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Abstract— In the future mobile dual-arm robots are expected
to perform many tasks. Kinematically, the configuration of two
manipulators that branch from the same common mobile base
results in a serial-to-parallel kinematic structure, which makes
inverse kinematic computations non-trivial. The motion of the
base has to be decided in a trade-off, taking the needs of both
arms into account. We propose to use a Virtual Kinematic
Chain (VKC) to specify the common motion of the parallel
manipulators, instead of using the two manipulators kinematics
directly. With this VKC, we formulate a constraint based
programming solution for the robot to respond to external
disturbances during task execution. The proposed approach
is experimentally verified both in a noise-free illustrative sim-
ulation and a real human robot co-manipulation task.

I. INTRODUCTION AND RELATED WORK

Compared to single arm robots, dual-arm manipulators
have potential advantages in terms of higher payloads, con-
current task execution, and more advanced manipulation of
a single object. To increase the workspace of such manipu-
lators, they are sometimes connected to a mobile base, or a
torso with articulated joints. In this paper, we use the mobile
dual-arm robot shown in Fig. 1 to study the coordination
problem between the parallel manipulators and the common
mobile base.

Research on cooperative manipulators has received lots
of attentions since the 1970s. For serial-to-parallel ma-
nipulators, the operational space formulation [1] provides
dynamic modelling using the end-effector Cartesian space
coordinates. With this formulation, the augmented object
model [2] describes modelling and control of the dynamics
of multiple fixed-base serial chain manipulators. Then it
is extended to serial-to-parallel structure in [3], where the
coupling between parallel structures is described with the
cross terms of the dynamic model. Different dynamics and
kinematics modelling methods are found in a recent survey
on cooperative manipulators in [4]. However, sometimes it is
difficult to create a dynamic model of reasonable accuracy,
e.g., when a human is part of the control loop. Then, a
kinematic approach can be used, and in this paper, we
propose such an approach to solve the coordination control
of serial-to-parallel structures.

We base our solution on constraint based programming,
which is an approach for generating reactive robot motion
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Fig. 1: Example of a human robot co-manipulation task

control for complex robot tasks [5]. By formulating an
optimization problem, constraint based programming allows
a wide range of sub-tasks to be formulated as inequality or
equality constraints [6], [7]. However, the serial-to-parallel
structure presents some problems in formulating these con-
straints [8]. For example, suppose we want the 17 DOF
robot in Fig. 1 to co-manipulate a table with a human.
Unlike the straight forward inverse kinematics solution for
a serial chain, the co-manipulation behaviour is not clearly
partitioned into one problem for the left arm, one for the right
arm and one for the mobile base. A schematic illustration of
the robot kinematic structure can be found in Fig. 2. Consider
the common mobile base, its inverse kinematics solution
generated using the left arm and the base is different from
the inverse kinematics solution generated with the right arm
and the base (see Sec. III for a mathematical description).

Therefore in these cases we propose to use a virtual
kinematic chain (VKC) to replace the parallel structure when
formulating these constraints. Virtual mechanisms are not
new in the robotics literature. In the virtual model control
[9], the legs of a robot are programmed to mimic different
virtual mechanical structures in order to control the dynamics
along the gravity force direction. In the virtual mechanism
approach [10], a VKC was used to chain serial mechanisms
together. Our approach is different from [9] in that the VKC
is part of a kinematic model, and different from [10] in that
we use the VKC to specify the common motion shared by
the two parallel structures.

Since we use a VKC to specify the relative motion
rather than physically interacting with the environment, we
typically use a VKC with less or equal to 6DOF. By choosing
a task-dependent VKC, we could explicitly specify the task-



dependent motion for the parallel structure. For example, we
could use a virtual rotational joint to specify the orientation
and a virtual prismatic joint to specify the translation [10].
We could also specify task-dependant VKC’s in the 6 DOF
task space in a more systematic way, for example by apply-
ing methods such as instantaneous task specification using
constraints (iTaSC) [5] but that is outside the scope of the
current paper.

