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Abstract— As a modular and reactive control approach,
constraint-based programming helps us to formulate and solve
complex robotic tasks in a systematic way. In different fields
ranging from industrial manipulators to humanoids, robots
are supposed to work in an uncertain environment. However,
how to address uncertainties is missing in the state-of-the-
art of different constraint-based programming frameworks. In
this paper, we introduce a Second Order Cone Programming
(SOCP) approach to integrate constraints with norm bounded
uncertainties. The proposed SOCP is convex and through
simulations with controlled uncertainty level, we can clearly
tell that the proposed approach guarantees the constraints
satisfaction compared to the state-of-the-art.

I. INTRODUCTION

From factory floors to research labs, we can find an
increasing amount of robotic applications in different con-
texts. Different from the classical manufacturing tasks that
are well-defined in a static environment, such as painting,
welding and assembly, we envision a future in which robots
are supposed to interact with an unpredictable and complex
environment. For instance the tailor-made humanoids from
Disney research are used in face-to-face entertainments with
tourists and the collaborative robots from ABB and Universal
robots are about to work side-by-side with human workers.
These robotic applications are developed on a quick rolling
basis which requires us to address control tasks using inac-
curate kinematics and dynamics both from the robot side and
the dynamic environment side.

Constraint-based programming is commonly used in robot
task programming. It enables us to easily formulate modular
and reactive online controllers for a wide range of robotic
applications [1], [2], [3], [4]. We can find constraint-based
programming problems that are formulated using null space
projections in the earlier publications [1], [2], [3]. In recent
years, optimization-based formulation received more atten-
tions. Compared with null space projections, optimization-
based formulations are able to integrate equalities and in-
equalities in a natural way [5], [6], resolve complex re-
dundancies faster [4], switch smoothly from one set of
constraints to another [7]. Due to its strength in formulat-
ing control problems, We could also find its applications
even outside robotics, e.g. as a multi-character animation
controller [8].

However none of the state-of-the-art optimization-based
formulations [4] -[8] explicitly make use of the uncertainty
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(a) Hardware setup includes tools with
imperfect geometric models.
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(b) Brush tip trajectory rel-
ative to the frying pan

Fig. 1: We use a bi-manual pan-cleaning task to illustrate the fact
that if the geometry is not perfectly modeled, we end up with
undesired motion using the state-of-the-art QP approach.
In this task, the brush tip is supposed to follow a circular motion
that is defined on the frying pan surface. If we do not require the
contact between the brush and the frying pan, we obtained a circular
relative motion, see the top right sub-figure.
When we specify the contract force to be 8N, the relative motion
is far from an exact circular motion due to the imperfect geometric
model, see the bottom right sub-figure.

information to integrate constraints and solve for the robot
motion online. The level of uncertainties makes a difference
in performance between simulated and real robots [9]. We
can find such an example in Fig. 1, where the uncertain
geometric model of kitchenware limited the performance of
a dual-arm robot. There is a rich source of the uncertainties.
From the sensing side, this includes vision measurement,
friction coefficients and imperfect geometric models. From
the modelling side, this include inaccurate robot kinematics,
dynamics as well as properties of different emerging objects
in a dynamic environment.

Assuming that the uncertainties could be upper bounded,
we propose to integrate the constraints and objectives with
Second Order Cone Programming (SOCP), which is a class
of convex optimization [10]. Taking the upper bounds of
uncertain parameters into account, the proposed approach
explicitly minimize and constrain the supremum of the objec-
tives and inequalities respectively. In case of the equalities,
the proposed approach minimize the worst case error, which
is in a way similar to the robust approximation problem
[11]. We illustrate the proposed approach through an detailed
example, where the SOCP formulation is explicitly given
for a bi-manual pan cleaning task. In the simulation with
controlled uncertainty level, we are able to guarantee the con-
straints satisfaction compared to the conventional Quadratic



Programming (QP) formulation.
The rest of the paper is organized as follows: we relate

the proposed solution to the state-of-the-art in Sec. II; then
in Sec. III we mathematically states how the uncertainties
propagates into constraint-based programming through task
Jacobians; the proposed solution is verified by simulation in
Sec. V and we conclude the paper in Sec. VI.

