
Correspondences of Persistent Feature Points
on Near-Isometric Surfaces

Ying Yang1,2, David Günther1,3, Stefanie Wuhrer3,1, Alan Brunton3,4

Ioannis Ivrissimtzis2, Hans-Peter Seidel1, Tino Weinkauf1 ?

1MPI Informatik 2Durham University 3Saarland University 4University of Ottawa

Abstract We present a full pipeline for finding corresponding points
between two surfaces based on conceptually simple and computation-
ally efficient components. Our pipeline begins with robust and stable
extraction of feature points from the surfaces. We then find a set of near
isometric correspondences between the feature points by solving an op-
timization problem using established components. The performance is
evaluated on a large number of 3D models from the following perspec-
tives: robustness w.r.t. isometric deformation, robustness w.r.t. noise and
incomplete surfaces, partial matching, and anisometric deformation.

1 Introduction

Intrinsic surface correspondence computation is a highly active research area [1,2].
It is a fundamental aspect of applications such as morphing, texture transfer,
geometry synthesis and animation. In general, the search space of intrinsic corre-
spondences between two surfaces is too large to be computationally tractable. A
well-established way to reduce the search space is to extract distinctive features
from both surfaces and compute correspondence between these. Such features
typically also have the benefit of being more reliable to match because of their
distinctiveness. Consequently, the search space is reduced in a strategic way. We
present an algorithmic pipeline that is able to match robustly feature points
between two nearly isometric surfaces.

To effectively match feature points, they should not only be distinctive, but
also intuitive and visually meaningful. This is important in visually evaluating
correspondence quality on real data, where no ground truth correspondence is
available for numerical evaluation. We can get a set of points with these prop-
erties from Gaussian curvature. However, Gaussian curvature is greatly affected
by noise, resulting in minima and maxima of which only a small subset describe
meaningful features. With this in mind, we extract reliable feature sets by using
topological persistence [3].

We extract features using topological persistence and compute correspon-
dences using feature descriptors and near isometric matching. In so doing, we
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present a novel pipeline for feature matching that has the following properties:
(1) it is based on established components; (2) it produces accurate and stable
correspondences; (3) it is conceptually direct and simple; and (4) it is computa-
tionally efficient. We provide an extensive evaluation of our pipeline.

2 Related Work

There are many recent works on feature extraction and surface correspondence,
so for conciseness we will only review the most relevant here. For a more ex-
haustive comparison of correspondence methods, we refer the reader to a recent
survey [1] and a recent competition [2].

Feature Extraction: Heat Kernel Signature (HKS) [4] organizes information
about the intrinsic geometry of a shape in a multi-scale way that is stable under
perturbations of the shape. Features are detected as local maxima of the HKS for
large scales. A later variant used persistent homology to filter out unstable fea-
tures [5]. While we also use persistence to filter features, we apply discrete Morse
theory to Gaussian curvature, thus making our approach less computationally
costly and conceptually simpler. The difference of Gaussians and histogram of
oriented gradients feature operators have been adapted to meshes [6], and ap-
plied to matching. These methods require a multi-scale neighborhood structure,
whereas our features are efficient to compute and direct, only needing a fixed
neighborhood to compute Gaussian curvature.

Correspondence: Möbius voting [7] uses the observation that isometries are a
subset of the Möbius group to devise a method for automatic sparse surface cor-
respondence. A high-order Markov Random Field (MRF) formulation of graph
matching based on Möbius transforms has also been proposed for both sparse
and dense correspondence [8]. Blended intrinsic maps [9] find per-point blend-
ing weights for multiple low-dimensional intrinsic maps computed using Möbius
voting; these maps are then blended by linear interpolation. As noted by the
authors, this approach is limited in its ability to match partially correspond-
ing surfaces due to its global nature. We use these methods for comparison
because they are the current state-of-the-art and have demonstrated equal or
superior performance to competing algorithms [9]. A feature-based dense corre-
spondence method [10] starts by computing sparse feature correspondences, and
then uses a MRF and front-propagation to compute dense correspondence. It is
a well-established technique to extract feature points and explore permutations
of matches to find a combination with minimal alignment and deformation er-
ror [10,11,12]. Two of these methods [10,12] use the geodesic integral or average
to extract features, which are computationally more expensive than Gaussian
curvature. The other [11] uses principal curvatures, which are not isometry in-
variant. Many methods make use of the isometry assumption, often using some
kind of embedding [1,13], which are often indirect and expensive to compute.
If the embedding is global then the method can be expected to have difficulty
with partial matching. Other methods based on the isometry assumption con-
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sider HKS as local surface descriptor. Given one pair of corresponding points,
full correspondence can be computed for two isometric surfaces using HKS [14].