To summarize our contributions, we use a set of VKC-
based constraints to specify the parallel structure motion
for robots with serial-to-parallel structures. We integrate
these constraints with other different performance measures
[6] into a constraint based programming framework. The
proposed VKC-based method solves the coordination control
with the following benefits: (1): Using the VKC, we are able
to apply well-developed serial chain control laws/constraints
to control a robot with a branching kinematic structure.
(2): The VKC separates the constraint-specification for the
parallel structure and the common serial part. This separation
allows us to better explore the redundancy of the robot.

We use the human robot co-manipulation task shown in
Fig. 1 as an example. In this case, the robot has 17 DOF.
The two parallel arms, each has 7 DOF and branch from the
common mobile base which has 3 DOF. The parallel arms
apply fixed grasps to the table which is co-manipulated by
a human. Note that there is a closed kinematic loop through
the co-manipulated rigid object, i.e. the table.

The rest of the paper is organized as follows: in Sec. II, we
introduce the notations and preliminaries and then mathemat-
ically formulate the problem in Sec. III. The constraint based
programming solution is proposed in Sec. IV and validated
in Sec. V; we conclude the paper in Sec. VI.

II. NOTATIONS AND PRELIMINARIES

Prior to the mathematical discussion, we first define the
notations, coordinate frames, kinematic chains, transforma-
tions and Jacobian matrices in this section.

A. Notations

In the following list, we define most of the notations used
through out the paper. Note that we use bold symbols for
vectors.
• q, the joint positions.
• χ, the virtual joint positions of the VKC.
• R ∈ SO(3), a rotation.
• t ∈ R3, a translation.
• g : R4 → R4, a homogeneous transformation, where
g = (t, R) ∈ SE(3). gi−1,i defines the Euclidean
transformation from frame i to frame i− 1.

• Adg : R6 → R6, an adjoint transformation. Given g ∈
SE(3), we have Adg and its inverse defined as:

Adg =

[
R S(t)R
O R

]
, Ad−1g =

[
R> −R>S(t)
O R>

]
,

where S(t) denotes the skew-symmetric matrix associ-
ated with t.

Fig. 2: Parallel kinematic chains branching from a common serial
kinematic chain

• J ∈ R6×n, a Jacobian matrix of a robot arm with n
DOF. We use ṫJ, ω̇J ∈ R3×n to denote its translational
and rotational part respectively.

• ṫ ∈ R3, a translational velocity.
• ω ∈ R3, a rotational velocity.
• V = [ṫ

>
ω>]>, a spatial velocity.

• h ∈ R6, a wrench.
• D, the positive diagonal damping coefficient matrix.

B. Coordinate frames

We define the coordinate frames with a schematic sketch
in Fig. 2. From the robot base to the commonly manipulated
object, there are five coordinate frames: the base frame Fb,
the torso frame Ft, the left/right end-effector frames Fe1 ,Fe2
and the virtual end-effector frame Fv which is in the middle
of the end-effector frames Fe1 and Fe2 . Similar to the
cooperative task space variables [11] we use the following
to define Fv:

tbv =
1

2
(tbe1 + tbe2), Rbv = Rbe1R 1

2
∈ SO(3),

where R 1
2

is a half1 of R>be1Rbe2 . We use a superscript to de-
note the reference frame for a matrix or a vector. For example
we denote a wrench measured in Fei as heii . For velocity,
translation, rotation and Jacobian, we use two consequent
subscripts as is shown in the following example: the virtual
end-effector velocity relative to the base frame expressed in
the base frame is denoted as vbbv . If no superscript is used,
by default it indicates that the reference frame is Fb.

C. Kinematic chains

As shown in Fig. 2, there are more than one kinematic
chain connecting Ft and Fv . Let us clarify the kinematic
chains with a list:
(a) The common serial chain starts from Fb to Ft.

1 Suppose R denotes the rotation about an axis k by an angle θ. Then
R 1

2
denotes the rotation about the same axis k by an angle 1

2
θ.



(b) The arms’ chains branch from Ft to Fei .
(c) The virtual kinematic chain starts from Ft to Fv .
(d) The extended serial chain starts from Fb to Fv , which
concatenates the common serial chain and the VKC.