II. RELATED WORK

In this section, we briefly discuss our contribution in
different contexts including: constraint-based programming,
control of uncertain systems and optimization in general.

Constraint-based programming effectively resolves the
redundancy of a robot with a combination of objectives,
equalities and inequalities. We can find its applications in
visual servoing [12], dual-arm manipulation [6] and whole-
body control of humanoids [3]. There is a systematic way
of specifying constraints in the seminal paper [2], where we
can also specify virtual joints to model the geometry of a
robotic task. Optimization-based formulation allows us to
easily scalarize of multiple objectives and choose from dif-
ferent norms. LP is able to integrate equality and inequality
constraints, where the convergence of each constraint could
be proved using a Lyapunov function [13], [14]. If it is
needed to penalize the overuse of joint velocities and locate
a smooth solution over the iterations, we need to escalate it
to QP in order to apply the Euclidean norm [6]. In this paper
we further escalate the optimization framework to a SOCP
problem such that we can optimize over the supremum or in
other words the worst case error.

Conventionally there are two general strategies to control
uncertain systems: learning-based control and robust control.
For systems working in a repetitive mode, we can use
iterative learning approach to locate the uncertain parameters
[15]. On the other hand, robust control is used when the con-
troller has a fixed structure. In the context of constraint-based
programming, though we can use reinforcement learning to
find the uncertain weights of different constraints [16], how
to make use of the norm bounded uncertainties to integrate
constraints is missing. We can use the proposed approach to
fill this gap.

When we need to optimize under uncertainties, there
are different objectives that we choose from: expectation
minimization, minimization of maximum costs and opti-
mization over soft constraints, see [11]. In case of multi-
stage optimization, e.g. resource allocation problems, we can
use stochastic programming to minimize the expected costs.
If the infeasibility of certain constraints are allowed, e.g.
soft constraints, we can use probabilistic programming to
optimize the chance of constraints satisfaction. These two
strategies are not suitable in the context of constraint-based
programming, as we need to solve hard constraints in a
reactive(online) way. Assuming that we can upper bound the
uncertainties, e.g. vision errors and unmodeled kinematics,
we choose to minimize of the worst case error for equalities
and supremum for inequalities as well as objectives.

III. PROBLEM FORMULATION

By mathematically raising an abstract optimization prob-
lem, which is Problem 1, we abstract the generic structure
of the state-of-the-art optimization-based frameworks. On top
of Problem 1, we summarize the case when the constraints
are perturbed with uncertainties in Problem 2.

Problem 1: Assuming that the kinematics J q̇ = v and
dynamics τ = J>f of an n degrees of freedom robot are
available, where q̇, τ ∈ Rn denote the joint velocities and
torques, v,F ∈ Rn denote the end-effector velocities and
external forces. We can formulate the online (locally optimal)
controller in terms of the gradient of a set of linear equality
constraints fi : Rn → R for all i ∈ Ie, inequality constraints
fi : Rn → R for all i ∈ Iie and objectives: fi : Rn → R for
all i ∈ Io as:

min
u

u>Qu+
∑
i∈Io

wiḟi(x,u) (1)

s.t. ḟi(x,u) ≤ −ki(fi(x)− bi), ∀i ∈ Iie, (2)
ḟi(x,u) = −ki(fi(x)− bi), ∀i ∈ Ie, (3)

where ki, bi are positive gains and bounds associated with
each constraint, wi helps us to scalarize and compromise
among multiple objectives, Q is a positive definite matrix.
In case of a joint velocity controlled robot, the Cartesian
space variables x and robot control variables u are chosen
as v and q̇. In case of a joint torque controlled robot, we
use f and τ alternatively. �

Problem 1 captures the essence of different optimization-
based reactive control frameworks [5], [13], [14], [4]. The
parameters associated with Problem 1 helps us to define
different aspects of robot control problems in a modular way.
We can prioritize different objectives with different combina-
tions of wi [5], [13]; We can set different convergence rates
and bounds using ki, bi [14]; and we can even swap the
constraints and objectives based on the feasibility of each
constraint [4]. In Lemma 1, we summarize a generic QP-
based online controller (4-6) to Problem 1.

