intel Core 2 Duo 3 GHz with 3 GB
memory). Table 1 summarizes some statistics about the per-
formance of our system. By design, the algorithm produces
interactive preview results: computation of the persistence
values and subsequent topological simplification required no
more than 0.01 seconds. The reconstruction of the preview
scalar field (the harmonic function) is fast as well, in the
order of 0.05-0.1 seconds, so it can be carried out interac-
tively while the user is dragging the persistence slider. The
final smooth reconstruction by constrained bi-Laplacian op-
timization can be done offline once the user is satisfied with
the persistence threshold and the resulting topology. Our ex-
periments have shown that the optimization time mainly de-
pends on the average and maximal path length in the mono-
tonicity graph, and less so on the total number of vertices
(Table 1).

In our first experiment we test how well the method re-
constructs the scalar field from the original topology, i.e., the
persistence threshold is set to zero and no topological sim-
plification takes place. Figure 8 shows the original and re-
constructed electrostatic field of the benzene molecule: the
features and the overall structure have been very well pre-
served by our optimization stage. This is also backed by the
very high peak signal-to-noise ratio (PSNR) of 50.8 dB (typ-
ical PSNR values for lossy image compression are between
30 and 50 dB). Subtle differences are noticeable around the
small outer H-atoms (red) where the resolution of the mesh
is rather low compared to the feature size such that the dis-
crete nature of our approach becomes visible.

(a) The original synthetic function (left) is corrupted by additive
noise (middle) and by an overlay displacement field (right,
displayed as a heightfield).

(b) The topological structures of the ground-truth and the test cases.
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(c) Persistence histograms of the two test cases with the
user-specified thresholds (left); the reconstructed results for
both the noisy (middle) and the overlay (right) tests.

Figure 9: Testing our algorithm on a synthetic example
where the ground truth is a known smooth function. We
tested two types of corruption: random noise and overlay of
another non-random function. In both cases the algorithm
reconstructs a high-quality smooth scalar field with the cor-
rect topological structure.

Figure 9 shows a synthetic 2D function, which we cor-
rupted in two different ways: by random additive noise and
by adding another (weaker) overlay signal. The underlying
assumption is that the persistence of the noise is lower than
that of the underlying true data. One can observe that our
method successfully reconstructs the features of the original
scalar field in both cases; the appropriate persistence thresh-
old is quite evident from the persistence histogram in Fig-
ure 9c and is therefore not difficult to tune.

Figure 1 shows an example from a fluid dynamics simu-
lation of a turbulent flow behind a bluff body. This data set
has been computed by Erik Wassen (Technical University
Berlin) using a Large-Eddy simulation scheme at a Reynolds
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(a) Input data set (7733 critical points); color and height field.

(b) Persistence threshold P = 5.0 (167 critical points).

(c) Persistence threshold P = 18.6 (13 critical points).
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(d) Persistence histogram.
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(e) PSNR over persistence.

Figure 10: Experimentally measured data set showing the
instantaneous vorticity at the outlet of a combustor (flow di-
rection from top to bottom). The size and overall shape of the
major features at the burner outlet (top) are preserved while
the noise has been successfully removed.

number of 500000 based on model length and incoming ve-
locity [WT07]. The data set shows the pressure of the flow,
which indicates vortex activity: regions of low pressure (blue
colors) denote a vortex. We focus on the region directly be-
hind the bluff body, where one can see a number of vortices.
However, a significant amount of noise can be observed in
the input pressure field (Figure 1a). This is also evident from
the topological analysis (Figure 1b). To a large degree, this
noise comes from the simulation scheme itself and is there-
fore not desired. The spurious features have very low per-
sistence values (refer to Figure 1c) and are removed in the
topological simplification process. Note how the prominent
critical points are better emphasized in the optimized result.

Figure 10 shows an experimentally measured data set
from fluid dynamics: a flow field obtained using Particle Im-
age Velocimetry (PIV) in a slice at the outlet of a swirl-
inducing combustor. The data set is courtesy of Arnaud
Lacarelle (Technical University Berlin) and the experimen-
tal setup is described in [LFG∗09]. Shown is the instanta-

neous vorticity of the flow which indicates vortex activity.
Vortices steer the mixing of fresh and hot gas in a burning
chamber and are therefore essential for an efficient burning
process. The setup of this PIV measurement is inherently 2D
(the flow is only measured in a slice) and prone to noise as
indicated by the 7733 critical points in the original data set
(Figure 10a). The most dominant features in this data set are
the major vortices at the top where the intake of the combus-
tor (burner outlet) is located. Figures 10b–c show two dif-
ferent simplification levels obtained with our method con-
taining only 167 and 13 critical points, respectively. Note
how the noise has been filtered while the size and the overall
shape of the major features has been preserved: the major
peaks and pits in the height fields of Figures 10b–c are ex-
actly at the same location and have the same height as in
the input data set. In Figure 10e we plotted the PSNR val-
ues of several simplification levels in the persistence interval
[0.6,18.6]. Note that even the PSNR value for the highest
chosen persistence threshold does not drop below 30 dB.

8. Conclusions
We have presented a smoothing method for 2D scalar fields
that focuses on the topological features and enables to ex-
plicitly control the topology of the output. The interactive
control mechanism provided by our method, coupled with
real-time faithful preview of the end result, allows for an
effective and intuitive processing workflow. The central al-
gorithmic components of our method are discrete topolog-
ical simplification and constrained bi-Laplacian optimiza-
tion; the combination enables to provide guarantees regard-
ing the topological structure of the output.

Persistence has a limitation with respect to strong outliers:
their persistence is likely to be high and they will not be fil-
tered out. Hence, in future work we will incorporate differ-
ent persistence measures that help identify outliers into our
framework. Another future research direction is to explore
how different monotonicity descriptions within a Morse cell
affect the results of the constrained optimization; in particu-
lar, it would be interesting to come up with an optimization
of the monotonicity graph itself.

Finally, we believe that direct control over topological
structures may have wide applications beyond data visual-
ization and analysis. In the future we would like to expand
the method to other domains, such as scalar fields on sur-
faces or 3D data, and explore the possibilities of modeling
and editing using topologically-guaranteed methods.
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