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Abstract— Here we address the problem of moving a camera
from an initial pose to a final pose. The trajectory between the
two poses is subject to constraints on the camera motion and
the visibility, where we have bounds on the allowed velocities
and accelerations of the camera and require that a set of
point features are visible for the camera. We assume that
the pose is possible to retrieve from the observations of the
point features, i.e., we have a Position Based Visual Servoing
Problem with constraints. We introduce a two step method that
transforms the problem into a convex optimization problem
with linear constraints. In the first step the rotational motion
is restricted to be of a certain type. This restriction allows us
to retrieve an explicit solution of the rotational motion that is
optimal in terms of minimizing geodesic distance. Furthermore,
this restriction guarantees that the rotational motion satisfies
the constraints. Using the explicit solution, we can formulate
a convex optimization problem for the translational motion,
where we include constraints on workspace and visibility.

I. I NTRODUCTION

Visual servoing is used in a wide range of applications.
Vision allows for non-contact measurements and brings in
more information compared to other sensors such as encoders
or laser sensors. Therefore, using vision in the loop, allows
a robot to work in unknown and non-static environments.
Traditionally visual servoing has been divided into two
categories: Image Based Visual Servoing (IBVS) [2] and
Position Based Visual Servoing (PBVS)[2].

A problem in visual servoing is to track a target while
keeping the target inside the field of view of the camera. We
refer to this problem as the visual servoing with visibility
constraints. In the case of a PBVS control law the pose of
the camera is measured and the camera follows a trajectory in
the euclidean space. Because no control is performed in the
image plane, the visibility constraints cannot be guaranteed.
On the other hand, in the case of an IBVS control law,
the control is performed purely in the image plane. In this
case local minima may be present [4], and due to the
lack of depth information, the interaction matrix has to be
approximated [2].

There has been a range of different hybrid approaches
to visual servoing in previous works. In these approaches
PBVS and IBVS is combined. One of the classic works
within this realm is the paper ”2 1

2D Visual Servoing” by
Malis et.al. [12], where homography decomposition is used.
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In this work a PBVS control law is used for the rotation,
whereas an IBVS control law is used for the position. Even
though this work is appealing it suffers from drawbacks. The
homography decomposition is noise sensitive and the method
does not guarantee that the visibility constraints are fulfilled.
Chesi and Hashimoto [5] propose a switching controller.
As long as all point features are inside the image frame a
position based controller is used. Once a feature enters the
boundary of the image frame, a controller consisting of either
pure rotational motion or pure translational motion is used.
The drawback of this switching controller is the presence of
chattering. Thuilotet.al. [16] solves the problem by using a
representation of the pose which separates the rotational and
translational dynamics. Using this decoupling, the authors
can solve the problem by only focusing on translational
motion, where the desired trajectory in the image plane forms
a straight line. However the problem of local minima is
not well addressed in this approach. A method based on
potential fields is proposed in [6], where a potential field is
defined in the image plane. The field is used to reverse the
camera motion when the features approach the boundary of
the image plane.

None of the mentioned control designs gives a global
solution while fulfilling the visibility constraint. Instead the
methods work only locally. In addition, the problem of
optimizing the camera motion is not fully addressed. In order
to obtain a method that works globally, where the camera
motion is optimized, trajectory planning methods should be
considered.

Nonlinear optimization has been investigated for visual
servoing in previous works. In [14], Toshiyukiet.al. pro-
pose a receding horizon approach for the stabilization of
a robot arm using a position based visual controller. In
each iteration a nonlinear optimization problem is solved.
In [15] a nonlinear IBVS-based model predictive control is
proposed. Visibility constraints, joint limitations and actuator
saturations are incorporated by using the dynamic model
of the robot. In [1], a nonlinear optimization problem in
the image plane is formulated, where workspace limitations,
visibility constraints and actuator limitations are addressed.
In [8] the visual servo problem is solved as a linear quadratic
(LQ) optimal control problem, either by linearizing around
an equilibrium point or by feedback linearization.

The nonlinear optimization problems addressed above
do not guarantee a global solution. Instead of linearizing
the system around an equilibrium point or use feedback
linearization, it is preferred to have a global convex problem.