Lemma 1: As stated by the state of the art, see [14], we
can obtain the solution to Problem 1 by solving:

minu u>Qu+
∑
i∈Io wic

>
i u (4)

s.t. Aiu ≤ ki(bi − fi) ∀i ∈ Iie, (5)
Aiu = ki(bi − fi) ∀i ∈ Ie, (6)

where ci = dfi
du , and each row of Ai, bi, fi contains the

corresponding parts of dfi
du , bi, fi respectively. In the robotics

context, dfi
du defines a task Jacobian, see [1], [17], either on

a kinematics level or a dynamics level. �
On the other hand what is missing from Problem 1, so

does the state-of-the-art in constraint-based programming, is
to optimize robot motion with uncertain data. Basically Prob-
lem 1 assumes that we can perfectly model the environment
and the robots. This is unfortunately not always the case,
as there are a complete set of papers in adaptive control
and nonlinear control that aim to work well with uncertain
systems, see [17].



Starting from the assumptions and conditions that are
stated in Problem 1, we relax the assumption that the
constraints and objectives are perfectly known. Basically
we use the uncertain parameter ξ to formulate a generic
optimization problem with uncertainties as the following:

Problem 2: When the robots are not perfectly modeled
and/or the robotic tasks are not well defined, the gradients
of the constraints and objectives are perturbed. In case as
such, we can extend Problem 1 as the following:

min
u

u>Qu+
∑
i∈Io wiḟi(x,u, ξi) (7)

s.t. ḟi(x,u, ξi) ≤ −ki(fi(x)− bi), ∀i ∈ Iie, (8)
ḟi(x,u, ξi) = −ki(fi(x)− bi), ∀i ∈ Ie, (9)

where we use ξ to parameterize the uncertainties associated
with the constraints and objectives. �

In constraint based programming literatures [1], [17], the
gradients ḟi are referred as task Jacobians. We can use ξ
to describe the perturbed task Jacobians in different cases,
e.g. visual servoing, impedance control, trajectory following.
However in Problem 2 we do not parameterize the uncer-
tainties on the right hand side of the constraints (8-9) due
to the fact that fi defined in the Cartesian space does not
relate to the optimization variables u defined in the robot
configuration space.

In the next section. we draw a solution to Problem 2 based
on knowledge from robust optimization.

IV. PROPOSED SOLUTION

When the task Jacobians are suffering from uncertain-
ties, which is the case described in Problem 2, we use
the equivalence that is shown in Lemma 2 to reform the
objectives (4), inequality constraints (5), equality constraints
(6) respectively and in the end we can obtain the solution
(16) to Problem 2.

Lemma 2: We assume that the uncertainties associated
with matrix A ∈ Rm×n is restricted within a norm ball,
A = {Ā+ ξ | ‖ξ‖ ≤ a}, where the norm ‖ · ‖ is compatible
to Rm×n. For the equality constraint Ax = b, We can define
the worst case approximation error as:

ewc = sup
ξ
{‖Āx− b+ ξx‖ | ‖ξ‖ ≤ a},

which is upper bounded by:

ewc = ‖Āx− b‖+ a‖x‖. (10)

If we choose to use the Euclidean norm and minimize
the worst case approaximation error ewc, it is equivalent
to minimize the following second order cone programming
(SOCP) problem, see [10]:

min
u

t1 + at2,

s.t. ‖Āx− b‖2 ≤ t1,
‖x‖2 ≤ t2.

(11)

�

a) Objective function: If we need to minimize an
objective function, we could alternatively minimize its upper
bound. In case of an objective function with uncertainty (7)
we can minimize the supremum of the objective according
to the problem-solution pair (1) and (4):

u>Qu+
∑
i∈Io

wi sup
ξ
{ci(x,u, ξ)>u}. (12)

Assuming that ci(x,u, ξ) = {c̄i(x,u) + ξci | ‖ξci‖ ≤ aci},
we can use Lemma 2 to obtain the fact that minimizing the
upper bound of (12) is equivalent to solving the following
SOCP:

u>Qu+
∑
i∈Io

wi
(
c̄i(x,u)>u+ aci‖u‖2

)
. (13)

b) Inequality constraint: In view of an inequality
constraint-gradient pair (2) and (5), fulfilling the constraint
with uncertainty (8) implies fulfilling the following:

Ai(ξi)u ≤ ki(bi − fi) ∀i ∈ Iie.

