EL2310 - Scientific Programming

Lecture 2: Matlab as a Tool

Yasemin Bekiroglu (yaseminb@kth.se)

Royal Institute of Technology - KTH

Overview

Lecture 2: Matlab as a Tool
Wrap Up
Matrices (continued)
Linear Algebra
Plotting \& Visualization
Tasks for Home

Last time

- To get help
help, lookfor, helpdesk
- To check defined variables who, whos
- To load/save variables in workspace
save, load
- To clear variables
clear
- To "write" a diary
diary

Last time, too

- Initialize a vector

$$
\mathrm{v}=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right] ;
$$

- Initialize a matrix

$$
\mathrm{M}=\left[\begin{array}{llllllll}
1 & 2 & 3 ; & 5 & 6 ; & 7 & 9
\end{array}\right]
$$

- Simple operations on scalars, matrices and vectors

$$
\mathrm{w}=\mathrm{M} * \mathrm{v} ; \mathrm{w}=\mathrm{v}^{\prime} ;
$$

- Access values of vectors and matrices

```
w(0);
M(2,2); M(5);
```


Element-by-element Operations

- Often we want to perform operations on independent elements of arrays
- Use the operator . * ./ .^
- Examples:

$$
\begin{aligned}
& \gg A=\left[\begin{array}{ll}
1 & 2
\end{array}\right] ; B=\left[\begin{array}{ll}
2 ; & 2
\end{array}\right] ; \\
& \gg A * B \\
& \operatorname{ans}=6 \\
& \gg A \cdot * B^{\prime} \\
& \text { ans }=\left[\begin{array}{ll}
2 & 4
\end{array}\right]
\end{aligned}
$$

Elementary matrices

- Many of the elementary matrices are predefined
- See more information with help elmat
- Examples

Identity matrix: I = eye (n);
Zero-matrix: $z=\operatorname{zeros}(\mathrm{n}, \mathrm{m})$;
One-matrix: $0=$ ones (n, m);

- If the second dimension is omitted, creates a rectangular matrix.

Some tools to deal with real data:

Solving linear systems

- You can solve a matrix equation $A X=B$ using $X=A \backslash B$. If B is invertible, this is the same as $X=A^{-1} B$, otherwise the solution is a solution in the least squares sense.

Random matrices

- Can easily create random matrices in $[0,1]$
- Uniform distribution

$$
\text { rand }(n, m)
$$

- Normal distribution randn (n, m)

- How to get a (2x2) matrix with uniformly distributed values in [3, 4] or [3, 10]?
- How to generate 100 values from a normal distribution with mean 1 and standard deviation 2?

Sequences

- Enumerate

$$
\text { Ex: v = [lll} 1137] ;
$$

- Colon notation (function colon)

Ex: v = 1:9;
Ex: v = 1:2:9;

- More general linearly spaced vectors
$\triangleright \mathrm{v}=$ linspace (start_value, end_value, N$)$;
\triangleright Generates N values between start_value and end_value
\triangleright Do not have to calculate the step yourself
- Logarithmically spaced vector
$\triangleright \mathrm{v}=$ logspace (start_exp, end_exp, N);
\triangleright Calculates N linearly spaced values between start_exp and end_exp and 10 to the power of these values.
$\triangleright \operatorname{logspace}\left(x_{1}, x_{2}, N\right)=10^{\operatorname{linspace}\left(x_{1}, x_{2}, N\right)}$

Size of matrices

- You get the size of a matrix (rows and columns) with size(A)
- Number of rows size(A,1)
- Number of columns
size (A, 2)
- For a vector you get the length with length (v)
- For matrices length (A) gives "largest" dimension
- Often convenient to use end for index v (4:end) = 0; (you do not need to know the size)

Creating matrices

- Diagonal matrices can be created with diag (<vector>)
- Creates a matrix with the vector on the diagonal, that is a square matrix of dimensions equal to the length of the vector argument
- You can shift the vector up and down from the diagonal diag(<vector>, k) where $k>0$ means shifting up and $k<0$ mean shifting down
- You can also create diagonal block matrices with blkdiag (M1, M2, ...)