In order to transform the visual servoing problem with



visibility constraints into a convex optimization problemwith
linear constraints, we constrain the rotational motion to be
around the rotational axis between the current and the desired
rotation in this paper. This restriction fulfills two purposes.
Firstly the shortest rotation in terms of geodesics is around
this axis, secondly an explicit solution of time is easy to
obtain for the rotational motion. Using the explicit solution of
the rotational motion, the translational kinematics turnsinto a
linear time varying system. We can then easily discretize the
translational kinematics and formulate it as linear equality
constraints in an MPC problem.

Suppose the camera field of view is known, the visible
region to the camera is obtained as a cone inR

3. If a given set
of feature points are inside this cone, the visibility constraint
is fulfilled. We parameterize the visible region to each camera
position along its trajectory into a set of scalar inequality
constraints, which consists of the camera translation and
rotation.

The proposed method can be summarized as follows.
First an explicit solution is constructed for the rotational
motion such that the translational kinematics is translated
into equality constraints. Secondly, a convex optimization
problem for the translational motion is formulated, where
the visibility constraints are incorporated as inequalitycon-
straints. Compared to earlier approaches, the constraintsare
linear and are not only defined locally, but globally.

II. PRELIMINARIES

In this section we introduce the mathematical framework
that will be used throughout the paper. We adopt the for-
malism of Chaumette and Hutchinson [2], [3], and assume
three different coordinate framesFc, Fc∗ and F0, which
correspond to the camera frame, the desired camera frame
and the frame of the target respectively. The framesFc∗

andF0 are assumed to be static relative to each other. Let
a leading superscript on a vector denote the frame it is
represented in. For example, we letct0 and c∗t0 be the
position of the origin of the target frame in the camera frame
and the desired camera frame respectively.

We use the axis-angle representation for the rotation of
the camera. Lets denote the relative pose betweenFc and
Fc∗ . We defines as (c

∗

tc, θu), wherec∗tc is the position
of the origin of Fc in the frameFc∗ , and θu is the axis-
angle representation of the rotation. We will for simplicity
abbreviatec

∗

tc as t in the following. Sinces denotes the
relative pose, we lets∗ = 0 denote the desired camera
pose and lete = s − s∗ = s denote the error between the
desired camera pose and the camera pose. The axis angle
representationθu is defined as the logarithm of the rotation
matrix R and is easy to be calculated fromR, seee.g [11].
This mapping is not one-to-one onSO(3), however it is one-
to-one on geodesic open balls around the identity with radius
less thanπ.

Denote the velocity byνc = (vc,ωc), wherevc is the
instantaneous linear velocity of the origin of the camera
frame andωc is the instantaneous angular velocity of the
camera frame. The dynamics ofe is given by

ė = Leνc +
∂e

∂t
(1)

whereLe is the transition matrix and∂e
∂t

represents the target
motion, i.e. the explicit dependence oft (that is ∂e

∂t
6= de

dt
=

ė). In the case of a static target∂e
∂t

= 0. The transition matrix
Le is given by

Le =

[

R 0
0 Lθu

]

, (2)

whereR is the rotation matrix between the frameFc, and
Fc∗ . The matrixLθu is given as

Lθu = I3 +
θ

2
û+

(

1−
sinc(θ)

sinc2 θ
2

)

û
2. (3)

The function sinc(x) is defined so thatxsinc(x) = sin(x)
and sinc(0) = 1. The matrixû is the skew symmetric matrix
of the vectoru ∈ R

3. The rotation matrixR is obtained from
θu by Rodrigues’ formula as

R(θu) = uuT + cos(θ)(I − uuT ) + sin(θ)û. (4)

Observe that the transition matrix (2) is block diagonal.
The transition matrix is invertible forθ ∈ (−2π, 2π), see
[12]. In [5], instead of choosingθu as the representation
of the rotational motion,sin(θ)u is chosen. However, with
that choice of representation, the transition matrix is only
invertible for θ ∈ (−π

2 ,
π
2 ).