3 The Matching Pipeline

This section presents our pipeline to find feature point correspondences on two
near isometric surfaces S and S̃. We call two surfaces nearly isometric if the ratio
of any corresponding geodesic distances is bounded by a constant threshold τ .
The idea of this pipeline is to extract features as the most dominant extrema of
the Gaussian curvature in terms of persistence, an established technique in the
visualization community (Section 3.1), and to then find near isometric correspon-
dences between these feature sets using modifications of established algorithms
in the vision and geometry processing communities (Section 3.2).

3.1 Feature Points and Persistence

In this work, we interpret feature points as extremal points of a curvature field.
Since we assume isometry, we use Gaussian curvature. In recent years, several
techniques to compute this quantity were proposed. We use a simple quadratic
least-square fitting to the underlying point cloud to compute the Gaussian cur-
vature [15]. However, our pipeline does not depend on this choice.

We consider the scalar field formed by the Gaussian curvature on a surface.
Points of minimal and maximal Gaussian curvature are critical points of this
scalar field. A robust and consistent way to compute critical points is by means
of discrete Morse theory [16]. We use the algorithm by Robins et al. [17] to
compute the critical points in a combinatorial fashion. Note that the computed
critical points are in a one-to-one correspondence to the topological changes of
the lower level sets of the formed scalar field [17].

Numerical issues in the curvature computation and noise may create spu-
rious critical points, which challenge the upcoming matching. To distinguish
noise-induced and dominant critical points, we make use of an established im-
portance measure for critical points: persistence [3]. It measures the “life time” of
connected components and loops considering an evolution of the lower level sets.
We denote the most dominant minima and maxima of the Gaussian curvature
fields on the surfaces S and S̃ as feature points X and X̃, respectively.

3.2 Computing Correspondences of Feature Points

Correspondences between feature points are found as follows. For each feature
point, we construct a vector based on the geodesic distances between it and a set
of sample points on the surface. We measure the similarity of these vectors and
find initial correspondences by solving a minimization problem. We then enforce
isometric consistency of the set of correspondence pairs using graph matching,
pruning inconsistent matches. Finally, a post-matching method finds additional
matches that are consistent with the established correspondences.
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Initial Correspondences: We first find an initial correspondence between the
feature sets by matching the spatial distribution of feature points. Looking from
one feature point x on S to a uniquely defined set of reference points Y , the
distribution of those points depends on the point of view of x and is unique
up to intrinsic symmetry. When measuring the distribution with an isometric
quantity such as the geodesic distance, this point of view is invariant under
isometric transformations. We represent the view point dependent distribution
of Y in a quantitative manner by constructing two sets of reference points Y
and Ỹ of cardinality R from S and S̃ using geodesic farthest point sampling [13]
and by considering the quantity f(x,y) = 1/(1 + g(x,y)), where x ∈ X, y ∈ Y ,
and g(x,y) denotes the geodesic distance between x and y on S. The function
f measures the influence of the reference points on each feature point, and is
designed to allow for partial matching as nearby points are weighed more than
distant points, and the local neighborhood therefore has a greater influence.