D. Base-arm Jacobian and base-vkc Jacobian

with the notations in the book [12], we use the following
to perform spatial-velocity transformation for different points
on a rigid object:

V t
tfv = V t

tei +AdgteiV
ei
eifv

, (1)

Given an arm-less mobile base we have a Jacobian: Jbtq̇s =
V bt and given a fixed-base manipulator we have Jiq̇i =
V t
tei , where Ji = J ttei q̇i for i = 1, 2. We can use the

transformation (1) to combine these two parts together as:

Bi[q̇
>
s q̇
>
i ]> = V bei .

where Bi = [Jbt AdgbtJ
t
tei ]. In a similar manner we

concatenate the mobile base joints qb to the VKC joints χ
using (1) again:

C[q̇>s χ̇
>]> = V bv,

where we define a base-VKC Jacobian:

C = [Jbt AdgbtJ
t
tv].

We marked the robot components corresponding to B1, J2
and C in Fig. 2.

III. PROBLEM FORMULATION

Assuming the robot is joint-velocity controlled, we pro-
gram the robot to passively follow the human with an ad-
mittance control law. As we integrate the admittance control
law with the other control aspects using the constraint based
programming approach, we need to formulate constraints
that coordinate the parallel and branching structure on two
levels: (1) the close loop constraint between the two parallel
arms; (2) the coordination between the common mobile base
and the two parallel arms. We first formulate the close-loop
constraint in Sec. III-A. We point out the problem of the
coordination control in Sec. III-B by formulating a naive
solution. Then we formulate a feasible solution, i.e. a master-
slave method, for comparison purposes in Sec. III-C.

A. Close-loop constraint

In case of the fixed grasp, dual-arm manipulation requires
a close chain constraint which fixes the relative translation
and rotation between the parallel manipulators. We start
by defining the orientation error for the relative orientation
Re1e1e2 = Rtte1

>
Rtte2 as:

∆Qe1e1e2 = Qtte1
−1 ∗Qtte2 −

∗Qtte1
−1 ∗ ∗Qtte2 .

We take the vector part ∆εe1e1e2 of ∆Qe1e1e2 and differentiate
it w.r.t. to q1,q2 using the quaternion propagation:

− 1

2

(
ε2ε
>
1 + (η2I − S(ε2))(η1I − S(ε1))

)
ωJ1q̇1

+
1

2

(
ε1ε
>
2 + (η1I − S(ε1))(η2I − S(ε2))

)
ωJ2q̇2

= −k∆ε

(2)

where for notational compactness we omit the sub-
/superscripts. Then we define the relative translation error:

∆te1e1e2 = te1e1e2 −
∗te1e1e2 ,

where te1e1e2 = Rtte1
>(ttte1− t

t
te2). Differentiating ∆te1e1e2 w.r.t

q1,q2, we obtain the following equality:(
Rtte1
> +Rtte1

>S(ttte1 − t
t
te2)
)
ṫJ1q̇1 −Rtte1

> ṫJ2q̇2

= −k∆te1e1e2 .
(3)

B. Straight-forward implementation

Let us illustrate the difficulty of coordinating the parallel
arms to the mobile base with a naive candidate solution.
Suppose we construct an admittance control law as: V v

bv =
D−1hv , where hv = hv1 +hv2 . Then we express this control
law in fb as:

V bv = AdgbvV
v
bv = AdgbvD

−1hv, (4)

Apply the above for the two parallel arms respectively we
have:

B1[q̇>s q̇
>
1 ]> =

mobile base︷ ︸︸ ︷
Jbtq̇s +AdgbtJ1q̇1

B2[q̇>s q̇
>
2 ]> = Jbtq̇s︸ ︷︷ ︸

mobile base

+AdgbtJ2q̇2

 = V bv, (5)

If we put the above on a more explicit form:

Jbtq̇s =

{
V bv −AdgbtJ1q̇1
V bv −AdgbtJ2q̇2

,

we can tell that (5) is self-conflicting for Jbtq̇s, since J1q̇1
in general is not equal to J2q̇2. In Fig. 3, we illustrate this
difference by plotting ‖J1q̇1‖2 and ‖J2q̇2‖2.
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Fig. 3: The difference between ‖J1q̇1‖2 and ‖J2q̇2‖2. The data is
generated with the master-slave method introduced in Sec. III-C