III. PROBLEM FORMULATION

The problem considered in this paper is to construct a
kinematic control law for a calibrated perspective eye-in-
hand camera so that the error between the current pose of
the camera and the desired pose of the camera,e, converges
to zero, i.e., the camera shall move so thatFc∗ and Fc

coincide, see Figure 1. This is a trajectory planning problem
in SE(3) with constraints. The objectives and constraints are
formulated mathematically in the subsequent subsections.We
introduceTs > 0 as the sampling period and let the discrete
time 0 correspond to the continuous timet0.

Fig. 1. The camera shall be moved from its current pose to a final pose.



A. Camera Motion Constraints

In this subsection we formulate the constraints on the
velocities i.e., the control signals. These constraints are
formulated as bounds on the magnitudes of the control
signals. Let us define[v1, v2, v3] = vc and[ω1, ω2, ω3] = ωc.
We consider the following bounds for the control variable
νc = (vc,ωc).

|vi| ≤ αi, |ωi| ≤ βi, (5)

whereαi, βi ∈ R
+, i = 1, 2, 3. Each bound onvc in (5)

can be written as linear constraints at time stepk, i.e.

vi(k) ≤ αi − vi(k) ≤ αi, (6)

for i = 1, 2, 3. In order to address smoothness constraints
on the translational velocity, we construct the vectorsts and
vs:

ts = [t(0)T , t(1)T , ..., t(N − 1)T ]T

and
vs = [vc(0)

T ,vc(1)
T , ...,vc(N − 1)T ]T ,

whereN is the time horizon. Lett(j) denote the discrete
time j:th derivative ofts. Now we can formulate magnitude
constraints in a similar way as in equations (6). One can also
construct a convex cost functional containing these terms as

f = ‖

n
∑

i=1

t(i)‖22, (7)

wheret(i) is defined as

t(i) =
t(i−1)(to + (k + 1)Ts)− t(i−1)(to + kTs)

Ts

,

andt(0) = t.
Remark 3.1: It is also possible to impose further smooth-

ness constraints through solving a more general spline opti-
mization problem, seee.g. [7].

B. Visibility Constraints

Here we formulate the visibility constraints and an occlu-
sion constraint. We assume that the camera is a calibrated
pinhole camera with a planar image surface and there is
assumed to ben coplanar point features at the target. Each
such point feature has coordinatescP i = [Xi, Yi, Zi], i =
1, ..., n, in the camera frame. Its projection onto the image
plane iscpi = [xi, yi, 1], wherexi andyi are defined as:

xi =
Xi

Zi

, yi =
Yi

Zi

. (8)

Since the image from the camera is used as input,cpi and
c∗pi

1 are known. In order to estimate the coordinatescP i

and c∗P i from them, we need to solve a perspective n

1This is defined in the disired camera frameFc∗ as indicated by the
leading superscript. Orop

i
, that is defined in the frame attached at the

targetF0, because the transformation betweenFc∗ andF0 is assumed to
be static and known. Without this knowledge it is only possible to retrieve
their positions up to scale.

point problem (PnP), for which there recently has appeared
efficientO(n) computational time algorithms, see [10]. The
poses = (t, θu) betweenc

∗

P i andcP i can then be solved
using the method by Hornet.al. [9]. Even though there exist
many applications where the target model is unknown, there
is a vast amount of applications,e.g. in mobile robotics,
where a model of the target is available, justifying the
assumption of a known model of the target.

The image frame is defined by the four corners
cc1,

c c2,
c c3 and cc4, where cc1 = [−a,−b, 1], cc2 =

[a,−b, 1], cc3 = [a, b, 1], cc4 = [−a, b, 1] and a, b ∈ R
+.

Thus,cpi is visible by the camera if

−a ≤xi ≤ a, (9)

−b ≤yi ≤ b. (10)

By virtue of (8), the constraints (9-10) lead to the follow-
ing constraints on eachcP i:

Xi − aZi ≤ 0, (11)

−Yi − bZi ≤ 0, (12)

−Xi − aZi ≤ 0, (13)

Yi − bZi ≤ 0. (14)

Therefore each visiblecP i should be contained in the convex
cone defined by the origin ofFc and the four corners of the
image framec1, c2, c3 andc4. In Figure 2 this convex cone
is illustrated. These constraints (11-14) are linear incP i and
cP i is a linear combination ofs = (t, θu) as follows:

cP i = RT ((c∗P i)− t), (15)

whereR is defined in (4). Using (15), the constraints (11-14)
are effectively linear ins = (t, θu).

