
EL2310 – Scientific Programming
Lecture 13: Introduction to C++

Ramviyas Parasuraman (ramviyas@kth.se)
Credits: Andrej Pronobis (U.Washington), Florian Pokorny (UC Berkeley)

KTH - Royal Institute of Technology

Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Overview

Overview

Lecture 13: Introduction to C++
Differences between C and C++
Printing and User Input
Namespaces
References and Pointers
Allocating Memory Dynamically

Introduction to Object Oriented Paradigm
More on Object Oriented Programming
Classes

Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Lecture 13: Introduction to C++ Introduction to Object Oriented Paradigm

Course so far

� MATLAB: Using program to perform some tasks
� C: Learning how to program

Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Lecture 13: Introduction to C++ Introduction to Object Oriented Paradigm

Rest of the course

� C++
� Writing extendable (modular) programs in C++
� Object Oriented Programming
� Using other people’s code
� Modifying/Extending other people’s code
� Writing re-usable code

Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Lecture 13: Introduction to C++ Introduction to Object Oriented Paradigm

Today

� Basics in C++
� Introduction to OOP

Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Lecture 13: Introduction to C++ Introduction to Object Oriented Paradigm

What is C++?

� Developed by Bjarne Stroustrup starting from 1979 at Bell Labs
� Adds object oriented features (e.g. classes) to C
� Initially named: C with Classes; then renamed to ”C++” (guess

why?)
� Influenced many other languages: C#, Java
� The C++ standard library incorporates:

� The C standard library with small modifications
� STL (Standard Template Library)

� Constantly developed: C++11 (2011), C++14 (2014)
� P.S: Objective-C uses another approach to adding classes to C

Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Lecture 13: Introduction to C++ Introduction to Object Oriented Paradigm

Differences between C and C++

Lecture 13: Introduction to C++
Differences between C and C++
Printing and User Input
Namespaces
References and Pointers
Allocating Memory Dynamically

Introduction to Object Oriented Paradigm
More on Object Oriented Programming
Classes

Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Lecture 13: Introduction to C++ Introduction to Object Oriented Paradigm

Differences between C and C++

C++ subsumes C

� You can use all you learned in C in C++ as well
� Some constructs/syntax have a C++ version

Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Lecture 13: Introduction to C++ Introduction to Object Oriented Paradigm

Differences between C and C++

File naming conventions

� We named files in C as .c (source) and .h (header)
� In C++, the ending is typically .cc or .cpp for source files and .h,

.hh or .hpp for header files
� In this course we will use .cpp and .h

Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Lecture 13: Introduction to C++ Introduction to Object Oriented Paradigm

Differences between C and C++

C++ Compiler

� g++ and gcc: g++ is specific to C++ by (auto) linking to std
C++ libraries whereas gcc decides based on the file extension
(.c/.cpp)

� Usage and command line options for g++ are the same as for
gcc

� Make sure you know how to use make for this part of the
course!

Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Lecture 13: Introduction to C++ Introduction to Object Oriented Paradigm

Differences between C and C++

Comments in C++

� Multi-line comments as in C, i.e. /* ...*/
� Single-line comments using //
� : Example:
int main() {
// This is a single line comment

/* This comment extends to
multiple lines */ ...
}

Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Lecture 13: Introduction to C++ Introduction to Object Oriented Paradigm

Differences between C and C++

Basic data types

� All data types from C can be used. Plus some more, e.g.
� bool: boolean value true/false
� string: “real” string (use #include <string>)

Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Lecture 13: Introduction to C++ Introduction to Object Oriented Paradigm

Differences between C and C++

Declaration of variables

� You no longer need to declare the variable at the beginning of
the function (scope), as was the case for pre C99

� Rule of thumb: declare variables close to where they’re used.
� For instance:

for(int i=0;i<N;i++){. . .}

i only defined within loop
� Use specific names for counters, e.g. i,j,k,...

Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Lecture 13: Introduction to C++ Introduction to Object Oriented Paradigm

Printing and User Input

Lecture 13: Introduction to C++
Differences between C and C++
Printing and User Input
Namespaces
References and Pointers
Allocating Memory Dynamically

Introduction to Object Oriented Paradigm
More on Object Oriented Programming
Classes

Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Lecture 13: Introduction to C++ Introduction to Object Oriented Paradigm

Printing and User Input

Printing to Screen

� In C++ we use streams for input and output using the
<iostreams> library

� Output is handled with the stream cout and cerr,
using the << operator
Ex: cout << "Hello world";

� To add a line feed use the “\n” as in C or the special endl
cout << "Hello world\n" ;
cout << "Hello world" << endl;

� All basic data types have the ability to add themselves to a
stream for printing

Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Lecture 13: Introduction to C++ Introduction to Object Oriented Paradigm

Printing and User Input

Printing to screen cont’d

� You can mix data types easily
� In C: printf("The value is %d\n", value);
� In C++: cout << "The value is " << value <<
endl;

� The stream cerr is the error stream
� Compare stdout and stderr in C

Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Lecture 13: Introduction to C++ Introduction to Object Oriented Paradigm

Printing and User Input

Formatting output

� Just like in C you can format the output in a stream
� You can use

width number of characters for output to fill
precision number of digits
fill pad with a certain character

� Syntax:
cout.precision(4);
cout.width(10);
cout.fill(’0’);
cout << 12.3456789 << endl;

� Will output 0000012.35
� Default precision=6, fill=’ ’ (space)

Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Lecture 13: Introduction to C++ Introduction to Object Oriented Paradigm

Printing and User Input

Getting input from the user

� streams is also used to get input from console
� Use the cin stream
� Ex:
int value;
cin >> value;

� Using cin will flush the cout stream

Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Lecture 13: Introduction to C++ Introduction to Object Oriented Paradigm

Printing and User Input

Reading strings

� When reading with cin, the inputs are separated by spaces
� Ex: cin >> a >> b >> c;
� If you want to read an entire line, use getline
� Ex:
string line;
getline(cin, line);
cout << "The input was " << line << endl;

Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Lecture 13: Introduction to C++ Introduction to Object Oriented Paradigm

Printing and User Input

Hello KTH in C++

#include <iostream>
int main ()
{
std::cout << "Hello KTH!";
return 0;

}

Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Lecture 13: Introduction to C++ Introduction to Object Oriented Paradigm

Printing and User Input

Hello KTH in C++...

� <iostream> replaced <stdio.h>
� Standard C++ header files are included without the suffix (no .h

at the end)
� Here the std namespace is used, where cout is found.

Let’s know more about namespaces now!

Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Lecture 13: Introduction to C++ Introduction to Object Oriented Paradigm

Printing and User Input

Task 1

� Write a program that reads the name and age of a person
� It should then print this info on the screen

Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Lecture 13: Introduction to C++ Introduction to Object Oriented Paradigm

Namespaces

Lecture 13: Introduction to C++
Differences between C and C++
Printing and User Input
Namespaces
References and Pointers
Allocating Memory Dynamically

Introduction to Object Oriented Paradigm
More on Object Oriented Programming
Classes

Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Lecture 13: Introduction to C++ Introduction to Object Oriented Paradigm

Namespaces

Namespaces

� In C all function share a common namespace
� This means that there can only be one function for each function

name
� In C++ functions can be placed in specific namespaces
� Syntax:
namespace NamespaceName {

void fcn(); ...
}

Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Lecture 13: Introduction to C++ Introduction to Object Oriented Paradigm

Namespaces

Accessing functions in a namespace

� To access a function fcn in namespace A,
A::fcn

� This way you can have more than one function with the same
name but in different namespaces

Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Lecture 13: Introduction to C++ Introduction to Object Oriented Paradigm

