
Anton Örn Ívarsson
Pablo Albiol

 Introduction to multithreading
◦ General examples of applications.

 What is multithreading?
 How to multithread?
◦ Libraries.
◦ Functions.

 Mutex variables.
 Condition variables.

 MS Windows Task manager
◦ Multiple processes.
 Each process contains threads > 1.

 Internet browser
◦ Multiple pages open.
◦ Multiple things happening on each pages.

 Almost every well functioning program.
 How does this work?

 Libraries:
 Linux:

• POSIX threads
• #include <pthread.h>

 Windows:
• Win32 threads.

• #include <windows.h>
• Wraps:
 BOOST library

• C++11
 Supports multithreading through std.

 pthread_t t1, t2,…
 Create a thread:

• pthread_create(*thread, *attr, void *(*start_routine)(void*),
void *arg);
 thread : The unique identifier for the thread. This identifier

has to be of type pthread_t.
 attr : Object which you can create for the thread with specific

attributes for the thread. Can be NULL if you want to use the
default attributes. Enough for most applications.

 start_routine : The function that the thread has to execute.
 arg : The function argument. If you don't want to pass an

argument, set it to NULL.
 returns : 0 on success, some error code on failure.

 Ex_NoThreads.cpp
 Ex_Threads.cpp

 Terminate a thread
• void pthread_exit(void *value_ptr);
 value_ptr : The exit status of the thread. Can be set to

NULL if you don't need to give it an exit status.

 Ex2_threads.cpp

 Objective
◦ Synchronizing treads. Wait for a thread to finish.

 How
◦ Stopping execution of the code until a certain

thread has been terminated.
◦ Better than pthread_exit.

 Code
int pthread_join(pthread_t th, void
**thread_return);

 Parameters
◦ th: Thread ID
◦ Thread_return: Pointer to the value returned by the

thread (by pthread_exit(return_value)).
 Example

 Introduction
◦ We want to share information (variables) between

threads.
 Objective
◦ Prevent threads from accessing a variable at the

same time.
 How
◦ Use Mutex variables. ”Semaphores”.
◦ Mutexes don´t know which variables are

controlling.

 Code
◦ Declaration

pthread_mutex_t your_mutex_name = PTHREAD_MUTEX_INITIALIZER;
◦ Lock/Unlock

pthread_mutex_lock(your_mutex_name);
…
…
pthread_mutex_unlock(your_mutex_name);

 Example

 Objective
◦ Synchronizing treads depending on the value of

certain variables.
 How
◦ Mutexes are controlling the access to variables

while condition variables control access to variables
based on the value of variables.
◦ A condition variable puts one thread on “wait” until

it gets a signal from an other thread.
◦ Condition variables are used together with

mutexes.

 Code
◦ Declaration

pthread_cond_t condition_var = PTHREAD_COND_INITIALIZER;
◦ Wait

◦ Signal
 Example

 Powerful
 Mechatronics/robotics example

