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Abstract— The use of redundant sensors brings a rich diver-
sity of information, nevertheless fusing different sensors that
run at vastly different frequencies into a proper estimate is
still a challenging sensor fusion problem. Instead of using the
size-varying measurements and thereby the size-varying filters
during each sampling period, we propose to find a substitute of
the unavailable low frequency measurements such that we can
avoid using different sampling frequencies in one filter. In the
gap between the sampling of two low frequency measurements,
the use of these substitutes produces smoother estimates. In both
the proof of concept simulation and the localization experiment
performed on an indoor soccer robot, our proposed approach
exhibits an improved performance compared to the size-varying
Kalman filter methods.

I. INTRODUCTION AND RELATED WORK

Sensor fusion combines different sources of measurements
into a more reliable and accurate estimate of the physical
quantity. This is important for applications that involve re-
dundant sensors. When the sampling frequencies of different
sources of measurements are consistent, we can analyze the
cross correlation and apply different standard techniques, e.g.
[1] and [2]. However when the sensors operate at different
frequencies, the availability of the measurements is time-
varying. If the sensors are asynchronous, this availability
is even aperiodic. These uncertainties pose additional re-
quirements on the filter to produce stable and accurate
estimate. Approaches dealing with measurements at different
frequencies could be roughly divided into two categories:
Switching Scheme and Fusion Scheme. We will briefly review
these two categories, introduce our filling method and then
relate it to the existing approaches. In addition to a proof of
concept comparative simulation, we also validate it through
experiments on real soccer robots.

A. Switching Scheme

Methods in this category adapt the filter size to the
time-varying aperiodic measurements size at each sampling
period. Intuitively, when the low frequency measurement
appears, we augment the observation matrix and when it dis-
appears we switch the observation matrix back. Depending
on the filter type there are in general two ways:

Yuquan Wang is with the Computer Vision and Active Perception Lab,
Royal Institute of Technology, 10044 Stockholm. yuquan@kth.se.
Dragan Kostic and Henk Nijmeijer are with the Mechanical Engineer-
ing department, Eindhoven University of Technology, 5600MB, Eind-
hoven. {D.Kostic, H.Nijmeijer}@tue.nl Sven T.H. Jansen
is with the Technical Sciences/Automotive department, TNO, Helmond.
sven.jansen@tno.nl

1) Kalman Filter Approach: One generic Kalman filter
(both extended Kalman filter (EKF) and unscented Kalman
filter (UKF)) based switching scheme method is presented in
[3], where the fusion of vision and inertial sensor measure-
ments is examined. This method is flexible and easy to be
implemented. Nevertheless, as a consequence of the switch-
ing, the dimensions of the Kalman gain and the covariance
matrix are aperiodic time-varying. Compared to the EKF
stability proof, e.g. [4], how this variability influences certain
conditions like observability, continuity and matrix inverta-
bility is not examined. Besides, switching of the covariance
matrix drops pre-calculated information when shrinking and
introduces initial guess when augmenting. Therefore each
time when schriking happens it requires an stablization
period for the filter to converge and when augmentting it
may produce discontinuity due to the different noise level.
If we plot the estimate against the ground truth we could
observe overshoot (undershoot) kind of discontinuity, which
is difficult for both control and estimation.

2) Particle Filter Approach: Compared with a Kalman
filter, particle filters incorporate multi-rate measurements in
a more straightforward way. The particle filter runs at the
highest possible frequency and awaits the arrival of a new
measurement. Whenever the new measurement arrives, the
particle filter will start the distribution derivation and re-
sampling. Such an example is available in [5], where a land
vehicle positioning application is examined. This approach
inherits the disadvantages of a particle filter, for example, the
problems about dimensionality and variance. Though some
work have been done to reduce the dimensionality [6] of a
particle filter, no such clear efforts have been made for a
particle filter dealing with multi-rate measurements.

B. Fusion Scheme

Alternative to the use of a size-varying filter, we could also
fuse different measurements into one based on the variance
information and use this fused estimate as the substitute of
all the measurements. According to [7], this sort of fusion
can take place on either the state or measurement level. In
the former case, we develop a separate filter for each kind
of measurement and in the latter we use the pre-calculated
measurement variance directly.

1) State Fusion: For each kind of measurement, we
develop one state estimate and its variance with a separate
filter. All the state estimates together build up the state
vector. The fusion performs upon the elements from the
state vector based on the corresponding variances. One well
known method of this kind is the Federated Kalman Filter



TABLE I: Relation between this paper and some of the reviewed methods (n∗ means one for each measurement).

