
EL2310 – Scientific Programming
Lecture 10: Pointers and Structures

Yasemin Bekiroglu
(yaseminb@kth.se)

Royal Institute of Technology – KTH

Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Overview

Overview

Lecture 10: Pointers and Structures
Wrap Up
Pointers Continued
Function Pointers
Constant variables and structs
Pointers and Structs

C Tasks

Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 10: Pointers and Structures C Tasks

Wrap Up

Last time

� Splitting into separate files
� Makefiles
� Scope rules
� Beginning with pointers

Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 10: Pointers and Structures C Tasks

Wrap Up

Today

� Even more on pointers
� Complex data types (struct)

Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 10: Pointers and Structures C Tasks

Wrap Up

Variable scope: local variables

� The scope of a variable tells where this variable can be used
� Local variables in a function can only be used in that function
� They are automatically created when the function is called and

disappear when the function exits
� Local variables are initialized during each function call

Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 10: Pointers and Structures C Tasks

Wrap Up

Variable scope: extern

� If you want to use a variable defined externally to a function in
some other file, you need to use the keyword
extern

� extern int value; declares a variable value defined
externally that will now be available to us

Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 10: Pointers and Structures C Tasks

Wrap Up

Variable scope: static

� If you want a variable defined outside a function to be hidden in
a file, use the keyword
static

� A variable declared static can be used as any other variable
in that file but will not be seen from outside

Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 10: Pointers and Structures C Tasks

Wrap Up

Initialization

� External and static variables are guaranteed to be 0 if not
explicitly initialized

� Local variables are NOT initialized (contain whatever is in the
memory)

Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 10: Pointers and Structures C Tasks

Wrap Up

Pointers

� Pointers are special kinds of variables
� They contain the address of another variable
� Pointers are like bookmarks
� Used heavily in C:

� To pass reference to big things in memory
� To return multiple values from functions

� Have to be used with care

Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 10: Pointers and Structures C Tasks

Wrap Up

Declaring a pointer

� A pointer is declared by a * as prefix to the variable
Can think of it as a suffix to the data type as well
“int* is a pointer to an int”

� Ex: Pointer to an interger
int *ptr;

Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 10: Pointers and Structures C Tasks

Wrap Up

Assigning a pointer

� You assign a pointer to a value being an address of a memory
location

� The address typically corresponds to a variable in memory
� You get the address of a variable with the unary & operator
� Ex:
int a;
int *b = &a;

� We say that b “points” to a

Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 10: Pointers and Structures C Tasks

Wrap Up

Dereferencing a pointer

� To get the value in the address pointed to by a pointer, use the
operator dereferencing operator *

� Ex:
int a;
int* b = &a;

*b = 4;
� Will set a to be 4

Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 10: Pointers and Structures C Tasks

Wrap Up

Copying pointers

� Copying the data
*ptr1 = *ptr2;

� Copying the pointer address
ptr1 = ptr2;

Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 10: Pointers and Structures C Tasks

Wrap Up

Makefiles

� MAKE tool to automate building, ex. compilation
� Rules from Makefile
� task1:
gcc -o task1 task1.c task1 includes.c -lm

� Tutorial in the course materials! Check out tasks!

Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 10: Pointers and Structures C Tasks

Pointers Continued

Lecture 10: Pointers and Structures
Wrap Up
Pointers Continued
Function Pointers
Constant variables and structs
Pointers and Structs

C Tasks

Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 10: Pointers and Structures C Tasks

Pointers Continued

Pointers and arrays

� Can use pointer to perform operations on arrays
� Ex:
int a[] = {1,2,3,4,5,6,7,8};
int *p = &a[0];

� Will create a pointer that points to the first element of a
� The following are equivalent
p = &a[0] and p = a;
a[i] and *(a+i)
&a[i] and a+i

*(p+i) and p[i]
fcn(int *a) and fcn(int a[])

Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 10: Pointers and Structures C Tasks