Fig. 2. An illustration of the visibility constraints in (11-14). The point
features must be contained in a convex cone defined by the origin of Fc

and the four corners of the image frame.

Unfortunately the constraints (11-14) are not sufficient ,we
need to add one more occlusion constraint. The introduction
of this constraint is motivated by the following situation.
Assume that the coplanar point features are attached on one



side of a wall, and assume that the camera is positioned on
the other side of the wall. In this situation constraints (11-14)
can be satisfied,i.e., all the points are in the cone, but the
points cannot be seen by the camera due to the occlusion of
the wall.

Let the normal to the plane pointing into the half space
where the points are visible, be denoted byc∗n in the frame
Fc∗ . An occlusion requirement in the camera frameFc for
eachcP i is that

ce3R
T (c∗n) < 0, (16)

wherece3 = [0, 0, 1] andRT represents the relative rotation
betweenFc andFc∗ .

Remark 3.2: The constraint (16) is the most simple occlu-
sion constraint we can impose. More advanced constraints
can also be considered including many objects that occlude
each other.

IV. SOLUTION

The method we use to solve the problem consists of two
consecutive steps. In each step a subset of the constraints (6),
(11-14) and (16) are treated. After both steps a trajectory has
been constructed for which all constraints are satisfied. Note
that this trajectory is defined as an explicit solution of time,
and in order to address the issue of measurement noise we
end this section by proposing a Model Predictive Control
(MPC) algorithm. The two steps in the proposed approach
can be summarized as follows.

1) Construct the angular velocityωc(t) while fulfilling
the constraint (16). Usingωc, an explicit solution for
θ(t)u(t) is obtained, which implies that an explicit
solution for the rotation matrixR(t) can be obtained
via Rodrigues’ formula.

2) Using the solution forR(t) the translational dynamics
is given as a time varying linear system. This linear
system is then discretized such that the translation
can be represented as eqaulities, expressed of its ini-
tial value andR(t). The above equalities, the linear
constraints (11-14), (6) together with a convex func-
tional form a convex optimization problem with linear
constraints. This optimization problem can be solved
for arbitrarily number of sampling peroids, but in the
MPC-approach only the solution of the first sampling
peroid is implemented in each iteration.

The two different steps will now be explained in detail in
the following subsections.

A. Step 1 - Rotational Motion

The shortest geodesic distance betweenR andI is |θ| ∈
[0, π] in SO(3), where θ is the angle in the axis-angle
representation ofR, see [13]. This distance is also known
as the Riemannian distance. The shortest path is a rotation
around the axisu with magnitude|θ|. Providedθ(t0)u(t0)
and c∗n = 0 fulfills the constraint (16), it follows that (16)
is fulfilled for all rotationsθu whereθ ∈ [θ(t0), 0].

Thus in order to obtain this shortest path inSO(3) we can
restrict the rotational motion to be around the rotational axis

u, i.e. ωc = ωcu. The design ofωc has thus been reduced
to the problem of finding the scalar control lawωc. When
using a controllerωc on the formωcu, the dynamics in (1)
become simple due to the structure of (3). All the nonlinear
terms in (3) are orthogonal tou and the kinematics for the
rotation is equivalent to the linear system

θ̇u = Lθuuωc = ωcu. (17)

A suitable way of choosing the controllerωc is

ωc = −kθ, (18)

or
ωc = −ksign(θ), (19)

where k ∈ R
+ is chosen so thatk|θ(t0)u1| ≤ β1,

k|θ(t0)u2| ≤ β2 and k|θ(t0)u3| ≤ β3, i.e. the constraint
(6) is satisfied. The three parametersu1, u2 and u3 are
the elements ofu. Another way of finding a suitableωc is
by solving a linear quadratic optimal control problem with
constraintsθ̇ = ωc.