Reference Number
of filters

Switching
scheme

Correlated
noise

Size-consistent
measurement

Measurement
extrapolation

Measurement
interpolation

Sun et al. [2] n∗ No X X No No
Federated Kalman filter [8] n∗ No No No No No

Measurement Fusion [9] 0 No No X No No
Armesto et al. [3] 1 X No No No No

Bevly [10] 1 X No No No No
Multi-rate hold [11], [12] and [13] 1 No No No X No

This paper 1 No No No No X

[8]. Because each measurement has its own state estimate,
State Fusion is considered to be a decentralized approach.
This feature leads to a reduce of the computational load on
the central processor and the communication cost. However,
this method is only effective when every measurement filter
is consistent with each other [9]. Discussions about the
coupling effects between measurements is available in a
series of publications starting from [14].

2) Measurement Fusion: Approaches in this category
fuse different measurements according to their pre-calculated
variances into a new measurement. Measurement fusion
uses the combined measurement as a substitute of all the
measurements. It requires that all of the measurements are
of the same kind or can be transformed to this such that
they are able to share the same observation function/matrix
for any post filtering [9].

C. The Filling Method

The need of a switching scheme comes from the gaps
between the low frequency measurements. If we have sub-
stitutes of the unavailable low frequency measurements, we
can avoid the switching. Such a substitute is found to be the
prediction of the unavailable low frequency measurement in
[12]. An auxiliary vector is used to hold the values of the
previous measurements. Then given these stored measure-
ments, an extrapolation of the unavailable low frequency
measurements is made with a Bezier curve. In another
example [11], vision and inertial measurements are fused
with the same approach. These methods essentially assemble
zero order hold (ZOH), first order hold (FOH) and etc. Let
us define methods of this kind as Multi-rate hold methods.
Such a method is also used in [13] and [15] to estimate the
side-slip angle of a vehicle. In [13] a first-order or a second-
order curve is fitted to the side-slip estimates in real time to
give predictions of the side-slip angles between each of the
GPS measurements. By and large, these methods are in lack
of future information, so the prediction leads to overshoots
when the real physical quantity is undergoing an abrupt
change, see Sec. IV.

Compared with the pros and corns of the existing methods,
the filling method works in the following way:
• It does not apply any size-varying filter.
• It estimates the unavailable low frequency measure-

ments using both the Bezier curve and the system
updates.

In this way, it resembles Multi-rate hold methods, but com-
bines additional future information and therefore produces

substitutes more close to the ground truth. For comparison
purposes, we briefly summarize characteristics of some of
the reviewed approaches in table I.

In order to demonstrate the applicability of the proposed
approach to a multi-rate sensor fusion problem, we select a
pair of sensory data and relate them under a Kalman filter
with the kinematic model introduced in [10]. This is not
an unique choice, as long as we were able to solve one
measurement from another, we are able to apply the proposed
approach.

II. PRELIMINARIES

In this section we first introduce the mathematical nota-
tions that we will use throughout the paper and then describe
the aforementioned kinematic model.

A. Definitions

We denote the low frequency measurement with u and the
high frequency measurement with v. We use bold symbol to
indicate a vector, for example, u means a vector of u. We use
∆ to denote sampling period, e.g. ∆u and ∆v . We index the
time step of u and v as k and j. In addition, we define the ab-
solute time when sampling a specific measurement at its i-th
time step as tu(i) or tv(i). We useˆand˜to indicate estimate
and extrapolation, e.g. û and ũ denote the estimated and
extrapolated substitute of the low frequency measurement
u respectively. In line with the Kalman filter notation, we
denote the state of a filter as x and its update at the time step
k as x(k|k−1). We denote the measurement used for Kalman
filter calculation, its estimate and its observation matrix as z,
ẑ and C respectively. We denote the state variance matrix,
the process noise variance matrix and measurement noise
variance matrix as Q, R and P respectively.

B. Kinematic Model

We adopt the kinematic model introduced in [10] to model
the underlying kinematic relation between the high frequency
measurement v and its bias as:

v̇ = ẋ+ bx + ωx, (1)

where bx is the bias noise in v and ωx is white noise linked
to v. Since x is to be estimated, we reformulate (1) as:

ẋ = v̇ − bx − ωx. (2)

If v is available, v̇ can be calculated by, e.g. differencing.
As a matter of fact bias varies slowly, we model bx with the



white noise through a low pass filter:

bx =
1

1 + Ts
ν, (3)

where T is the time constant and ν is the driving white noise.
Re-formulating (3), the state equation of bx becomes:

ḃx = − 1

T
bx +

1

T
ν. (4)

(4) and (2) together build up the kinematic model, which
describes how the bias bx affects x.

