
EL2310 – Scientific Programming
Lecture 15: OOP in C++

Ramviyas Parasuraman (ramviyas@kth.se)

Royal Institute of Technology – KTH

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Overview

Overview

Lecture 15: OOP in C++
Reminders
Wrap Up
Operator Overloading
Inheritance
Polymorphism and Virtual Functions

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 15: OOP in C++

So far..

� OOP concepts in C++
� Classes: definition and declaration

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 15: OOP in C++

Today

� Inheritance, Overloading and Polymorphism

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 15: OOP in C++

Reminders

Lecture 15: OOP in C++
Reminders
Wrap Up
Operator Overloading
Inheritance
Polymorphism and Virtual Functions

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 15: OOP in C++

Reminders

Group presentation today

� Group 10 (Helmi and Pang)
- How to optimize C code. Explain with examples

� Group 12 (Victor, Anton.D, and Bjorn)
- Introduce Genetic Algorithms (GA)
- Implement a GA solution for a problem in C++, e.g., Traveling
Salesman Problem

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 15: OOP in C++

Reminders

Group presentation on Wednesday (14/10)

� Group 13 (Nikhil and Sanel)
- Huffman Coding for compression
- Implement it in C++

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 15: OOP in C++

Reminders

Group presentation on Thursday (15/10)

� Group 14 (Roberto, Paul and Adam):
- Expectation-Maximization (EM) algorithm
- Monte Carlo Sampling for inference and approximation
- Implement an example in C++

� Group 15 (Pablo and Anton.I)
- Introduce Multi-threading
- Show some implemented examples in C++

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 15: OOP in C++

Reminders

The C++ project

� Is announced! http://www.csc.kth.se/ yaseminb/cplusplus.html
� Deadline: Monday 26.10.2014
� Help session:

Friday 16.10.2014, 1-3:00pm, Room 22:an, Teknikringen 14
� Reminder: C project deadline today (extended)!

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 15: OOP in C++

Wrap Up

Lecture 15: OOP in C++
Reminders
Wrap Up
Operator Overloading
Inheritance
Polymorphism and Virtual Functions

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 15: OOP in C++

Wrap Up

Destructor

� To free memory (DMA) when an object is deleted
� Only 1 destructor in a class
� Syntax: C̃lassName();
� Class A {
public:
A(); // Constructor
Ã(); // Destructor

...
};

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 15: OOP in C++

Wrap Up

Source and header file

� The definition goes into the header file .h
� The declaration goes into the source file .cpp
� Header file ex:
class A{
public:
A();

private:
int m X;

};
� Source file ex:
#include "A.h"
A::A():m X(0)

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 15: OOP in C++

Wrap Up

this pointer

� Inside class methods you can refer to the object with this
pointer

� The this pointer cannot be assigned (your program decides it
run-time)

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 15: OOP in C++

Wrap Up

const

� To make some parameters as ”read-only”
� const function arguments:
� Ex: void fcn(const string &s);
� const function type:
� Ex: void fcn(int arg) const;

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 15: OOP in C++

Wrap Up

Static members

� A static member (data/function) is the same across all
objects.

� It’s a member of the class, not of any single object
� Ex: int A::m Counter = 0; if m Counter is a static data

member of class A

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 15: OOP in C++

Operator Overloading

Lecture 15: OOP in C++
Reminders
Wrap Up
Operator Overloading
Inheritance
Polymorphism and Virtual Functions

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 15: OOP in C++

Operator Overloading

Operator overloading

� Operators behave just like functions
� Compare
Complex& add(const Complex &c);
Complex& +=(const Complex &c);

� You can overload (provide your own implementation of) most
operators

� This way you can make them behave in a “proper” way for your
class

� It will not change the behavior for other classes only the one
which overloads the operator

� Some operators are member functions, some are defined
outside class

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 15: OOP in C++

Operator Overloading

Task 1

� Use the Complex number class from before.
Overload/implement:

� std::ostream& operator<<(std::ostream &os,
const Complex &c);

� Complex operator+(const Complex &c1, const
Complex &c2)

� Complex operator+(const Complex &c); (member
function)

� Complex& operator=(const Complex &c); (member
function)

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 15: OOP in C++

Operator Overloading

Function overloading

� We can create functions and methods with the same name, but
different arguments

� It is not possible to overload by changing return type
� Example:
void method();
void method(int a);
void method(int b, double c);
void method(int b); WRONG!
int method(int b); WRONG!