Namespaces

Using namespace

� Specifying the namespace all the time == lose time in typing
std::cout << "Who likes typing?" << std::endl;

� Solution: extending a specific namespace in a program,
� E.g.
using namespace std
cout << "OK" << endl;
cout << "Now it feels much better!" << endl;

� But avoid using this in header files

Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Lecture 13: Introduction to C++ Introduction to Object Oriented Paradigm

Namespaces

Task 2

� Write a program to test the idea of namespaces
� Define two functions fcn(); inside namespaces A and B

Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Lecture 13: Introduction to C++ Introduction to Object Oriented Paradigm

References and Pointers

Lecture 13: Introduction to C++
Differences between C and C++
Printing and User Input
Namespaces
References and Pointers
Allocating Memory Dynamically

Introduction to Object Oriented Paradigm
More on Object Oriented Programming
Classes

Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Lecture 13: Introduction to C++ Introduction to Object Oriented Paradigm

References and Pointers

References

� “Constrained” pointers and “(a bit) safer” references
� Compare
int a; int a;
int *pa = &a; int &ra = a;
int *pa = NULL; -

*pa = 10; ra = 10; => a==10
int b; int b;
pa = &b; -
int *pc; -
pc = pa; -

Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Lecture 13: Introduction to C++ Introduction to Object Oriented Paradigm

References and Pointers

Pointers vs References

� References need to be assigned when constructed
� Ex: This is not allowed
int &x;
int y;
x = y; (assigned too late)

� Try to use references within functions
� Pointers can be re-assigned anytime. Use pointers in your

algorithms and computations

Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Lecture 13: Introduction to C++ Introduction to Object Oriented Paradigm

References and Pointers

Passing Arguments by Reference

� Standard function calls are by value
� Value of the variable is copied into the function
� Pointers offered a way in C to do call by reference
� Call by reference avoids the need to copy all the data
� Ex: Not so good to copy an entire 10Mpixel image into a

function, better to give a reference to it (i.e. tell where it is)
� In C++ we can use references

Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Lecture 13: Introduction to C++ Introduction to Object Oriented Paradigm

References and Pointers

Passing Arguments by Reference, Cont’d

� Declaration: void fcn(int &x);
� Any changed to x inside fcn will affect the parameter used in

the function call
� Ex:

void fcn(int &x)
{
x = 42;

}

int main()
{
int x = 1;
fcn(x);
cout << "x=" << x << endl;

}
� Will change value of x in the scope of main to 42

Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Lecture 13: Introduction to C++ Introduction to Object Oriented Paradigm

Allocating Memory Dynamically

Lecture 13: Introduction to C++
Differences between C and C++
Printing and User Input
Namespaces
References and Pointers
Allocating Memory Dynamically

Introduction to Object Oriented Paradigm
More on Object Oriented Programming
Classes

Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Lecture 13: Introduction to C++ Introduction to Object Oriented Paradigm

Allocating Memory Dynamically

Dynamic Memory Allocation in C++

� In C we used malloc and free
� In C++ the new and delete operators are used
� Ex:
int *p = new int;

*p = 42;
...
delete p;

Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Lecture 13: Introduction to C++ Introduction to Object Oriented Paradigm

Allocating Memory Dynamically

DMA for Arrays

� If you allocate an array with new you need to delete with
delete []

� Ex:
int *p = new int[10];
p[0] = 42;
delete [] p;

� A typical mistake: forgotten []

Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Lecture 13: Introduction to C++ Introduction to Object Oriented Paradigm

Lecture 13: Introduction to C++
Differences between C and C++
Printing and User Input
Namespaces
References and Pointers
Allocating Memory Dynamically

Introduction to Object Oriented Paradigm
More on Object Oriented Programming
Classes

Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Lecture 13: Introduction to C++ Introduction to Object Oriented Paradigm