Assuming that Ai(ξi) = {Āi + ξAi
| ‖ξAi

‖ ≤ aAi
} for all

i ∈ Iie, we can reformulate the above inequality based on
Lemma 2 and obtain the following constraint:

Ai(ξi)u ≤
sup{Ai(ξi)u} ≤
Ā>i u+ aAi

‖u‖2 ≤ ki(bi − fi),∀i ∈ Iie.
(14)

c) Equality constraint: Fulfilling an equality constraint
perturbed with uncertainty amounts to a robust approxima-
tion problem that is stated in Lemma 2. In case of the
constraint (9), we assume that Ai(ξi) = {Āi+ξAi

| ‖ξAi
‖ ≤

aAi
} for all i ∈ Ie and we minimize the worst case error

of the perturbed equality constraint by solving the following
SOCP:

min
u,t1i,t2

∑
i∈Ie

(t1i + aAi
t2),

s.t. ‖Ā>i u− ki(bi − fi)‖2 ≤ t1i, ∀i ∈ Ie,
‖u‖2 ≤ t2.

(15)

Integrating (13-15) together, we can conclude that solving
the SOCP problem (16) gives us the online/local solution to
(7-9) that are defined in Problem 2:

min
u,t1i,t2

∑
i∈Io

wi
(
c̄i(x,u)>u+ aci‖u‖2

)
+
∑
i∈Ie

(
t1i + aAi

t2
)
,

s.t. Ā>i u+ aAi
‖u‖2 ≤ ki(bi − fi),∀i ∈ Iie,

‖Ā>i u− ki(bi − fi)‖2 ≤ t1i, ∀i ∈ Ie,
‖u‖2 ≤ t2.

(16)
Note that we removed the quadratic term u>Qu from the
objective (13), otherwise it overlaps with the inequality
‖u‖2 ≤ t2 that is induced by the (15). In the next section, we
use a dual-arm manipulation task as an example to validate
the proposed solution (16).



V. SIMULATION VERIFICATION

Different from the example in Fig. 1, where the ex-
periments were performed on hardware, we choose to use
simulations to verify the proposed solution (16). The reason
is that we can perfectly control the level of uncertainties to
be introduced in the task Jacobians, which makes it straight
forward for us to setup a comparison.

We choose the bi-manual pan cleaning task as a non-
trivial example of constraint-based programming to validate
the proposed formulation (16). We choose two Puma560 6
DoF manipulators that are simulated by the Matlab Robotics
Toolbox by [18], see Fig. 2. We choose the cvx toolbox [19]
to solve the SOCP problem. We first specify the constraints
for the pan cleaning task in Sec. V-A and then we introduce
the simulation setup in Sec. V-B. When the constraints are
corrupted with uncertainties, we compare the results with
and without the proposed solution in Sec. V-C, where we
can see that the proposed solution improve the controller
performance in terms of constraints satisfaction.
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Fig. 2: Two Puma560 6DoF manipulators simulated by the Matlab
Robotics Toolbox [18].

A. Controller formulation

We can use constraints to easily specify complex robotic
tasks. In this paper we use a bi-manual task as an example.
We choose to work with the kinematics, which means that
we choose the joint velocity q̇ as u. For each constraint, we
also define the corresponding bound bi and the convergence
rate ki that are in line with (4-6). In (20), we list the specific
QP formulation corresponding to the state of the art (4-6).
Then in (21), we list the specific SOCP formulation in line
with the proposed solution (16).