C. Master-slave implementation

We could apply a master-slave method to resolve the
contradictive use of Jbtq̇s. For instance we can link only
one of the manipulators to the serial part with:

B1[q̇>s q̇
>
1 ]> = V bv = AdgbvD

−1hfv (6)

and let the other manipulator be a slave by applying the
close loop constraint (2-3) on q̇2. We cannot explore the full
potential of the serial-to-parallel robot with this approach.
First it gives a biased use of qs in the sense that only q̇1
is supported by q̇s through constraint (6). Further more,
as different constraints are applied on q̇1 and q̇2, q1 and
q2 differ over time. This difference results in different
manipulabilities (9) between the dual arms, which decreases
the dual-arm manipulability (12), which is proposed in [13].



Later in the simulation presented in Sec. V-B.1, we validate
this weakness as compared to our proposed approach, which
is to be introduced in the next section.

IV. CONSTRAINT-BASED PROGRAMMING SOLUTION
WITH THE VIRTUAL KINEMATIC CHAIN

We propose to use a VKC to specify the parallel arm
motion, namely we use C instead of B1 and B2 to formulate
the control law that handles the external disturbances. The
proposed approach contains two consequent optimization
problems: in the first one we use the control law defined
for the concatenated serial chain to solve for (q̇s, χ̇). The
solved common serial chain motion q̇s is ready to be
applied whereas the solved virtual joint motion χ̇ is used
to constrain the joint velocities of the parallel structure in a
second optimization problem. We summarize this two-phase
procedure in Algorithm I at the end of this section. In the
following subsections, we provide different functional and
the associated gradients that consist of the two optimization
problems.

A. Whole-body admittance control constraint

Instead of using a master-slave method (2-3) and (6) or
a problematic formulation (2-3) and (5), we specify the
parallel arms motion using a VKC according to the task
requirement (4):

C[q̇>s χ̇
>]> = V bv = AdgbvD

−1hv. (7)

More details about choosing a VKC for the human robot
co-manipulation task (4) are found in a concrete example
in Sec. V-A. In practice as different tasks require different
desired robot motion, we could choose the VKC in a task-
dependent way. For instance, we could use the systematic
approach (iTaSC [5]) to specify a set of virtual joints as
well as the corresponding Jacobian.

B. Coordination constraint

In this subsection we formulate the coordination con-
straints which let the parallel manipulators behave according
to the VKC motion χ̇ such that both of the parallel arms are
coordinated with the common serial chain.

1) Coordination constraints: Using the constraint (7) we
are able to generate the joint velocities q̇s and χ̇. We can
directly apply q̇s to the low-level joint velocity controllers,
whereas we use χ̇ to constrain q̇1, q̇2. As we have fixed
grasps to rigid object we have: V ei

eiv = 0. Then we use (1)
to transform V t

tv:

V t
tv = V t

tei +AdgeivV
ei
eiv = V t

tei ,

which leads to:
J1q̇1 = V t

te1

J2q̇2 = V t
te2

}
= V t

tv = J ttvχ̇, (8)

which means that in the torso frame Ft, the two end-effector
velocities V t

tei , for i = 1, 2 are equal to the virtual end-
effector velocity V t

tv .
Remark 4.1: Note that the VKC typically has a different

reachable workspace than the parallel arms. As we constrain

the parallel arms with the VKC end-effector motion, we
avoid infeasible solutions by adding a slack variable to (8).
The constraint formulation with a slack variable is straight-
forward and the details are stated in Sec. IV-D.1. �

2) Close-loop constraints: We use the constraint (2-3),
which is defined for a general dual arm system that applies
fixed grasps to a rigid object.

C. Secondary constraints

The parallel arms motion in Cartesian space has less than
or equal to 6 DOF, so does the VKC. If the parallel arms have
more DOF than the VKC, then they have the redundancy to
perform secondary constraints listed in this section.