The Object-Oriented Paradigm

Motivation:
� We are trying to solve complex problems

� Complex code with many functions and names
� Difficult to keep track of all details

� How can we reduce the complexity?
� Grouping related things
� Abstracting things away
� Creating hierarchies of things

� Advantages:
� Re-usable and reliable code
� Ease of debugging

Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Lecture 13: Introduction to C++ Introduction to Object Oriented Paradigm

Key Concepts of OOP

� Classes (types)
� Instances (objects)
� Methods (actions)
� Interfaces
� Encapsulation
� Polymorphism
� Inheritance
� Access protection - information hiding

Car example

Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Lecture 13: Introduction to C++ Introduction to Object Oriented Paradigm

More on Object Oriented Programming

Object Oriented Programming (OOP)

� Encapsulation
� Bundle data and the code to process it
� Can create a “black-box” with well defined interface
� Hiding the inside means you can not change the inside
� this bundle or box is the object

� Polymorphism
� “one interface, multiple methods”
� Can have the same interface for many classes that do the same

thing

Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Lecture 13: Introduction to C++ Introduction to Object Oriented Paradigm

More on Object Oriented Programming

Object Oriented Programming (OOP)

� Encapsulation
� Bundle data and the code to process it
� Can create a “black-box” with well defined interface
� Hiding the inside means you can not change the inside
� this bundle or box is the object

� Polymorphism
� “one interface, multiple methods”
� Can have the same interface for many classes that do the same

thing

Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Lecture 13: Introduction to C++ Introduction to Object Oriented Paradigm

More on Object Oriented Programming

Object Oriented Programming (OOP)

� Inheritance
� Support for hierarchies (most knowledge can be structured by

hierarchical classifications)
� Ex: A car is a motor vehicle which is a vehicle which is a

transportation system which is a . . .
� Subclass to inherit the properties of the base class

Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Lecture 13: Introduction to C++ Introduction to Object Oriented Paradigm

More on Object Oriented Programming

Inheritance

� Inheritance is a way to show a relation like “is a”
� Ex: A car is a vehicle
� A car inherits many of its properties from being a vehicle
� These same properties could also be inherited by a truck or a

bus
� Syntax: class Car : public Vehicle to tell that Car

inherits from Vehicle

Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Lecture 13: Introduction to C++ Introduction to Object Oriented Paradigm

More on Object Oriented Programming

Inheritance vs Aggregation

� Inheritance correspond to “is a” relations
� Ex:
class Car : public Vehicle ...

� Aggregation to “has a”
� Ex:
class Car {
...
Person m Owner;

Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Lecture 13: Introduction to C++ Introduction to Object Oriented Paradigm

More on Object Oriented Programming

Constructors

� Constructor is the first thing to run while instantiating a class
� If you do not specify a constructor in the initialization list the

default constructor will be called

Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Lecture 13: Introduction to C++ Introduction to Object Oriented Paradigm

More on Object Oriented Programming

Inheritance and Constructors

� If you have three classes A, B and C, where B inherits from A
and C inherits from B

� When you create C the constructor from the base classes (B
and A) will be run first

� Execution order
1. Initialization list for A runs. Body of A constructor runs
2. Initialization list for B runs. Body of B constructor runs
3. Initialization list for C runs. Body of C constructor runs

Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Lecture 13: Introduction to C++ Introduction to Object Oriented Paradigm

More on Object Oriented Programming

Function overloading

� You can have many functions with the same name but with
different parameter declarations

� In C we have int abs(int) and double fabs(double)
� Need to have different names in C
� In C++ you can have the same name!
� You heard something like this before, right?

Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Lecture 13: Introduction to C++ Introduction to Object Oriented Paradigm

Classes

Lecture 13: Introduction to C++
Differences between C and C++
Printing and User Input
Namespaces
References and Pointers
Allocating Memory Dynamically

Introduction to Object Oriented Paradigm
More on Object Oriented Programming
Classes

Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Lecture 13: Introduction to C++ Introduction to Object Oriented Paradigm

Classes

Classes

� A class is an “extension” of a struct
� A class can have both data member and function members

(methods)
� Classes bring together data and operations related to that data
� Like C structs, classes define new data types
� Unlike structs, they also define how operators work on the new

types

Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Lecture 13: Introduction to C++ Introduction to Object Oriented Paradigm

Classes

Class definition

� Syntax:
class ClassName {
public:
void fcn();

private:
int m X;

}; // Do not forget the semicolon!!!
� m X is a member data
� void fcn() is a member function
� public is an access specifier specifying that everything below

can be access from outside the class
� private is an access specifier specifying that everything

below is hidden from outside of the class
Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Lecture 13: Introduction to C++ Introduction to Object Oriented Paradigm

Classes

Access specifiers

� There are three access specifiers:
� public
� private
� protected

� No access specifier specified ⇒ assumes it is private
� Data and function members that are private cannot be

accessed from outside the class
� Ex: m X above cannot be accessed from outside
� protected will be discussed later

Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Lecture 13: Introduction to C++ Introduction to Object Oriented Paradigm

Classes

C++ Structs

� C++ also uses struct
� In C++ struct is just like a class (much more than the C
struct!)

� The only difference is the default access protection:
class Name {
int m X; // Private

};
struct Name {
int m X; // Public

};

Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Lecture 13: Introduction to C++ Introduction to Object Oriented Paradigm

Classes

Classes and Objects

� Classes define data types
� Objects are instances of classes
� Objects correspond to variables
� Instantiating a class (Declaring an object):
ClassName variableName;

Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Lecture 13: Introduction to C++ Introduction to Object Oriented Paradigm

Classes

Classes and Namespace

� The class defines a namespace
� Hence function names inside a class do not name-clash with

other functions
� Example: the member variable m X above is fully specified as
ClassName::m X

Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Lecture 13: Introduction to C++ Introduction to Object Oriented Paradigm

Classes

Constructor

� Constructor is a special kind of method.
� The constructor tells how to “setup” the objects
� The constructor that does not take any arguments is called the

default constructor
� When an object of a certain class is created (instantiated), the

so-called constructor is called first
� The constructor has the same name as the class and has no

return type
class A {
public:
A() {}

};

Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Lecture 13: Introduction to C++ Introduction to Object Oriented Paradigm

Classes

Constructor

� Some data types cannot be assigned, only initialized, e.g.
references

� These data members should be initialized in the initializer list of
the constructor

� Try to do as much of the initialization in the initialization in the
list rather than using assignment in the body of the constructor

� Variables are initialized in the order they appear in the list
class A {
public:
A():m X(1) {}

private:
int m X;

};
Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Lecture 13: Introduction to C++ Introduction to Object Oriented Paradigm

Classes

Constructor Example

class A {
public:
A():m X(1) {}
int getValue() { return m X; }

private:
int m X;

};
A a;
std::cout << a.getValue() << std::endl;

Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

Lecture 13: Introduction to C++ Introduction to Object Oriented Paradigm

Classes

Multiple Constructors

� You can define several different constructors
� class MyClass {
public:
MyClass():m X(1) {}
MyClass(int value):m X(value) {}
int getValue() { return m X; }

private:
int m X;

};
MyClass a; // Default constructor
MyClass aa(42); // Constructor with argument
std::cout << a.getValue() << std::endl;
std::cout << aa.getValue() << std::endl;

Ramviyas Parasuraman KTH - Royal Institute of Technology

EL2310 – Scientific Programming

	Overview
	Overview

	Content
	Lecture 13: Introduction to C++
	Differences between C and C++
	Printing and User Input
	Namespaces
	References and Pointers
	Allocating Memory Dynamically

	Introduction to Object Oriented Paradigm
	More on Object Oriented Programming
	Classes