Pointers Continued

Stepping forward backward with pointers

� A pointer points to the address of a variable of the given data
type

� If you say ptr = ptr + 1; you step to the next variable in
memory assuming that they are all lined up next to each other

� Can also use shorthand ptr++ and ptr-- as well as
ptr+=2; and ptr-=3;

Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 10: Pointers and Structures C Tasks

Pointers Continued

More on pointers

� One has to be careful when moving pointers
� Common mistake when using a pointer: you move it outside the

memory space you intended and change unexpected things
� The following is allowed but make it hard to read
int a[] = {6,5,4,3,2,1};
int *p = &a[2];
p[-2] = 2;

� What value will change?

Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 10: Pointers and Structures C Tasks

Pointers Continued

Constant strings

� The “Hello world” in printf("Hello world"); is a constant
string literal

� It cannot be changed
� Consider the two expressions
char amsg[] = "Hello world";
char *pmsg = "Hello world";

� amsg is a character array initialized to “Hello world”. You can
modify the content of the array since it contains a copy of the
string literal.

� pmsg is a pointer that points to a constant string directly. You
cannot change the character in the string but change what
pmsg points to.

Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 10: Pointers and Structures C Tasks

Pointers Continued

Task 1

� Write the function
void strcpy2(char *dest, char *src);

� Should copy the string src into dest

Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 10: Pointers and Structures C Tasks

Pointers Continued

Pointers to pointers

� Can have pointers to pointer
� “Address of the address to the value”
� Notation similar
� int a;
int *p = &a;
int **pp = &p;

� Example use: Change address of pointer in function
� Dereferencing:

� *pp to get pointer to a
� **pp to get value of a

Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 10: Pointers and Structures C Tasks

Pointers Continued

Arrays of pointers

� Can also make arrays of pointers like any other data type
� Ex: char *sa[100]; array of 100 C strings
� Ex: int *ia[100]; array of 100 int pointers

Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 10: Pointers and Structures C Tasks

Pointers Continued

void pointer

� Normal pointers point to a certain type like int
� The void pointer (void*) represents a general pointer that

can point to anything
� You can assign to and from a void * without a problem
� You can not dereference a void*
� The void pointer allows you to write code that can work with

addresses to any data type

Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 10: Pointers and Structures C Tasks

Pointers Continued

void pointer cont’d

� NOT ALLOWED
int a = 4;
void *b = &a;

*b = 2;
� ALLOWED
int a = 4;
void *b = &a;
int *c = b; *c = 2;

Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 10: Pointers and Structures C Tasks

Pointers Continued

NULL

� Bad idea to leave variables unitialized
� This is true for pointers as well
� To mark that a pointer is not assigned and give it a well defined

value we use the NULL pointer.
� Ex:
int *p = NULL;

...

if (p != NULL) *p = 4;
� Testing if not NULL before using a pointer is good practice (and

setting it to NULL when unassigned)

Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 10: Pointers and Structures C Tasks

Pointers Continued

Selective computations

� Using the NULL pointer we can tell a function parameters need
not be calculated

� Ex: void calc(double x, double *v1, double

*v2);
� If we call this method with v1 or v2 NULL the function can

choose not to perform certain calculations

Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 10: Pointers and Structures C Tasks

Function Pointers

Lecture 10: Pointers and Structures
Wrap Up
Pointers Continued
Function Pointers
Constant variables and structs
Pointers and Structs

C Tasks

Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 10: Pointers and Structures C Tasks

Function Pointers

Pointer to functions

� Just like in Matlab you can work with pointers to functions
� In C you need to declare explicitly what the argument the

function has as input and output
� Ex: Pointer (fcn) to a function that returns an int and takes a
double as argument
int (*fcn)(double)

Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 10: Pointers and Structures C Tasks

Function Pointers

Arrays of pointers to functions

� Can store arrays of function pointers
� To declare an array pf of 4 pointers to functions we do
double (*pf[4])(double);

� You assign values by
pf[0] = &fcn1;

� and you use them as
pf[0](4.2);

Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 10: Pointers and Structures C Tasks

Constant variables and structs

Lecture 10: Pointers and Structures
Wrap Up
Pointers Continued
Function Pointers
Constant variables and structs
Pointers and Structs

C Tasks

Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 10: Pointers and Structures C Tasks

Constant variables and structs

const

� If you want to make sure that a variable is not changed you can
use the const keyword

� Ex: const double pi = 3.1415;

Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 10: Pointers and Structures C Tasks

Constant variables and structs

struct

� So far we looked at basic data types and pointers
� It is possible to define your own types
� For this we use a struct
� Ex:
struct complex number {

double real;
double imag;

};
� The variables real and imag are called members of the
struct complex number.

� Declaring variables x,y of type complex number is done with
struct complex number x,y;

Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 10: Pointers and Structures C Tasks

Constant variables and structs

Assigning struct

� Can be assign similar to arrays
� struct complex number x = { 1.1, 2.4 };
� Will give the complex number x = 1.1 + 2.4i .
� One more example:
struct person {

char *name;
int age;

};
struct person p1 = {"Jan Kowalski", 38};

� Order must be same as in structure, unless:
struct person p1 = {.age=38, .name="Jan
Kowalski"};

Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 10: Pointers and Structures C Tasks

Constant variables and structs

Accessing members of a struct

� If you want to set/get the value of a member you use the “.”
operator

� Ex:
struct complex number {

double real;
double imag;

};
struct complex number x;
x.real = 1.1;
x.imag = 2.4;

Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 10: Pointers and Structures C Tasks

Constant variables and structs

typedef

� typedef can be used to give types a new name, like a
synonym

� Can introduce shorter names for things
� Ex:
struct position {
double x;
double y;

};
typedef struct position pos;

� Now you can use pos instead of struct position

Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 10: Pointers and Structures C Tasks

Pointers and Structs

Lecture 10: Pointers and Structures
Wrap Up
Pointers Continued
Function Pointers
Constant variables and structs
Pointers and Structs

C Tasks

Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 10: Pointers and Structures C Tasks

Pointers and Structs

Pointers and structures

� You can use pointers to structures
� Ex:
struct complex number x;
struct complex number *xptr = &x;

� To access a member using a pointer we use the “− >” operator
� Ex: xptr->real = 2;
� This is the same as x.real = 2;

Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 10: Pointers and Structures C Tasks

Lecture 10: Pointers and Structures
Wrap Up
Pointers Continued
Function Pointers
Constant variables and structs
Pointers and Structs

C Tasks

Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 10: Pointers and Structures C Tasks

Task 2

� Illustrate what happens in the following case
int *pi, i, j, *q = NULL;
i = 10;
pi = &i;
j = *pi;
(*pi)++;
q = pi;

Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 10: Pointers and Structures C Tasks

Task 2 cont’d

From “The ANSI C Language” Granet VincentYasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 10: Pointers and Structures C Tasks

Task 3

Write a program which accesses the functions,
� int add(int x,int y){return x+y}
� int mul(int x,int y){return x*y}
using function pointers

Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 10: Pointers and Structures C Tasks

Task 4

� Rewrite the Newton function so that it can take a function
pointer instead

� This makes it easier to switch functions

Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 10: Pointers and Structures C Tasks

Task 5

� Write a program with several functions, all with the same
interface

� Create an array of pointers to these functions
� Loop through the pointers and call the functions

Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 10: Pointers and Structures C Tasks

Task 6

Assign any integer to the closest in the set: { 0, 3, 6, 10}

10

5

2

0 3

8

6

� Use the above decision tree structure.
� If greater or equal than the node value, follow right, otherwise,

follow left

Yasemin Bekiroglu Royal Institute of Technology – KTH

EL2310 – Scientific Programming

	Overview
	Overview

	Content
	Lecture 10: Pointers and Structures
	Wrap Up
	Pointers Continued
	Function Pointers
	Constant variables and structs
	Pointers and Structs

	C Tasks