Manipulating matrices

- Get lower triangular part tril(A)
- Get upper triangular part
triu(A)
- Flip a matrix upside down
flipud(A)
- Flip a matrix left/right
fliplr(A)
- Rotate matrix 90° counter clock wise rot 90 (A)

$$
\begin{aligned}
& \gg A=\left[\begin{array}{lllll}
1 & 2 & 3 ; 4 & 6 ; 7 & 9
\end{array}\right] ; \\
& \gg \operatorname{trin}(A)
\end{aligned}
$$

ans =

1	0	0
4	5	0
7	8	9

```
>> triu(A)
```

ans =

1	2	3
0	5	6
0	0	9

Changing matrix shape

- Sometimes useful to change the shape of a matrix
- Ex: You have an array $x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{N}, y_{N}$ and you want to make a matrix with (x, y) column vectors
- reshape ($\mathrm{A}, \mathrm{n}, \mathrm{m}$) ; goes through matrix/vector A column wise

A =					
1	4	7	1		
2	5	8	1		
3	6	9	1		
$B=$ reshape ($A, 2,6)$					
$\mathrm{B}=$					
1	3	5	7	9	11
2	4	6	8	10	12

Finding elements

- You can find non-zero elements
[ind] = find(A)
returns the linear index (single index)
- Can get the subscripts by providing two output arguments [ii, jj] = find(A)
- Can replace test for non-zero with a logic expression such as [ii, jj] = find ($\mathrm{A}>3$)
- Note that $A>3$ is a matrix of the same dimension as A and with 1-elements for each element in A that is >3 and 0 for the rest

Linear algebra (some examples)

- Easy to calculate basic linear algebra
- Inverse: inv (A)
- Determinant: $\operatorname{det}(\mathrm{A})$
- Rank: rank (A)
- Trace: trace (A)

Linear algebra: Eigenvalues

- Finding eigenvalues
eig(A)
- Getting eigenvalue and vectors
[V,D] = eig(A)
V full matrix contains the eigen vectors (columns) and D is a diagonal matrix with the eigenvalues on the diagonal Fulfills $A V=V D$

Linear algebra: Singular value decomposition (SVD)

- Calculating svd is simple

$$
[\mathrm{U}, \mathrm{~S}, \mathrm{~V}]=\operatorname{svd}(\mathrm{A})
$$

- Fulfills $A=U * S * V^{\top}$
- $s=s v d(A)$ gives the singular values

Square root matrix

```
```

>A = [1 2;34

```
```

>A = [1 2;34
A =
A =
1 2
1 2
3 4
3 4
>As = sqrtm(A)
>As = sqrtm(A)
AS =
AS =
0.5537+0.4644i 0.8070-0.2124i
0.5537+0.4644i 0.8070-0.2124i
1.2104-0.3186i 1.7641 + 0.1458i
1.2104-0.3186i 1.7641 + 0.1458i
>AS*AS
>AS*AS
ans =
ans =
1.0000 +0.0000i 2.0000
1.0000 +0.0000i 2.0000
3.0000 +0.0000i 4.0000
3.0000 +0.0000i 4.0000
>> AS. *AS
>> AS. *AS
ans =
ans =
0.0909 + 0.5143i 0.6061-0.3428i
0.0909 + 0.5143i 0.6061-0.3428i
1.3636-0.7714i 3.0909 + 0.5143i

```
```

 1.3636-0.7714i 3.0909 + 0.5143i
    ```
```

- Square root matrix fulfills $A=X X$
- Calulated with

$$
\mathrm{X}=\operatorname{sqrtm}(\mathrm{A}) ;
$$

- Remember: Element wise multiplication with . *

More operations

- Easy to calculate mean, standard deviation, etc.
- Applies to a vector or columns of a matrix
- Mean value: mean (v)
- Standard deviation: std (v)
- Min value : min (v) (also min (A, 2))
- Max value $: \max (\mathrm{v})($ also $\max (\mathrm{A}, 2)$)
- Sum : sum(v)
- Difference: diff(v)
- Cumulative sum: cumsum (v)
- Covariance: cov (X)

More operations cont.

- Useful tip: Convert a matrix to column vector A (:) What's min(A) and min(A(:)) if A is a matrix?
- Additional parameter specifies dimension:

```
mean(A, 1 or 2)
min(A, [], 1 or 2) Why []?
max(A, [], 1 or 2)
sum(A, 1 or 2)
```


Plotting data

- Plotting data with

$$
\text { plot }(x, y)
$$

- With one argument the x-axis will be the vector index and the y-axis the value of the input vector
- Can specify color and type of line/points, e.g. plot (x,y,'r.') to get a red dot for every data point
- For more information do help plot
- Example: Plot $\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$, i.e. a normal distribution with standard deviation σ and mean value μ.

Titels, labels, etc

- Label the axes with

```
xlabel('text on the x-axis')
ylabel('text on the y-aixs')
```

- and give a title with
title('Some nice title')
- You can change the font size by adding extra arguments
xlabel('text on the x-axis', 'FontSize',20)

Handles and set/get

- Calls to graphics functions return a "handle"
- Can use this handle to set/get properties
- h = title('Some nice title');
- List properties with get (h) ;
- Set property with set(h, 'FontSize', 20);
- Get current handle:
gcf-figure
gca-axes

Plotting continued

- You can plot more than one thing at a time:
plot(x1, y1, x2, y2)
will plot $x 1$ against $y 1$ and $x 2$ against $y 2$ in the same graph
- Each pair assigned it own color automatically
- You can manually specify color/marker for each:
plot(x1, y1, 'r', x2, y2, 'b')
- Every plot call will clear the figure
- Use hold on and hold off to stop from clearing

```
hold on
plot(x1,y1)
plot(x2,y2)
hold off
```


More plotting

- You can provide labels for your data with legend

```
plot(x1, y1, x2, y2)
legend('data set 1', 'data set 2')
```

- You can specify which figure window something goes to with figure(n)
If specified window does not exist it will be created
- You can clear a figure (the current one) with clf
- Can get grid with grid
- Can plot with one or both axis in logarithmic scale

```
semilogx (x,y)
semilogy(x,y)
loglog(x,y)
```


Data Analysis

- Let's generate, plot and analyse data with Matlab

Exercises

- Generate a vector of normally distributed random samples
- Compute the mean and standard deviation from the samples
- Generate two sequences of random samples and compute covariance

Exercises

- Generate a "data set" using $x=5-10 * \operatorname{rand}(1,1000)$ $y=2+3 * x+\operatorname{randn}(1,1000)$.
- Save the result in a file data.mat.

Exercises

- Assume someone hands you the data generated in the previous task without information about how it was generated.
- Load and plot the (x, y) data to understand it (try scatter).
- Assume that you don't know how the data was actually generated. Try to fit line to the data (x, y) using just the data samples.
- Plot your line approximation

Exercises

- Generated a "data set" using

$$
\begin{aligned}
& x=5-10^{*} \text { rand }(1,1000) \\
& y=2+0.1^{*} x .^{\wedge} 3+\text { randn }(1,1000) .
\end{aligned}
$$

- Assume someone hands you the data above without any information about how it was generated.
- Plot the (x, y) data to understand it.
- Read about regression methods online and check useful matlab commands.
- Can you fit a non-linear function to the data?
- Quantify the error in your approximation compared to a simple line fit to this data?

Next time

- Finish up plotting
- Functions and scripts in detail

The First Presentation: PCA

- Explain what Principal Component Analysis (PCA) does, how it works and for what type of problems it is used.
- Implement it, compare your implementation with Matlab's built-in pca function on a dataset with different classes that has a large dimensionality. You can create your own data with multiple classes with random samples or use an already available dataset (from Matlab or another source).

The First Presentation: PCA

- Visualize the data in the new space and observe if data samples from the same classes are close to each other.
- How should we choose the number of eigen vectors to represent data without losing information?
- How can we implement a PCA-based face recognition method? (http://vision.ucsd.edu/content/yale-face-database)

The Second Presentation: Kmeans

- Explain what kmeans clustering algorithm does, how it works and for what type of problems it is used.
- Implement it and apply it on the IRIS dataset (load fisheriris)
- Compare your implementation with Matlab's built-in function. Do you get the same results?
- What are the factors that affect the performance of the algorithm?
- Apply your function to another dataset and evaluate the performance: e.g., kmeansdata.mat from Matlab

Matlab Project

- Coin Detection - Hough Transform
- Deadline 17 Sep, thursday 20:00
- Project description along with solutions to the exercises from the first lecture are available on course homepage.
- Help session on Wed 9/9 at 13:00 at 304 (22:an), Teknikringen 14.