The feature vector fY for a given feature point x ∈ X is given by the collection
of f(x,yj) for all reference points yj ∈ Y in non-decreasing order. Consider two

surfaces S and S̃ and their respective feature points X and X̃. Assuming x ∈ X is
the correspondence of x̃ ∈ X̃, the corresponding feature vectors fY (x) and fỸ (x̃)
are expected to be similar. Hence, we measure the dissimilarity Ψ of two feature
vectors by their normalized L1-distance. Computing the dissimilarity between all
feature vectors of X and X̃ yields a dissimilarity matrix. A good correspondence
is found if the sum of all its dissimilarities is small. The aim is therefore to find
a minimum assignment through column and/or row permutation to minimize
the trace of the dissimilarity matrix. To solve this optimization problem, various
optimization algorithms, such as [18], can be used. We in this paper use the
Hungarian algorithm [19], which results in a set of correspondences Σ1.

Isometric Correspondences: In the following, we remove the pairs in Σ1 that
are not consistent with the assumption that deformations should be approxi-
mately isometric. We aim to find the largest set Σ2 of consistent correspon-
dences. These correspondences can be found using a kernel extraction method
as proposed by Leordeanu and Hebert [20] and used by Huang et al. [11]. Let
(ci, c̃i) denote the i-th correspondence in Σ1. Any two consistent correspon-
dences {ci, c̃i} and {cj , c̃j} should satisfy the following near-isometry constraint:
the minimum cij of the two ratios g(ci, cj)/g(c̃i, c̃j) and g(c̃i, c̃j)/g(ci, cj) should
be larger than the stretching tolerance τ (0 < τ < 1). It is known that a set of
correspondences satisfying this condition can be found using a spectral method
on a matrix M that depends on cij and τ . For more details, refer to [11].

Final Correspondences: As the set Σ2 might not contain all near-isometric
feature point matches, we add additional pairs of feature points in the final step.
The additional correspondences are found based on a modified geodesic trian-
gulation technique. Let XR ⊂ X and X̃R ⊂ X̃ denote the sets of the ”rejected”
feature points for which correspondences have not been found yet. For each point
in XR, we compute a feature vector w.r.t. the matched points similar to above.
The only difference is that the feature vector is now ordered w.r.t. an arbitrary
but fixed order of the correspondences in Σ2. We add a new correspondence
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Table 1. Parameter settings for all models used in the tests.

Cat Cat (topo. noise) Centaur David Dog Horse Wolf Face 1 Face 2 Face 3

κ 0.05 0.008 0.05 0.05 0.04 0.03 0.05 0.04 0.10 0.02

τ 0.72 0.72 0.83 0.83 0.72 0.72 0.72 0.72 0.72 0.72

pair if the feature vectors of two points are symmetric nearest neighbors under
the dissimilarity measure Ψ and the new pair respects the isometric threshold τ
w.r.t. all correspondences in Σ2. All pairs that fulfill these conditions are added
to the set Σ3 of feature correspondences, which is initialized by Σ2.

4 Evaluation

This section validates the proposed pipeline. We implement the pipeline using
MATLAB and C++ and test it on a standard PC. We use code from Surazhsky
et al. [21] to compute geodesics and code from Cao1 for the Hungarian algorithm.
Our non-optimized implementation takes about 3 minutes to find corresponding
points for the Cat model and about 1.5 minutes for the Centaur model.

We evaluate the algorithm on a large number of 3D models of the TOSCA [13]
database and some models of the BU-3DFE [22] database. Similar to Bronstein
et al. [2], we define the correspondence error C as follows:

C =
1

|Σ3| · dg
min


|Σ3|∑
i=1

g(ci, c
′
i),

|Σ3|∑
i=1

g(ci, c
′′
i )

 , (1)

where |Σ3| is the cardinality of Σ3, dg is the geodesic diameter of neutral pose S,
(ci, c̃i) is a correspondence pair in Σ3, c′i and c′′i are the ground truth correspon-
dence and the symmetric ground truth correspondence of c̃i in S, respectively,
and the geodesic distances g(ci, c

′
i) and g(ci, c

′′
i ) are measured on S. Here, the

symmetric ground truth c′′i is defined as the ground truth mapping of ci to its
intrinsically symmetric part on the shape, given by flipping the left and right
sides of the model.

Our algorithm involves three parameters: the persistence threshold κ, the
cardinality R of the set Y of sample points and the deformation threshold τ .
Regarding parameter settings, we fix R = 800 and each of the other two param-
eters at one consistent value per model, with the exception of the topological
noise example, as shown in Table 1.