1) Maximizing the velocity manipulability ellipsoid: We
denote the volume of the velocity manipulability ellipsoid
as:

γm = det(JJ>)
1
2 , (9)

which is defined w.r.t. V t
tv , namely we define γm using J ttv ,

whereas we neglect the sub-superscripts for notation com-
pactness. Since γm measures the robot velocity generation
ability [14], we aim to maximize γm with its gradient:

∂γm
∂qi

=
1

2
det(µ)−

1
2 det(µ)Tr[µ−1

∂µ

∂qi
],

where µ = JJ> and we have: ∂µ
∂qi

=
(
∂J
∂qi
J> + J ∂J

∂qi

>)
.

The derivative ∂J
∂qi

is found in appendix II, where we supple-
ment the close-form gradients for a body velocity Jacobian
introduced in [15] with a spatial velocity Jacobian case.

2) Avoiding obstacle constraints: Assuming that the ob-
stacle positions are known, avoiding obstacles can be formu-
lated in terms of the minimal distance as

γo = min ||twwr − twwo||2
where twwr denotes the robot position in a world frame Fw
and twwo denotes the obstacle position. We differentiate γo
w.r.t. the joint positions q:

∂γo
∂q

= 2 (twwr − twwo)
> ∂t

w
wr

∂q
q̇

where ∂twwr

∂q corresponds to a robot Jacobian. If we want to
formulate an obstacle avoidance constraint γo ≤ γdo defined
for the mobile base joint q̇s, we have the following:

2 (twwb − twwo)
>
Jwwbq̇s ≤ −k(γo − γdo), (10)

where k is a gain. Intuitively 2 (twwb − twwo)
>
Jwwbq̇s gives

us the mobile base velocity towards the direction: twwb −
twwo. Note that (10) only makes use of q̇s for base obstacle
avoidance, which separates the use of joints that belong to the
parallel part for other constraints. If for instance we want to
limit the height of an end-effector: γh ≤ γdh, we formulate
the constraint as:

2
(
tttei − t

t
to

)> ∂tttei
∂q

q̇ ≤ −k(γh − γdh), (11)

where
∂tttei
∂q = Ji is a spatial velocity Jacobian for the ith

manipulator.



D. Constraints integration

Following previous works in constraint-based program-
ming, we integrate these constraints with the multi-objective
control framework [6][7]. We formulate two consequent
quadratic programming problems (QPs) on-line to solve
for the joint velocities. The first QP computes q̇s and χ̇.
The second QP computes q̇1 and q̇2. The reason why we
prefer QP to fast linear programming is that it facilitates
the minimization of the joint velocities by penalizing its
2-norm. In this section we provide the rules to construct
inequality and equality constraints with constraint gradients.
We treat inequality and equality in the same form except that
we specify a margin m for inequalities. We summarize the
constraints used in the two QPs in Algorithm I.

1) Margin and convergence: Suppose we require γ ≤ γd,
we formulate the constraints by explicitly specifying the
margin m and convergence rate k as:

∂γ

∂q

>
q̇ + ν ≤ −k((γ − γd) +m),

where ν denotes the slack variable. By penalizing wiν
2
i in

the objective, we use the weight wi to specify the price to
break the constraint. The slack variable ν also solves the
infeasibility problem such that the solver always gives the
best possible result.

2) Time feed-forward term: If we have a time-variant
constraint and its gradient w.r.t. time, we could add a time
feed-forward term to include explicit time dependency in the
constraint formulation above:

∂γ

∂q

>
q̇ + ν ≤ −k((γ − γd) +m)− ∂γ

∂t
,

where we used the derivative γ̇(q(t), u, t) = dγ
dt = ∂γ

∂q

> dq
dt +

∂γ
∂t = ∂γ

∂q

>
q̇ + ∂γ

∂t .

Algorithm 1: Dual-arm mobile manipulator control us-
ing a virtual kinematic chain method

Goal: Calculate: q̇s, q̇1, q̇2 and χ̇.
1 Formulate the first QP which handles the external

disturbance, e.g. (4), with constraint (7).
2 Solve the first QP for q̇s and χ̇ .
3 Formulate the second QP which constrains q̇1 and q̇2

to χ̇ using the equality constraint (8).
4 Solve the second QP for q̇1 and q̇2.
5 Apply q̇1, q̇2 and q̇s to the low level joint velocity

controllers.