We restrict the relative position between the two arms with
three equalities and we restrict the relative orientation within
a cone:

f1−3(q) = p1(q)− p2(q)− d(t,x1,y1, z1,x2) = 0

f4(q) = xT1 x2 ≤ b4, (17)

where axis xi,yi, zi ∈ R3 are columns of Ri ∈ SO(3),
p1 ∈ R3 is the center of the frying pan and p2 ∈ R3

corresponds to the tip position of the cleaning utensil, the
time varying d(t,x1,y1, z1,x2) is an relative offset between
p1 and p2. In this pan cleaning task, we define the relative
offset d(t,x1,y1, z1,x2) as a circular motion. With straight
forward calculation, we can find A1−3 = [Jp1 + ∂d

∂q1
,−Jp2 +

∂d
∂q1

], A4 = [xT2 (−S(x1)Jω1),xT1 (−S(x2)Jω2)], where Jpi
and Jωi correspond to the translational and rotational part of
the manipulator Jacobian.

In all the simulations, we choose the same set of parame-
ters. For simplicity, we choose the convergence gain ki = 1
for i = 1, . . . , 5. As we need f1−3 = 0, we set the bound
b1−3 = 0. The bound of the tool orientation constraint is
selected as b4 = − cos( π12 ), which defines a cone for the
relative orientation between the two arms.

As we need the robot to work in a collision-free manner,
we can use inequalities to constrain the minimal distances
between a robot and the obstacles as:

f5(q) = −||xr − xo||2 ≤ b5 < 0, (18)

where Xr is the subset of the workspace occupied by the
robot itself, and Xo is the subset of the workspace occupied
by obstacles. Depending on the computational power and
required performance, we could either apply simple con-
servative obstacle representations, such as spheres, or more
elaborate computations of the minimal distance, e.g. using
the critical points and directions as described by [20].

In this example, we define a virtual plane that p1 and p2
have to avoid with a certain bound. We select x = −0.4m
in the global frame as the virtual wall and b5 = −0.1.

In order to efficiently generate velocities and forces,
manipulators should stay away from singular configurations.
We need to optimize a manipulability index, see [17]:

fo(q) =
−1

2
det(JTi Ji), i ∈ {1, 2} (19)

where Ji ,
[
JTpi J

T
ωi

]T
denotes the manipulator Jacobians.

We choose to numerically calculate A5 = ∂f5
∂q and co = ∂fo

∂q .
As the manipulability measure (19) depends on the partic-

ular robot kinematics, its value range is different for different
robots. This makes it empirical to define a proper bound for
(19). Therefore we use (19) as an objective function such
that we keep on optimizing the robot configuration while
fulfilling the other constraints.

Summarizing the constraints and parameters that we spec-
ified so far, we can formulate a QP controller corresponding
to the state-of-the-art (4-6) as follows:

min
q̇

q̇>q̇ + c>o q̇

s.t. A1−3q̇ = (b1−3 − f1−3)

A4q̇ ≤ (b4 − f4),

A5q̇ ≤ (b5 − f5).

(20)

On top of (20), we can obtain the following SOCP
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Fig. 3: We compare the brush tip trajectories with respect to the frying pan in different simulations.
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Fig. 4: Constraints and objective measures obtained from different rounds of simulations.

controller corresponding to (16):

min
q̇,t1,t2

(
c>o q̇ + aco‖q̇‖2

)
+
(
t1 + aA1−3

t2
)
,

s.t. ‖A>1−3q̇ − (b1−3 − f1−3)‖2 ≤ t1,
‖q̇‖2 ≤ t2,
A>4 q̇ + aA4

‖q̇‖2 ≤ (b4 − f4),

A>5 q̇ + aA5
‖q̇‖2 ≤ (b5 − f5).

(21)

Remark 5.1: Note that when the uncertainties are added
to the equality constraint f1−3, the following formulation

A1−3(ξ1−3)q̇ = (b1−3 − f1−3) (22)

would make the QP (20) infeasible. In order to perform the
comparison using the QP (20), we choose to minimize the
worst case error of (22) by replacing (22) in (20) with the
following:

min
q̇,ti

∑
i=1,2,3

t2i

s.t. A1−3(ξ1−3)q̇ − (b1−3 − f1−3) ≤ t1−3
A1−3(ξ1−3)q̇ − (b1−3 − f1−3) ≥ −t1−3

(23)

The formulation in (23) uses a QP to minimize the one norm,
we can find the correspondence between (23) and (22) from
[10]. �

B. Noise-free simulation

We start with the noise free simulation to verify the feasi-
bility of the state of the art QP formulation (20) such that we
have the benchmark to compare with in the next section. In
Fig. 3a and Fig. 4a, we can find that the QP formulation (20)
is able to generate the desired relative circular motion while
satisfying all the constraints with respect to the prespecified
bounds.