B. Step 2 - Translational Motion

Using the solved rotational motionθ(t)u, the dynamics
for the translational vectort, is given by

ṫ = R(t)vc (20)

whereR(t) is given in (4). The explicit solution fort(t) is
given by

t(t) = t(t0) +

∫ t

t0

R(s)vcds. (21)

And its corresponding discretized dynamics is

t(k + 1) = t(k) +B(k)vc(k), (22)

wheret(k) andvc(k) is short notation fort(t0 + kTs) and
vc(t0 + kTs) at time stepk. The matrixB(k) is defined as

B(k) =

∫ t0+(k+1)Ts

t0+kTs

R(s)ds (23)

andk ∈ {0, 1, ...}.

Remark 4.1: In many cases the matrixB(k) is only
defined up to quadrature, but in most of these cases the
integral expression can be found with sufficient accuracy in
numerical tables.

We are now ready to pose a convex optimal control
problem in order to obtain the discrete translational motion
vc. This problem is on the following form

















min
vs

n
∑

i=1

‖t(i)s ‖22 + ‖vs‖
2
2

s.t. t(k + 1) = t(k) +B(k)vc(k), k = 1, 2, ..., N,

Aj [t
T
s (k),v

T
s (k)]

T ≤ bj , j = 1, 2, . . . ,M

. . .

















(24)



The inequalitiesAj [t
T
s ,v

T
s ]

T ≤ bj captures all constraints
defined in the paper except (16).

In the precence of noise, the procedure that was described
in the two preceding subsections can now be repeated at each
time t0, t0+Ts, t0+2Ts, ... until we have reached a desired
convergence. The procedure is formalized into the following
algorithm

Algorithm 1
1) At time t0, solve the perspective n point problem

(PnP) to get (an estimate of) the relative posee(t0) =
(ctc∗ , θu).

2) Solve system (17) to obtainθc(k) k = 1, 2, . . .N . The
rotation matricesR(k) could be constructed according
to (4).

3) Construct state transition matricesB(k) of transla-
tional motion according to (22) and (23).

4) Solve the optimization problem (24) for time horizon
N to getvc(k). If no feasible solution exists, then goto
2) and solveθc(k) again,elsegoto 5).

5) Use ν = [ωc(k)
T ,vc(k)

T ]T for the time period
t ∈ [t0, t0 +NTs].

V. I LLUSTRATIVE EXAMPLE

In order to illustrate the the method we will go through
one iteration ofAlgorithm 1 for a specific problem. In this
problem the desired pose is given by

s∗ =

(





0
0
0



 ,





0
0
0





)

.

Assume one set of coplaner point features are available and
their coordinatesc

∗

P in the desired camera frameFc∗ are
given. Without loss of generality, we choose the sampling
periodTs = 0.02 second and time horizonT = 1 second.
Then there areN = 50 steps to be considered.

In step 1) the initial pose is estimated as

(t(t0), θ(t0)u(t0)) =

(





30
30
30



 , θ0





−0.6204
0.7653
−0.1708





)

,

whereθ0 = 0.9773. In step 2)(17) could be solved either by
(18) or (19). Then useθc(k) andu to construct the rotation
matrices.

In step 3) After B(k) in (22) is calculated using (23),
ts(k) is a linear combination of the translational velocities
vc(k).

In step 4) Using ts(k), R(k) together withc∗P , coor-
dinates of the feature pointscP in the camera frameFc is
obtained using (15). GivencP , the visibility constraints turns
into a set of linear inequalities with respect tovc(k).

In step 5)we now have all the necessary building blocks
in order to formulate the optimization problem:

min
vs

‖vs‖
2
2 +

3
∑

i=1

‖t(i)s ‖22 (25a)

s.t. t(k + 1) = t(k) +B(k)vc(k), (25b)

Xi − aZi ≤ 0,

−Yi − bZi ≤ 0,

−Xi − aZi ≤ 0,

Yi − bZi ≤ 0.