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 15: OOP in C++

Operator Overloading

Dynamic allocation of objects

� One reason to use dynamic memory allocation (new/delete):
� Moving around pointers to BIG chunks of memory (avoiding

unnecessary copying)
� Makes sense not only for arrays
� Objects can also be BIG (e.g. database object can be 500MB!)
� Typically, we dynamically allocate objects
� We free memory when the object is no longer needed
� We pass objects by reference (* or &) to functions
� Example:
Database db = new Database("mydatabase.db");
useDb(db); // void useDb(Database *db)
delete db;
db = NULL;

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 15: OOP in C++

Inheritance

Lecture 15: OOP in C++
Reminders
Wrap Up
Operator Overloading
Inheritance
Polymorphism and Virtual Functions

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 15: OOP in C++

Inheritance

Inheritance

� Inheritance is a way to show a relation like “is a”
� Ex: a car is a vehicle
� A car inherits many of its properties from being a vehicle
� These same properties could be inherited by a truck or a bus
� Syntax:
class Car : public Vehicle
specifies that Car inherits from Vehicle

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 15: OOP in C++

Inheritance

Inheritance and Constructors

� If you have three classes A, B and C,
� where

� B inherits from A (class B: public A)
� C inherits from B (class C: public B)

� When you create C:
C c;
the constructor from the base classes (B and A) will be run first

� Execution order
1. Constructor of A
2. Constructor of B
3. Constructor of C

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 15: OOP in C++

Inheritance

Access specifiers

� private: can be accessed from:
� inside of the class

� public: can be accessed from:
� inside of the class
� subclasses
� outside of the class

� protected: can be accessed from:
� inside of the class
� subclasses

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 15: OOP in C++

Polymorphism and Virtual Functions

Lecture 15: OOP in C++
Reminders
Wrap Up
Operator Overloading
Inheritance
Polymorphism and Virtual Functions

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 15: OOP in C++

Polymorphism and Virtual Functions

Polymorphism

� A variable/function can have more than one form
� Example of polymorphism: operator/function overloading
� We can have sub-type polymorphism:

a variable can be of more than one form
� A variable of a base type can hold an object of a sub-type
� In C++ implemented using references or pointers to base

classes

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 15: OOP in C++

Polymorphism and Virtual Functions

Polymorphism example

� class Vehicle
{...}
class Car: public Vehicle
{...}

� Vehicle *v1 = new Vehicle();
� Vehicle *v2 = new Car();
� v2 is a Car hidden inside a variable of type pointer to Vehicle!
� We can then write: v1 = new Car();
� So, v1 can hold both a Car and a Vehicle (or even a Truck!)

Polymorphism!

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 15: OOP in C++

Polymorphism and Virtual Functions

Subclasses as arguments to function

� If a function requires as argument a pointer/reference to an
object of class A

� We can provide a pointer/reference to any subclass of A

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 15: OOP in C++

Polymorphism and Virtual Functions

Accessing methods

� class Vehicle
{
void drive();

}
class Car: public Vehicle
{
void openTrunk();

}
� Vehicle *v = new Car();
� v->drive(); runs drive() from the Vehicle part of the Car
� v->openTrunk(); NOT POSSIBLE!
� But: ((Car *)v)->openTunk(); WORKS!

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 15: OOP in C++

Polymorphism and Virtual Functions

Overloading in sub-classes

� We can overload a method in a sub-class
class Vehicle {

void drive();
}
class Car: public Vehicle {

void drive();
}

� Vehicle *v1 = new Vehicle();
� Vehicle *v2 = new Car();
� Car *c = new Car();
� v1->drive(); and v2->drive(); run drive() from the

Vehicle
� c->drive(); runs drive() from the Car

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 15: OOP in C++

Polymorphism and Virtual Functions

virtual functions

� What if we want the object know what it “really” is and run the
correct drive() method?

� Declare the method with the keyword virtual
class Vehicle {

virtual void drive();
}
class Car: public Vehicle {
virtual void drive();

}
� Vehicle *v1 = new Vehicle();
� Vehicle *v2 = new Car();
� v1->drive(); runs drive() from the Vehicle
� v2->drive(); runs drive() from the Car

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 15: OOP in C++

Polymorphism and Virtual Functions

Polymorphism with virtual functions

� What virtual function to run is determined at run-time
� Depends on the “real” type of objects
� Works for both pointers and references

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 15: OOP in C++

Polymorphism and Virtual Functions

Interfacing: Abstract class

� In C++, abstract classes provides interfaces
� Not to be confused with data abstraction
� To make a class abstract : declare at least one of its functions

as pure ”virtual” function.
� A pure virtual function is specified by placing ”= 0”
� class Car

{
public:
virtual double getNrWheels() = 0; // pure

virtual function
private:
double NrWheels

};
Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 15: OOP in C++

Polymorphism and Virtual Functions

Abstract class

� Abstract classes cannot be instantiated
� Purpose : A base classes which could be inherited in other

classes
� Inherited classes have to overload each of the virtual functions

in the base class
� Meaning: B (inherits the base class A) supports the interface

provided by A.

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming


	Overview
	Overview

	Content
	Lecture 15: OOP in C++
	Reminders
	Wrap Up
	Operator Overloading
	Inheritance
	Polymorphism and Virtual Functions