III. PROBLEM FORMULATION

We select a pair of measurements with vastly different
frequencies to challenge the proposed approach. We visualize
them in Fig. 1. We can see that the encoder measurement
(blue line at 1000 Hz) drifts away from the high accuracy
vision measurements (dotted green line at 32 Hz) as time
accumulates. The encoder measurement is plotted using a
simple reset function. When the error becomes too large
(over 0.15m), the encoder measurement is reset (red circle)
to the vision measurement.

Fig. 1: Vision measurements, encoder measurements and estimate
from a Kalman filter.

As in this case the bias noise appeared in the encoder
measurement we use the kinematic model introduced in
Sec. II-B to relate it to the vision measurements. In Fig. 1
the position estimate (red line) is obtained by applying
the Kalman filter as described in [10]. This Kalman filter
runs state-update at the sampling frequency of v (1000 Hz)
and receive measurements at the sampling frequency of u
(32Hz). This approach gives estimates close to the real vision
measurements. However due to the use of two vastly different
frequencies, every time when u arrives the measurement
update produces a discontinuity as we can see from the saw-
tooth (gray box) on position estimate.

These discontinuities are not suitable for a control purpose.
Nevertheless we cannot adapt the position estimate to the
abrupt changes by tuning a Kalman filter. If we adjust the
pre-specified noise level to eliminate these saw-tooth, we
may end up with discontinuities elsewhere and adapting the
position estimate only to the vision measurements eventually.

This motivates us to fill in information in the gap between
the sampling of two low frequency measurements u, that is,
to have a substitute of u running at the same frequency as

v. We denote this substitute as û and make it at the same
frequency as the high frequency measurement v such that the
underlying filter (e.g. a Kalman filter) is able to run state-
update and measurement-update at the same frequency.

IV. PROPOSED SOLUTION

In order to use as much information as possible, the sensor
fusion estimate is usually a combination across different
sources. For example, the measurement fusion [9] predicts
the fused measurement as a linear combination of each type
of measurement weighted by its pre-calculated variance. This
combination takes place in the dimension of sources of
measurements. For a high frequency substitute of u we have
to look for a combination in the dimension of time instead.
Namely we want a combination of u in the past.

Such a combination found in [12] is as follows: if we store
the most recent N low frequency measurements u by time
order into a vector u, we can extrapolate the unavailable ũ at
a higher frequency with a Bezier curve. Suppose we chooose
ũ to be at the same frequency as v, ũ(k) at the k-th time
step (of the high frequency measurement v) is

ũ(k) =

N∑
i=0

w
(
i, tv(k), tu(j)

)
u(j − i), (5)

where the weight w(i) will be explained in Remark 4.1 and
j is the time step of the latest u stored in u at the moment
when ũ(k) is calculated.

Bezier curve is widely used to model smooth curves. The
generated curve is contained in the convex hull of its control
points. In (5), elements of u are actually the control points.
In Fig. 2 we applied the extrapolation method (5) to a vector
of 10 vision measurements (dashed red circles) used in Fig. 1
and obtained a sequence of 30 extrapolated ũ (blue dotted
line). If we use the final position estimates x̂ (black line) and
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Fig. 2: Comparison of ũ and û.

the next future vision measurement (red asterisk) unext for
comparison, we can see that (especially in the second half
of the blue dotted line) as ũ is further away from the stored
vision measurements u (red circles) in time, ũ gradually
drifts away from x̂ and unext. Similar phenomenon could
be found in [13] and [15] as well. This is due to the fact that
there is no control points ahead of ũ.

We propose to use information from the high frequency
measurement v as an extra control point ahead of ũ. In



case of a Kalman filter, the system update xk|k−1 contains
all the information from the high frequency measurement
v. Since the measurement and state estimate are related
through the observation matrix as z(k) = Cx(k), we use
ẑ(k) = Cxk|k−1 as an additional control point at the k-th
time step (at the frequency of v) as:

û = [ẑ(k), u1, u2, . . . , uN−1]. (6)

Replace u with û in (5), û(k) is calculated as:

û(k) =

N∑
i=0

w̃
(
i, tv(k), tu(j), ω

)
û(j − i), (7)

where the weight w(i) in (5) has been adjusted to w̃(i, ω),
see Remark 4.1. Note that ẑ(k) is updated at the same
frequency as û(k) (high frequency) and the other elements in
û are updated at the same frequency as u (low frequency).
Apply (7) to the same vector of 10 vision measurements
(dashed red circles in Fig. 2), we obtain 30 newly predicted
û (the green dotted line in Fig. 2). Compared to the extrapo-
lated ũ, the new û does not drift away from unext any more.

