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Abstract— Here we address the problem of moving a camera In this work a PBVS control law is used for the rotation,
from an initial pose to a final pose. The trajectory between tie  whereas an IBVS control law is used for the position. Even
two poses is subject to constraints on the camera motion and though this work is appealing it suffers from drawbacks. The
the visibility, where we have bounds on the allowed velocigis s - o\
and accelerations of the camera and require that a set of homography decomposition 'S_nlo!sfe Sens't'V? and the m_EthOd
point features are visible for the camera. We assume that d0€s not guarantee that the visibility constraints areltiedfi
the pose is possible to retrieve from the observations of the Chesi and Hashimoto [5] propose a switching controller.
point features, i.e., we have a Position Based Visual Servoing As long as all point features are inside the image frame a
Problem with constraints. We introduce a two step method tha — qjtion pased controller is used. Once a feature enters the
transforms the problem into a convex optimization problem - L. .
with linear constraints. In the first step the rotational motion boundary _Of the 'me}ge frame, a controll_er ConS'St.'ng F’f&mh
is restricted to be of a certain type. This restriction allows us Pure rotational motion or pure translational motion is used
to retrieve an explicit solution of the rotational motion that is  The drawback of this switching controller is the presence of
optimal in terms of minimizing geodesic distance. Furthernore,  chattering. Thuiloet.al. [16] solves the problem by using a
this restriction guarantees that the rotational motion satsfies representation of the pose which separates the rotatiodal a

the constraints. Using the explicit solution, we can formuite ¢ |ati | d - Using this d i th h
a convex optimization problem for the translational motion, ransiational dynamics. Using this decoupling, the ahor

where we include constraints on workspace and visibility. can solve the problem by only focusing on translational
motion, where the desired trajectory in the image plane orm
a straight line. However the problem of local minima is
Visual servoing is used in a wide range of applicationsot well addressed in this approach. A method based on
Vision allows for non-contact measurements and brings ipotential fields is proposed in [6], where a potential field is
more information compared to other sensors such as encodéedined in the image plane. The field is used to reverse the
or laser sensors. Therefore, using vision in the loop, aloncamera motion when the features approach the boundary of
a robot to work in unknown and non-static environmentshe image plane.
Traditionally visual servoing has been divided into two None of the mentioned control designs gives a global
categories: Image Based Visual Servoing (IBVS) [2] andolution while fulfilling the visibility constraint. Inste the
Position Based Visual Servoing (PBVS)[2]. methods work only locally. In addition, the problem of
A problem in visual servoing is to track a target whileoptimizing the camera motion is not fully addressed. In orde
keeping the target inside the field of view of the camera. W obtain a method that works globally, where the camera
refer to this problem as the visual servoing with visibilitymotion is optimized, trajectory planning methods should be
constraints. In the case of a PBVS control law the pose @bnsidered.
the camera is measured and the camera follows a trajectory inNonlinear optimization has been investigated for visual
the euclidean space. Because no control is performed in tbervoing in previous works. In [14], Toshiyult.al. pro-
image plane, the visibility constraints cannot be guaehte pose a receding horizon approach for the stabilization of
On the other hand, in the case of an IBVS control lawa robot arm using a position based visual controller. In
the control is performed purely in the image plane. In thigach iteration a nonlinear optimization problem is solved.
case local minima may be present [4], and due to thi [15] a nonlinear IBVS-based model predictive control is
lack of depth information, the interaction matrix has to begroposed. Visibility constraints, joint limitations andtaator
approximated [2]. saturations are incorporated by using the dynamic model
There has been a range of different hybrid approache$ the robot. In [1], a nonlinear optimization problem in
to visual servoing in previous works. In these approachele image plane is formulated, where workspace limitations
PBVS and IBVS is combined. One of the classic worksisibility constraints and actuator limitations are adued.
within this realm is the paper2iD Visual Servoing” by In [8] the visual servo problem is solved as a linear quadrati
Malis et.al. [12], where homography decomposition is used(LQ) optimal control problem, either by linearizing around
This work has been supported by the Swedish Foundation foz?'n equ|I|br|u_m point qr t.)y fgedbaCk linearization.
Strategic Research (SSF), and the European Commission Fd#&ctp The nonlinear optimization problems addressed above
RoboHow.Cog(FP7-ICT-288533). Yuquan Wang is with the CotepVi- dO not guarantee a global solution. Instead of linearizing

sion and Active Perception Lab, Royal Institute of Techgglo10044 he system around an equilibrium point or use feedback
Stockholm.yuquan@xt h. se. Johan Thunberg and Xiaoming Hu are

with the Department of Mathematics, Royal Institute of Tealbgy linearization, it is preferred to h_ave a globe}I convex pm-l.
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visibility constraints into a convex optimization problaewith

linear constraints, we constrain the rotational motion ¢o b é=Lev, + e (1)
around the rotational axis between the current and theedesir ot
rotation in this paper. This restriction fulfills two purmss whereL, is the transition matrix ang¢ represents the target