Fig. 1 (left) shows the influence of the κ and τ parameter values on the
results of matching two Cat models. A correspondence ci is considered close to
its ground truth c′i if g(ci, c

′
i) < 0.05dg, close to its symmetric ground truth c′′i

if g(ci, c
′′
i ) < 0.05dg, and a mismatch otherwise. As expected, as the persistence

threshold κ increases, the number of features decreases and as the stretching
threshold τ increases, the number of matched pairs decreases.

1 http://www.mathworks.com/matlabcentral/fileexchange/20328, 2008
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Figure 1. (a,b): Influence of parameter values on matching two clean Cat models.
The x-axes show the thresholds and the y-axes show the number of matches. (c,d):
Correspondence error C for the Cat model with different types and levels of degradation.
Each bar in (c) is the mean over all model pairs, while each bar in (d) is for one pair.

4.1 Synthetic Evaluation

We evaluate the robustness of our algorithm on TOSCA models from four per-
spectives: isometric deformation, different categories of noise, different object
matching and partial matching. Whenever we match two shapes from the same
object class, we match the deformed/noisy model to the clean shape of the
same object class in neutral pose. To evaluate the robustness against noise, we
artificially introduced five different kinds of noise to some models. First, we
added three levels of Gaussian noise to the deformed versions of the Cat, Cen-
taur, David, Dog, Horse, and Wolf models (38 models total). The variances of
Gaussian noise used in the experiments are 20%, 40% and 60% of the model’s
bounding ball radius. Second, we added three levels of outliers to the aforemen-
tioned 38 models by moving a vertex in the direction of its outer normal with
probability 0.004 by varying the strength of the offset. The outliers are modeled
as a type of shot noise that is typically present in scanner data from multi-view
camera systems. The models are corrupted by moving a vertex in the direction
of its outer normal with probability 0.004. We use three levels of outliers by
varying the strength of the offset. Third, we added three levels of holes to the
deformed versions of the Cat model (10 models total). The first level removes
the one-ring neighborhood of a set of vertices distributed over the surface. The
second and third levels enlarge the holes by removing all triangles that are on
the boundary of the model. Fourth, we remove parts of the models in three levels
to simulate partial matching. For each model in neutral pose, we remove a part
by cutting the model with a plane parallel to the symmetry plane of the model.
The three levels remove 17%, 33%, and 50% of the model’s bounding box, re-
spectively. The partial models are then deformed into all other poses to generate
all partial models. Finally, we added topological noise to one of the Cat models.

Fig. 1 (right) shows the correspondence errors C for the Cat models with
near-isometric deformations and different types of noise. Note that the corre-
spondence quality does not degrade significantly for increasing levels of Gaussian
noise, outliers or holes. As expected, for increasing levels of partial matching, the
quality of the correspondence degrades more than for the other types of noise.
However, even in case where 50% of the surface was removed, the average cor-
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Figure 2. Matching results for different models, where correspondences are shown in
the same color and connected by a line.

respondence error is below 30% of the geodesic diameter. Similar plots for the
other model classes are shown in Appendix B of the supplementary material.

Non-Isometric Deformation: Fig. 1 (right) shows C for the correspondences
computed between pairs of Cat models. For all of the models that have a mean
correspondence error above 0.03, we encounter the following problem. Some
points on S correspond to points close to their ground truth correspondences
on S̃, while other points on S correspond to their symmetric ground truth cor-
respondences on S̃. Hence, while all correspondences are locally acceptable, the
correspondence map is globally inconsistent, which leads to a large value of C.
We call this problem symmetric inconsistency in the following, and the matching
of the legs of the Dog and Wolf models in Fig. 4 shows an example. However,
the symmetric inconsistency only affects very few feature points as can be seen
in the bar plots of Fig. 1 (left). The majority of feature points are correctly
matched w.r.t. the ground truth or the symmetric ground truth. Fig. 2 shows
some qualitative results.

