1. $A=[12 ; 34], A \wedge^{\wedge} 2=? A^{\wedge} 2=$?
2. $A=[4-2 ; 13], B=[12 ; 45], A * B=$? $A * B=$?
3. Create a diagonal matrix with the commands $v=1: 3$ and $D=\operatorname{diag}(v)$. Take the exponential of each element of the matrix D and explain the result.
4. The sum of the squares of the integers from 1 to n is given by the formula $\frac{n(n+1)(2 n+1)}{6}$. Use the formula to determine the sum of the squares of the integers from 1 to 20 , inclusive.
5. $a=0, b=10, n=20$, use Matlab's linspace (a, b, n) command to generate n equally spaced numbers between a and b for the given values of a , b , and n . Use Matlab's indexing notation to zero out every odd indexed entry.
6. Use Matlab's length function to find the length of each of the given vectors $w=5$: $27, x=1: 0.01: 5, y=2: 0.005: 3, z=(100: 0.5: 200)^{\prime}$.
7. Use Matlab's sum function and start:increment:finish construct to find the sum of the even integers from 1 to 1000 .
8. Use Matlab's sum function and start:increment:finish construct to write the code that sums the squares of the integers from 1 to 20 , inclusive.
9. $v=3: 7, v .^{\wedge} 3=?, v^{\wedge} 3=$?
10. $A=\left[\begin{array}{cccc}1 & 2 & 3 & 0 \\ 5 & -1 & 0 & 0 \\ 3 & -2 & 5 & 0\end{array}\right]$, how does A change after each of the following assignments? $A(1,:)=20: 23, A(:, 2)=11, A(5,5)=777$.
11. $A=\operatorname{ones}(2,3), C=[A ; A], D=\operatorname{zeros}(2,3), E=[A D ; D A], C=?, D=$?, $E=$?
12. $v=(1: 5)^{\prime}, w=(2: 6)^{\prime}$, write the matlab command that computes the inner product $v T w$.
13. Use Matlab's ones command to create the matrices $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right], B=\left[\begin{array}{lll}2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2\end{array}\right]$, $C=\left[\begin{array}{ll}3 & 3 \\ 3 & 3\end{array}\right]$. Write a Matlab command that will build the block diagonal matrix $D=\left[\begin{array}{ccc}A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & C\end{array}\right]$ where the zeros in this matrix represent matrices of zeros of the appropriate size.