In the first row of Fig. 4a, in order to concretely display
the deviation between the two arms, we plot ‖p1−p2−d‖2
and we can see that in the noise-free case, ‖p1 − p2 − d‖2
converges to zero quickly and stays stable.

In the second row of Fig. 4a, the tool orientation f4
starts above the bounds but then it quickly approaches the
bound and stays below in the rest of the execution. Similar
behaviors of the obstacle avoidance constraints f5 of the two
arms could be found in the third and forth rows of Fig. 4a.



In the last two rows in Fig. 4a, we we plot the singularity
measures fo of the two arms. As we use fo as the objective
function, we optimize fo if and only if the other constraints
are satisfied.

C. Comparison

We perturb the constraints that are used in (20) with norm-
bounded uncertainties. Basically we perturb the singular val-
ues of A1−5 with simulated uncertainties that are drawn from
different uniform distributions. For the equality constraint
f1−3 which define the relative offset between the two arms,
we choose ‖ξA1−3‖ ≤ aA1−3 = 0.05; for the inequality con-
straint f4 which specifies the relative orientation between the
two arms, we choose ‖ξA4

‖ ≤ aA4
= 0.2; for the inequality

constraint f5 which constrain the arms from obstacles, we
choose ‖ξA5‖ ≤ aA4 = 0.1.

From Fig. 3b and Fig. 4b, we can clearly tell that the QP
formulation (20) is not able to generate desired robot motion
when the task Jacobians of the constraints are corrupted.

The relative motion between the two arms is not circular
any more as shown in Fig. 3b. From the first row of Fig. 4b,
we can see that the deviation between the two arms could not
converge effectively as compared to the first row of Fig. 4a.

Using the same perturbed constraints with the proposed
SOCP formulation (21), we can find a different performance
from Fig. 3c and Fig. 4c, which validates that the proposed
SOCP works well with perturbed constraints.

The relative circular motion shown in Fig. 3c is com-
parable to Fig. 3a, which could be explained by the fast
convergence of the tool deviation that is shown in the first
row of Fig. 4c.

As we use the supremum in the inequality formulation
(14), we can find that the inequality constraints, i.e. tool
orientation f4 and obstacle avoidance f5, have a faster
convergence from the second row to the forth row in Fig. 4c
compared to the counter parts in Fig. 4a and Fig. 4b.

From the last two rows in Fig. 4a, 4b and 4c, we plot the
singularity measures fo of the two arms. In all the cases, the
singularity measures have a similar profile, the reason is that
fo is the least prioritized as an objective function, see [4].
Given the constraints f1−5, the robot does not have enough
redundancy to make a difference of fo.

VI. CONCLUSION

We propose to integrate constraints and resolve robot
motion with a SOCP framework. Compared to the state-of-
the-art QP formulations, this approach could minimize the
supremum of the worst case error when the constraints are
suffered from norm bounded uncertainties. We use a dual-
arm pan cleaning task as a comparison example, where we
perturb the constraints with simulated uncertainties. We can
see that the proposed SOCP framework is able to fulfill the
constraints meanwhile the state-of-the-art QP framework is
not.

In the future, we can extend the proposed SOCP formu-
lation by establishing the connection between the bounds
on general task Jacobian uncertainties and the bounds on

specific parameter uncertainties. Once this connection is
established, the proposed SOCP is able to directly opti-
mize the robot motion with respect to a specific uncertain
parameter, such as a friction coefficient, a pose estimated
from vision and the dynamics of an unknown object. There
is a systematic framework of constraint specification [2],
however concluding the aforementioned connection for all
kinds of task Jacobians is not an easy task.
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