Remark 4.1: In line with [12], the weight w(i) for a
Bezier curve in (5) for each measurement u(i) is

w
(
i, tv(k), tu(j)

)
=

N !

i!(N − i)!
wN−i

1 wi
2, (8)

where w1 and w2 are determined by the differences between
tv(k), tu(j) and tu(j − N), which are the time of û(k) or
ũ(k), u(1) and u(N) respectively, as follows:

w1

(
i, tv(k), tu(j)

)
=
tv(k)− tu(j −N)

TN
, (9)

w2

(
i, tv(k), tu(j)

)
= − tv(k)− tu(j)

TN
, (10)

where TN = tu(j)− tu(j −N). w1 and w2 essentially
measure how far u(1) and u(N) are away from û(k) or ũ(k)
in time. When it comes to w̃(i, ω) in (7), û(1) becomes ẑk.
The time of ẑk is tv(k), which is the same as the time of
û(k). Therefore we cannot directly replace tu(j) with tv(k)
in (10), otherwise w2 turns out to be zero. So we introduce
a positive tuning parameter ω and use tv(k) + ω instead.
The use of ω leads to a different parameter w̃2 = − ω

TN
and

thereby results in the difference between w(i) in (5) and
w̃(i, ω) in (7):

w̃(i, ω) =
N !

i!(N − i)!
wN−i

1 w̃i
2. (11)

As a comparison, numerical values of w and w̃ correspond-
ing to ûk at time 106.22s are labeled in Fig. 2. �

Remark 4.2: From a filter point of view, both the ex-
trapolation (5) and interpolation (7) behave like a moving
average filter. Based on the numerical values of the weights
shown in Fig. 2, we can see that (5) and (7) are kind of
exponential moving average filter, which produces artificial
measurements at a certain frequency up to the user. �

To summarize the analysis so far and give a concise
answer to the problem raised in Sec. III, we formulate the
dual-frequency sensor fusion procedure into Algorithm 1. In

application, due to the varying transmission and computation
process, time delay and loss of data of the low frequency
measurement u are common, e.g. GPS, vision measurements
or data over the network. Both time delay and missing data
amount to a variability in the frequency of u. As long as we
store the received low frequency measurements into u, we
can always estimate û(k) on the fly. One application example
dealing with these two problems using Algorithm 1 will be
briefly presented in Sec. VI-B.

Algorithm 1: The way of filling
Goal: Producing x̂(k) with û(k).
Input:

1) v(k) and u.
Output: x̂(k).
while v(k) is available do1

Calculate x(k|k−1) (State update)2

if u(j) is available then3

Update u with u(j).4

z = u(j).5

else6

Put ẑ(k) = Cx(k|k−1) into û.7

Predict û(k) using (7) and z = û(k).8

Delete ẑ(k) = Cx(k|k−1) from û.9

end10

Calculate x̂(k) with z ( Measurement update).11

end12

V. PROOF OF CONCEPT COMPARISON

Sensor fusion is a long-standing topic. We need a quantita-
tive comparison to the existing methods mentioned in Sec. I.
In this section and the next, we are going to validate that
the proposed approach is a good estimator for sensory data
captured at vastly different frequencies through simulation
and application examples. The simulation data is chosen to
be similar to the dual-frequency sensory data shown in Fig. 1.
The low frequency u runs at 32 Hz and the high frequency v
runs at 1000 Hz. Specifically, through different simulations
the standard derivation σb of bias noise in v is around 0.2m
and the standard derivation σu of u goes from around 0.01m
to 0.2m. We use the variance σ2 and root mean square (rms)
as the measures for the estimates.

As we can find in table II when σu ≤ 0.5σb, i.e. σu ≤
0.1m, we obtain around 20% decrease in σ2 and more than
10% decrease in rms with our approach compared with
Kalman filter based approach. While σu approaches σb, the
performance difference decreases. This is because if σu ≥ σb
then u cannot contribute in improving v compared with the
Kalman filter based approaches.