V. EVALUATION

We evaluate Algorithm I with both noise-free simulation
and experiments on the real robot. In the first simulation, we
can see that the proposed solution gives the robot a more
consistent dual-arm manipulability compared to the master-
slave method. Then in the second simulation, the robot
demonstrates the ability to simultaneously fulfil constraints

applied on different parts of the serial-to-parallel structure.
With the same controller and the same set of parameters, we
repeated the simultaneous multiple constraints satisfaction on
the real robot except for a different convergence rate.

A. VKC selection

Since the PR2 robot has a three DOF mobile base, in
principle we only need to choose the other 3DOF (one
translational and two rotational) for the VKC in order to
specify a 6DOF interaction between the robot and the human.
However in order to use the mobile base and the parallel
arms in a synthetic way, we choose a 6DOF VKC to fully
use the parallel arms. Since in this proof-of-concept example
we do not have any preference of the relative motion, we
choose to use a generic 6DOF VKC with three prismatic
joints followed by a three rotational spherical joint. This
specific choice easily defines the VKC workspace as well
as its forward and inverse kinematics. We list the two QPs
required by Algorithm I in the following tables. We use
Gurobi 6.0 to solve the QPs and the update frequency is
200Hz.

TABLE I: Solve for q̇s and χ̇ with the extended serial chain
Objective: Min. Max. Ref.
Configuration measure X (9)
Joint velocities: ‖q̇s‖2 + ‖χ̇‖2 X
Slacks: ‖w5ν5‖2 + ‖w8ν8‖2 X
Constraint: Equality Inequality Ref.
Admittance control constraints X (7)
Obstacle avoidance X (10)
Joint limit constraints X

TABLE II: Solve for q̇1,2 with the solution of χ̇
Objective: Min. Max. Ref.
Configuration measure X (9)
Joint velocities: ‖q̇1,2‖2 X
Slacks: ‖w6ν6‖2 + ‖w9ν9‖2 X
Constraint: Equality Inequality Ref.
Close-loop constraints X (2-3)
Coordination constraints X (8)
End-effector height X (11)
Joint limit constraints X

B. Simulation evaluation

We separate the simulation into two parts: dual-arm ma-
nipulability comparison and multiple constraints satisfaction.
In the former case, simulation results support the fact that the
proposed method has a better dual-arm coordination ability
compared to methods that have a biased use of the arm, e.g.
the master-slave method listed in Table III. In the latter case,
we have additional constraints: (10) defined for the base and
(11) defined for the two arms. The satisfaction of all the
constraints applied on different parts of the robots indicates
the fact that the robot is indeed well coordinated.

1) Dual-arm manipulability comparison: We measure the
dual-arm velocity manipulability of the two manipulators
w.r.t. frame fv using the measure proposed in [13]. Suppose
we denote the volume of the velocity manipulability ellipsoid
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Fig. 4: Time [Sec] Time [Sec]
Left: the velocity manipulability measure (9) for the two arms. Right: The dual arm manipulability measure (12).
The blue line indicates that we switch from the proposed method to the master-slave method. We can tell that due to a bigger overlap of
the measure (9) between the two arms, the proposed method has a more stable dual-arm manipulability.

TABLE III: Master/slave method
Objective: Min. Max. Ref.
Configuration measure X (9)
Joint velocities: ‖q̇s,1,2‖2 X
Slacks for equalities:

∑
i wi‖νi‖2 X

Constraint: Equality Inequality Ref.
Master chain X (6)
Close-loop constraint X (2-3)
Joint limit constraints X

of the ith arm as γvmi
, the dual-arm velocity manipulability

measure is proportional to the intersection of γvm1 and γvm2 :

γdm ∼ γvm1
∩ γvm2

. (12)

In the noise-free simulation we simulate six dimensional
sinus waves as force-torque measurements and use them as
the input to the admittance control law (4). From the first
row to the third row in Fig. 4, we used the wave amplitude:
1N , 2N and 3N . On right half of Fig. 4, we can see that the
proposed solution is better noise-resistant in the sense that
its dual-arm manipulability measure does not vary over time
as much as the master-slave method. The reason is revealed
by the left half of Fig. 4, as using the proposed method
the manipulability ellipsoids of the two arms have a bigger
overlap.