Gaussian Noise: As Gaussian noise will change the intrinsic geometry of the
shape, we adjust the parameter τ depending on the specific level of noise. Ap-
pendix A of the supplementary material discusses how to relax τ . Basically, τ
decreases with the increase of the noise level. This is because stronger noise will
create a greater deformation than weaker noise does. Fig. 3 illustrates matching
a Centaur model degraded by Gaussian noise and its corresponding clean model
in neutral pose. As demonstrated by both the small correspondence errors in
Fig. 1 (right) and the qualitative results in Fig. 3, our method is able to match
feature points even in the presence of Gaussian noise.

Outliers: Fig. 3 shows an example of matching a Horse degraded by outliers and
its corresponding clean model in neutral pose. Both the numerical evaluation in
Fig. 1 (right) and the qualitative results in Fig. 3 demonstrate that our algorithm
is able to find high-quality correspondences, when applied to data with outliers.

Holes: Fig. 1 (right) shows that our method still provides comparable perfor-
mance as for clean models in terms of correspondence quality, although the ex-
istence of holes might potentially result in significant changes in geodesic paths.
Fig. 3 illustrates qualitatively that feature points are correctly matched.

Partial Matching: Fig. 3 shows an example of matching a partial Cat model to
a complete Cat model. The feature points appearing in both models are visually
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Figure 3. Matching results for different models corrupted by synthetic noise. From left
to right: outliers, holes, topological noise, partial information, and Gaussian noise.

Figure 4. Matching between different object classes.

matched correctly. In a second experiment, we are interested in finding corre-
sponding pairs of vertices for shapes from different object classes.The partial
matching results are illustrated in Fig. 4 (left). We observe that feature points
describing semantically the same region are correctly matched. For instance, ob-
serve the hands and upper body between Centaur and David. However, feature
points could not be matched correctly in regions of the surfaces that are seman-
tically different, as expected. This can be seen in Fig. 4 at the head of Horse
and the head of Centaur.
Topological Noise: Topological noise significantly changes the intrinsic geom-
etry of the surface, and is thus expected to cause problems for our algorithm.
Fig. 3 shows the correspondences on a Cat model with topological noise.
Different Object Matching: Finding correspondences between two objects of
different classes is challenging, since the surfaces are far from isometric. However,
our pipeline is able to match most of the feature points correctly, as can be seen
in Fig. 4 (right).

4.2 Practical and Comparative Evaluation

To assess the real-world applicability of our algorithm, we compute correspon-
dences between different 3D face scans from the BU-3DFE database. These tests
are challenging because the meshes have inconsistent topology and different lo-
cal shape features. The results here are presented visually, as no ground truth is
available to evaluate numerically. The matching results are shown in Fig. 5.

We compare the proposed method with two state-of-the-art 3D matching
algorithms: Möbius voting [7] and blended intrinsic maps [9] using the code
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Figure 5. Correspondences of scans with different facial expressions. The top row
shows the textured raw scans and the bottom row shows our results.
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Figure 6. Comparison for Cat without noise and with second level of holes.

released by the authors2. Note that the implementation of Möbius voting may
not reflect all the details of the original implementation. We compare to these
two methods on pairs of models of the same object from TOSCA for which our
method does not encounter the symmetric inconsistency problem. Fig. 6 shows
the correspondence errors C for models with non-isometric deformations and
with holes. Note that our method compares favorably to previous approaches.
We observed this trend for different models and types of noise.

Limitations of the proposed method include the symmetric inconsistency
problem and difficulty handling topological noise and non-isometric deformation.
These limitations are due to the heavy dependence on geodesics.

5 Conclusion

We have presented a feature-based approach to find corresponding points for
any two given surfaces. The performance is evaluated on a large database, which
contains not only clean models, but also data acquired with 3D scanners. We
show that our method is robust against isometric deformations and different
types of noise, including Gaussian noise, outliers, holes, topological noise and

2 http://www.cs.princeton.edu/ vk/CorrsCode/, 2011
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scanner noise. Correct correspondences are found even in the case of partial
matching. Future work includes overcoming the symmetric inconsistency issue
encountered when matching surfaces with intrinsic symmetries.
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