VI. APPLICATION EXAMPLES

The experiment platform is the soccer robot shown in
Fig. 3a. It is from the Tech-United-Eindhoven middle-size



TABLE II: Methods comparison.
(σb = 0.2m) σu: 0.010m σu: 0.049m σu: 0.099m σu: 0.150m σu: 0.202m

Method and reference σ2 rms σ2 rms σ2 rms σ2 rms σ2 rms
Kalman filter [10] 0.00068 0.02620 0.00249 0.04988 0.00423 0.06505 0.00562 0.07503 0.00708 0.08431

Multi-rate hold[11], [12], [13] 0.00063 0.02499 0.00230 0.04797 0.00389 0.06244 0.00597 0.07732 0.00789 0.08898
This paper 0.00054 0.02328 0.00187 0.04325 0.00342 0.05849 0.00541 0.07358 0.00706 0.08416

Robocup1[16] team. The goal is to estimate the robot posi-
tion on the soccer field with vision (Fig. 3b) and encoder
measurements. The drift-free vision measurement runs at 32
Hz. It is corrupted by white noise whose standard deviation
is 0.0112m. The encoder measurement runs at 1000 Hz and
it is corrupted by bias. The vast difference in frequency poses

(a) The robot in the soccer field.(b) Omnidirectional camera view.

Fig. 3: The soccer robot equipped with an omnidirectional camera
and encoders.

a challenge for the localization of the robot. The proposed
method is validated through a comparison with Kalman filter
and multi-rate hold method [11]. The loss of data and time
delay problems are discussed in Sec. VI-B.

A. Method Validation

In Fig. 4, we plot the same sensory data as in Fig. 1. The

Fig. 4: Position Estimate using the proposed method.

position estimate2 x̂ (red line) is made using Algorithm 1.
We can observe from the gray box that the proposed solu-
tion smoothly connects position estimates between sampling
periods of u. However as we aforementioned, due to the big
frequency difference between u and v, the normal Kalman

1Robocup is an international scientific initiative with the goal to advance
the state of the art of intelligent robots.

2The parameters used for the proposed method are: T=100, R=0.1, Q =[
0.5 0

0 0.1

]
, P (0) =

[
0.1 0

0 0.1

]
, d=5, N=5, ω=0.001.

filter3 estimate (black line) accumulates (in this example
about 1000

32 ≈ 31.25) state-updates during the sampling
period of u before every measurement-update, this disconti-
nuity cannot be elimiated by filter tuning.

In Fig. 5, let us have a furhter look at the interpolated
vision measurement û(k), which is used to produce x̂ shown
in Fig. 4. Compared with the extrapolated measurement
(black dots) obtained with multi-rate hold4 method [11], û
(green dots) is smoother and closer to the final estimate.
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Fig. 5: A comparison between û(k), ũ(k) and u.

Remark 6.1: Here we give a qualitative analysis of the
numerical values of R, Rm and RK in the footnotes. Extrap-
olations ũ used in the multi-rate hold method is essentially
a weighted sum of u. The use of ũ at each time step of v
implies we are using the same measurements u for 1000

32 =
31.25 times. According to the variance calculation equation,
we should use Rm = 1√

31.25
RK = 0.0179. Nevertheless

such a choice of Rm implies we are going to trust ũ more
although it essentially brings in no new information. This is
why we are using a Rm > RK . However, we are using
a R < RK since the proposed approach embedded new
information from v into û. �

B. Loss of Data and Time Delay

In the example illustrated in Fig. 6 the values of the param-
eters are chosen to be the same as in the last case. Despite
the loss of data, the position is successfully estimated. The
missing of 45 visual measurements from 63.5s to 64s only
has a marginal effect on the drift of the estimation and the
estimate is still smooth when vision measurements is once
again available.

3The parameters used for the Kalman filter are: TK=100, RK=0.1,

QK =

[
0.5 0

0 0.1

]
, PK(0) =

[
0.1 0

0 0.1

]
.

4The parameters used for the multi-rate hold method are: Tm=100,

Rm=1, Qm =

[
0.5 0

0 0.1

]
, PK(0) =

[
0.1 0

0 0.1

]
, Nm=5.
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Fig. 6: A comparison between û, u and artificially delayed u.

VII. CONCLUSION AND FUTURE WORK

Given a pair of sensors running at vastly different fre-
quencies, the proposed solution fills the gap between the
low frequency measurements with their estimates and thereby
exhibits an improved performance compared with the other
Kalman filter based approaches.

In the future, we aim to work with a larger set of sensory
data at different frequencies. A proper starting point would
be the analysis of the noise characteristics of these sensory
data, see how they could potentially complement each other
like in the dual-frequency case.
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