2) Multiple constraints satisfaction: We use the solution
listed in Table I, II and plot the results in Fig. 5. Since (10) is
defined for the base, (11) is defined for separate arm and (7)2

is defined for the whole robot, the simultaneous satisfaction
of these constraints indicate a good coordination of the robot.

2 Please note that in this set of simulation, we simulated sinus-wave force
in the y and z axis and sinus-wave torque about the x axis.

From the last three rows of Fig. 5, we can see that (11)
and (10) are gradually satisfied even though they are not
under the initial configuration. This can be verified from the
second row, where we see that the constraint scores ‖wiνi‖2
converge to zero. On the other hand in the first row, we see
that the optimizer minimizes the use of the χ̇ while taking
sinus-wave input to the admittance control task (4).

If we run the same controller with the same simulated
wrench on the real robot, we will have a similar result, except
for a different convergence rate due to a different noise level
in practice. Due to the un-periodic human input, we did not
plot results from the real human-robot co-manipulation task.
However we refer the interested readers to the link below3

for an experiment video, where a set of human-robot co-
manipulation experiments using the proposed approach is
performed.

VI. CONCLUSION

Using a VKC to specify the motion of the parallel arms,
we treat the mobile dual-arm robot as a concatenated serial
kinematic chain rather than a serial-to-parallel structure. The
concatenated serial kinematic chain facilitates formulating
constraints that involve the mobile base and the parallel
arms, e.g. the whole-body admittance control constraint (7).
If the arm has more DOF than the VKC, which has less
than or equal to 6DOF, we could use this redundancy to
specify additional constraint for the arms, e.g. constraint
(11). If it does not conflict with the concatenated serial
kinematic chain constraint, e.g. (7), we could formulate

3The human-robot co-manipulation experiment video and code using the
proposed approach:http://youtu.be/HO_amCdft-A



0

5

10

15

20

25

30

35

5 10 15 20 25 30

Time [Sec]

Dual arm QP Score

Joint velcoity
Close loop

Left arm height
Right arm height

0

500

1000

1500

2000

2500

3000

3500

5 10 15 20 25 30

VKC QP Score

Base joint velcoity
VKC joint velocity

Admittance control
Obstacle avoidance

0.2
0.22
0.24
0.26
0.28

0.3
0.32
0.34

5 10 15 20 25 30

R
ig

h
t 
a
rm

 h
e
ig

h
t

Time [Sec]

Bound: 0.25 [m]
Margin: +0.05 [m]

0.2
0.22
0.24
0.26
0.28

0.3
0.32
0.34

5 10 15 20 25 30

L
e
ft
 a

rm
 h

e
ig

h
t

Bound: 0.25 [m]
Margin: +0.05 [m]

0.15

0.2

0.25

0.3

0.35

5 10 15 20 25 30

Distance from the base to the obstacle

Bound: 0.2 [m]
Margin: +0.1 [m]

Fig. 5: Simulation validation of multiple-constraints satisfaction

additional constraint for the mobile base, e.g. (10) which
realizes mobile manipulation for the robot.

In the future, we will apply the proposed solution to other
mobile dual-arm manipulation tasks. For instance, if the
task requires a loose dual-arm cooperation, we may specify
the relative motion between the two arms with the iTaSC
approach [5] rather than the close-loop constraint (2-3). If
we keep (2-3) but release the fixed grasp assumption, we
may introduce unactuated joints between the end-effector
frame and the objects. We may also use the proposed method
to formulate whole-body behaviour for other robots with
a serial-to-parallel structure, e.g. a dual-arm robot with a
bendable torso, or a robot arm with multiple active fingers.