(25c)

vi(k) ≤ αi − vi(k) ≤ αi, (25d)

The simulation results are covered in the following figures:
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Fig. 3. Point feature trajectories on normalized image plane
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Fig. 4. Camera spatial trajectory

The point feature trajectories in the image plane are shown
in Fig. 3 and the corresponding camera spatial trajectory is



shown in Fig. 4. Because both the initial position and the
desired position of the point features are close to the image
plane boundary, it is a difficult task to keep the visibility
constraint. However all the point feature trajectories stay
inside the image plane.
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Fig. 5. Convergence of translation
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Fig. 6. Convergence of the translational velocities

The convergence of translation is shown in Fig. 5 and the
corresponding translational velocity convergence is shown in
Fig. 6.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper we have proposed a new path planning
method for constrained Position Based Visual Servoing
(PBVS). We assume a known target with known point
features. The3D coordinates of the point features are
obtained using the ePnP method, see [10], which hasO(n)
computational time in the number of point featuresn. Then
the pose is obtained using the method by Horn [9].

The problem is solved in two consecutive steps, the first
step is to find a feasible rotational motion and the next step is
to find a feasible trajectory for the translational motion. In the

second step, a convex optimization problem is formulated,
where various linear constraints on the vision and the motion
are incorporated.

For future work, the moving target case as well as addi-
tional constraints such as resolution constraints on the camera
should be further explored.

REFERENCES

[1] G. Allibert, E. Courtial, and F. Chaumette. Predictive control for
constrained image-based visual servoing.IEEE Transactions on
Robotics, 26(5):933–939, 2010.

[2] F. Chaumette and S. Hutchinson. Visual servo control. I.Basic
approaches. IEEE Robotics & Automation Magazine, 13(4):82–90,
2006.

[3] F. Chaumette and S. Hutchinson. Visual servo control. II. Advanced
approaches [Tutorial]. IEEE Robotics & Automation Magazine,
14(1):109–118, 2007.

[4] Franois Chaumette. Potential problems of stability andconvergence
in image-based and position-based visual servoing, 1998.

[5] G. Chesi, K. Hashimoto, D. Prattichizzo, and A. Vicino. Keeping
features in the field of view in eye-in-hand visual servoing:A
switching approach.IEEE Transactions on Robotics, 20(5):908–914,
2004.

[6] P.I. Corke and S.A. Hutchinson. A new partitioned approach to
image-based visual servo control.Robotics and Automation, IEEE
Transactions on, 17(4):507 –515, aug 2001.

[7] B. Demeulenaere, J. De Caigny, J. Swevers, and J. De Schutter.
Dynamically Compensated and Robust Motion System Inputs Based
on Splines: A Linear Programming Approach. InAmerican Control
Conference, 2007. ACC’07, pages 5011–5018, 2007.

[8] K. Hashimoto and H. Kimura. LQ optimal and nonlinear approaches
to visual servoing. Visual Serving: Real Time Control of Robot
Manipulators Based on Visual Sensory Feedback, page 165, 1993.

[9] B.K.P. Horn, H.M. Hilden, and S. Negahdaripour. Closed-form
solution of absolute orientation using orthonormal matrices. Journal
of the Optical Society of America A, 5(7):1127–1135, 1988.

[10] V. Lepetit, F. Moreno-Noguer, and P. Fua. Epnp: An accurate o (n)
solution to the pnp problem.International journal of computer vision,
81(2):155–166, 2009.

[11] Y. Ma, S. Soatto, J. Kosecka, and S. Sastry.An invitation to 3-D
vision. Springer, 2004.

[12] E. Malis, F. Chaumette, and S. Boudet. 2 1/2 D visual servoing. IEEE
Transactions on Robotics and Automation, 15(2):238–250, 1999.

[13] M. Moakher. Means and averaging in the group of rotations. SIAM
Journal on Matrix Analysis and Applications, 24(1):1–16, 2003.

[14] T. Murao, H. Kawai, and M. Fujita. Predictive visual feedback control
with eye-in/to-hand configuration via stabilizing receding horizon
approach. InProc. of the 17th IFAC World Congress on Automatic
Control, pages 5341–5346, 2008.

[15] M. Sauvee, P. Poignet, E. Dombre, and E. Courtial. Imagebased visual
servoing through nonlinear model predictive control. InDecision and
Control, 2006 45th IEEE Conference on, pages 1776–1781. IEEE,
2007.

[16] B. Thuilot, P. Martinet, L. Cordesses, and J. Gallice. Position
based visual servoing: keeping the object in the field of vision. In
IEEE International Conference on Robotics and Automation, 2002,
volume 2, pages 1624–1629. IEEE, 2002.