APPENDIX I
BODY-SPATIAL VELOCITY TRANSFORMATION

In this paper, we apply the body velocity and spatial
velocity transformation: V bv = AdgbvV

v
bv as well as the

associated jacobian transformation: Jbv = AdgbvJ
v
bv . How-

ever there is another way in [16] as the following:

Jbv =

[
Rbv 0
O Rbv

]
Jvbv. (13)

However this is a special case for the origin of the end-
effector frame. We have the following equality:[

Rbv 0
O 1

]
V̂
v

bv

[
0
1

]
= V̂ bv

[
tbv
1

]
,

which could be expanded as:[
Rbv 0
O 1

] [
ω̂vbv vvbv
O 0

] [
0
1

]
=

[
ω̂bv vbv
O 0

] [
tbv
1

]
(14)

Using the homogeneous transformation [t>bv1]> =

gbv[0
>1]>, the similarity transformation: V̂

b

bv = gbvV̂
v

bvg
−1
bv

and the fact that [
I tbv
O 1

]
V̂ = V̂ ,

we could expand the left hand side of (14) to:[
Rbv 0
O 1

] [
I tbv
O 1

] [
ω̂vbv vvbv
O 0

]
g−1bv

[
tbv
1

]
= gbvV̂

v

bvg
−1
bv

[
tbv
1

]
= V̂ bv

[
tbv
1

]
.

Therefore we say (13) is a special case of

Jbv = AdgbvJ
v
bv.

APPENDIX II
MANIPULATOR DIFFERENTIAL KINEMATICS

For a general mapping g(q) ∈ SE(3), its derivative
ġ(q) 6∈ se(3). Rather, we have the instantaneous spa-
tial velocity given by ∂g

∂q g
−1 ∈ se(3), where we ignore

q for notation compactness. Let us expand ∂g
∂q g
−1 as:∑n

i=1

(
∂g
∂qi
g−1

)
q̇i. Since ∂g

∂qi
g−1 is matrix evaluated, we

use the twist coordinate
(
∂g
∂qi
g−1

)∨
to put them into a

compact form, see [12], as:

V = J q̇

where J = [
(
∂g
∂θ1

g−1
)∨

. . .
(
∂g
∂θn

g−1
)∨

] and ∨ denotes the
vee operator. In each column we have the twist coordinate

ξ′i =
(
∂g
∂θi
g−1

)∨
:

ξ′i = Adg1,i−1ξi (15)

where Adg1,i−1
ξi = g1,i−1ξig

−1
1,i−1 and

g1,i−1 = eξ̂1q1 . . . eξ̂i−1qi−1

, where we used the product of exponentials formula (POE
[12]). Then using Lemma I we have the closed-form deriva-
tive J

∂qj
∈ R6×n for j = 1, . . . , n as:

∂J

∂qj
= [

∂ξ′1
∂qj

∂ξ′2
∂qj

. . .
∂ξ′n
∂qj

]q̇j . (16)

Lemma 1: For each column of the Jacobian, we have

∂

∂qj
ξ′i =

{
[ξ′j ξ

′
i], j ≤ i ≤ n

0 i < j ≤ n ,

where the Lie bracket [ξ′j ξ
′
i] = (ωj×νi−νj×ωi,ωj×ωi).

Proof 1: In case that i < j, using (15) we know that ξ′i
is not a function of qj , otherwise:

∂

∂qj
ξ̂
′
i =

∂g1,i−1
∂qj

ξ̂ig
−1
1,i−1 + g1,i−1ξ̂i

∂g−11,i−1

∂qj
(17)



where we have
∂g1,i−1
∂qj

= eξ̂1q1 . . . ξ̂je
ξ̂jqj . . . eξ̂i−1qi−1

= ξ̂
′
jg1,i−1

(18)

∂g−11,i−1

∂qj
= −e−ξ̂i−1qi−1 . . . ξ̂je

−ξ̂jqj . . . e−ξ̂1q1

= −e−ξ̂i−1qi−1 . . . ξ̂je
−ξ̂jqj . . . e−ξ̂1q1

= −e−ξ̂i−1qi−1 . . . e−ξ̂j ξ̂qj ξ̂
−1
j ξ̂j . . . e

−ξ̂1q1

= −g−11,i−1ξ̂
′
j

(19)

where we used the fact that g−1eξ̂qg = eg
−1ξ̂qg . Plug (18)

and (19) into (17), we obtain:

∂

∂qj
ξ̂i = ξ̂

′
jg1,i−1ξ̂ig

−1
1,i−1 − g1,i−1ξ̂ig

−1
1,i−1ξ̂

′
j

= ξ̂
′
j ξ̂
′
i − ξ̂

′
iξ̂
′
j

= [ξ̂
′
j ξ̂

′
i].
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