Firstly the shortest rotation in terms of geodesics is adourmotion, i.e. the explicit dependence of(that is % % =

this axis, secondly an explicit solution of time is easy te). In the case ofastatictarg%§ = 0. The transition matrix
obtain for the rotational motion. Using the explicit soutiof L. is given by
the rotational motion, the translational kinematics tunts a

linear time varying system. We can then easily discretiee th L. = [R 0 } , )
translational kinematics and formulate it as linear edyali 0 Lou
constraints in an MPC problem. where R is the rotation matrix between the frande, and

Suppose the camera field of view is known, the visibler... The matrixLy,, is given as
region to the camera is obtained as a con&inlf a given set .
; i ; il . 0 . sind6)\ .,
of feature points are inside this cone, the visibility coaisit Lpw=I3+-a+(1->2220 )42 (3)
is fulfilled. We parameterize the visible region to each came 2 smc2%
position along its trajectory into a set of scalar inequalit The function sin¢r) is defined so thatsingz) = sin(z)

constraints, which consists of the camera translation angq sin¢0) = 1. The matrixa is the skew symmetric matrix

rotation. _ of the vectoru € R3. The rotation matrix is obtained from
The proposed method can be summarized as followg,, py Rodrigues’ formula as

First an explicit solution is constructed for the rotatibna

motion such that the translational kinematics is trandlate R(0u) = uu” + cog0)(I — uu’) +sind)a.  (4)
into equality constraints. Secondly, a convex optimizatio Qpserve that the transition matrix (2) is block diagonal.
problem for the translational motion is formulated, whererhe transition matrix is invertible fof € (—2x,2x), see
the visibility constraints are incorporated as inequatityn-  [12]. In [5], instead of choosingu as the representation
straints. Compared to earlier approaches, the constrafiats of the rotational motionsin(#)u is chosen. However, with
linear and are not only defined locally, but globally. that choice of representation, the transition matrix isyonl

. . Press
Il. PRELIMINARIES invertible forf € (=%, 3).

In this section we introduce the mathematical framework Il. PROBLEM FORMULATION
that will be used throughout the paper. We adopt the for- The problem considered in this paper is to construct a
malism of Chaumette and Hutchinson [2], [3], and assumiinematic control law for a calibrated perspective eye-in-
three different coordinate frames,, F.- and Fy, which hand camera so that the error between the current pose of
correspond to the camera frame, the desired camera frathe camera and the desired pose of the canegregnverges
and the frame of the target respectively. The franfes to zero,i.e, the camera shall move so th#.. and 7.
and F, are assumed to be static relative to each other. Lebincide, see Figure 1. This is a trajectory planning pnoble
a leading superscript on a vector denote the frame it is SE(3) with constraints. The objectives and constraints are
represented in. For example, we &, and <"t, be the formulated mathematically in the subsequent subsectivas.
position of the origin of the target frame in the camera framtroduceT; > 0 as the sampling period and let the discrete
and the desired camera frame respectively. time 0 correspond to the continuous timg

We use the axis-angle representation for the rotation of
the camera. Les denote the relative pose betwe&p and
F.. We defines as (C*tc,eu), where€ ¢, is the position
of the origin of 7. in the frameF.., and 6u is the axis-

angle representation of the rotation. We will for simpijcit z
abbreviate't, ast in the following. Sinces denotes the }“O v
relative pose, we les* = 0 denote the desired camera

pose and lek = s — s* = s denote the error between the X

desired camera pose and the camera pose. The axis angle
representatiodu is defined as the logarithm of the rotation
matrix R and is easy to be calculated fraR), seee.g [11].

This mapping is not one-to-one &fO(3), however it is one-
to-one on geodesic open balls around the identity with mdiuf ¢
less thanr.

Denote the velocity by, = (v.,w.), wherew, is the
instantaneous linear velocity of the origin of the camera
frame andw. is the instantaneous angular velocity of the
camera frame. The dynamics efis given by

ig. 1. The camera shall be moved from its current pose to & piose.



A. Camera Motion Constraints point problem (PnP), for which there recently has appeared

In this subsection we formulate the constraints on thgfficientO(n) computational time algorithms, see [10]. The
velocities i.e, the control signals. These constraints ar®0S€s = (t,u) between” P; and“P; can then be solved
formulated as bounds on the magnitudes of the contr§fing the method by Horet.al. [9]. Even though there exist
signals. Let us defin@;, va, v3] = ve and[wy, we, ws] = we.  Many applications where the target model is unknown, there
We consider the following bounds for the control variabldS @ vast amount of applicationgg. in mobile robotics,

Ve = (Ve, we). where a model of the target is available, justifying the
assumption of a known model of the target.

i < i, |wil < B, (5) The image frame is defined by the four corners
. €c1,°c2,fcs and ey, Where ¢c; = [—a,—b, 1], ‘ca =
wherea;, f; € R, i = 1,2,3. Each bound or.. in (5)  [a,—b,1], “c5 = [a,b,1], ‘c4 = [—a,b,1] anda,b € RT.
can be written as linear constraints at time step.e. Thus, °p, is visible by the camera if
—a <z; < a, 9)
vi(k) <o —vi(k) < (6) —b<y; <b. (10)

for i = 1,2,3._In order t(_) address smoothness constraints By virtue of (8), the constraints (9-10) lead to the follow-
on the translational velocity, we construct the vectarand ing constraints on eachP;:

V!
t, = [t(0)T, t(1)T, ... t(N - 1)T)T X, —aZ; <0, (11)

and =Y =0Z; <0, (12)
ve = [0(0)T, v ()T, .., v (N - 1)1, -X; —aZ; <0, (13)

Y, —bZ; <0. (14)

where N is the time horizon. Let”) denote the discrete

time j:th derivative oft;. Now we can formulate magnitude Therefore each visibleP; should be contained in the convex

constraints in a similar way as in equations (6). One can alsmne defined by the origin of. and the four corners of the

construct a convex cost functional containing these tersns amage framec,, c2, c3 andey. In Figure 2 this convex cone
is illustrated. These constraints (11-14) are lineatit and

f=I Zt@”g, (7) ©P;is a linear combination 0§ = (¢, fu) as follows:
| - “P; = R"((""P;) - t), (15)
wheret? is defined as _ o _ _
(1) (1) whereR is defined in (4). Using (15), the constraints (11-14)
) — t (to + (k + 1)T5) — t (to + KT5) are effectively linear ins = (¢, fu).
T ’

andt©) =t

Remark 3.1: It is also possible to impose further smooth-
ness constraints through solving a more general spline opti Point features
mization problem, see.g. [7]. . A

- . o Fo

B. Visibility Constraints gc k-

Here we formulate the visibility constraints and an occlu- *

sion constraint. We assume that the camera is a calibrated

pinhole camera with a planar image surface and there is

assumed to be coplanar point features at the target. Each

such point feature has coordinateB; = [X;,Y;, Z;], i =

1,...,n, in the camera frame. Its projection onto the image

plane is°p, = [x;,y:, 1], wherexz; andy; are defined as: Fe

X Y;

— ;= —. 8

7 Y7 (8)

Since the image from the camera is used as in‘m;t and Fig- 2. Anillustration of the visibility constraints in (114). The point

o1 . S features must be contained in a convex cone defined by tha afgrF.
p;~ are known. In order to estimate the coordinatés

. - and the four corners of the image frame.
and ¢ P; from them, we need to solve a perspective n

Visible region

Xr; =

1This is defined in the disired camera franfe« as indicated by the Unfortunately the constraints (11-14) are not sufficierd ,w
leading superscript. Ofp,, that is _defined in the frame_attached at thepneed to add one more occlusion constraint. The introduction
target Fp, because the transformation betweEp and Fy is assumed to f thi traint i tivated by the followi ituati
be static and known. Without this knowledge it is only poksito retrieve Y IS constraint Is motvate y the 1ollowing situation.

their positions up to scale. Assume that the coplanar point features are attached on one



side of a wall, and assume that the camera is positioned en i.e. w. = w.u. The design otv,. has thus been reduced
the other side of the wall. In this situation constraints-{#) to the problem of finding the scalar control law.. When
can be satisfied,e., all the points are in the cone, but theusing a controllet. on the formw.u, the dynamics in (1)
points cannot be seen by the camera due to the occlusionlcome simple due to the structure of (3). All the nonlinear
the wall. terms in (3) are orthogonal ta and the kinematics for the
Let the normal to the plane pointing into the half spaceotation is equivalent to the linear system
where the points are visible, be denoted’by in the frame
Fe.+. An occlusion requirement in the camera frathg for
each®P; is that

Ou = Lopuw, = we. a7
A suitable way of choosing the controllet, is
c63RT(C*n) < O, (16) We = —/{9, (18)

whereces = [0,0,1] and R” represents the relative rotation
betweenfF. and F.- . .
Remark 3.2: The constraint (16) is the most simple occlu- we = —ksign(®), (19)
sion constraint we can impose. More advanced constraintthere k. € R7T is chosen so thatt|0(to)ur| < B,
can also be considered including many objects that occluc@e(to)uﬂ < B and k|f(to)us| < fs, i.e. the constraint
each other. (6) is satisfied. The three parameters, u; and us are
the elements ot:. Another way of finding a suitable. is

) by solving a linear quadratic optimal control problem with
The method we use to solve the problem consists of tWoystraints) = w
= W,

consecutive steps. In each step a subset of the constri@jnts (

(11-14) and (16) are treated. After both steps a trajectasy hB. Step 2 - Trandational Motion

been constructed for which all constraints are satisfiede No Using the solved rotational motiof(t)
that this trajectory is defined as an explicit solution oféim ¢4, the translational vectat, is given by
and in order to address the issue of measurement noise we

end this section by proposing a Model Predictive Control t = R(t)v, (20)

(cl\;lrlf gze ?l?;mwz'ezhzstm;&éps in the proposed approacvr\}hereR(t) is given in (4). The explicit solution fot(t) is

given by

or

IV. SOLUTION

u, the dynamics

1) Construct the angular velocity.(t) while fulfilling t
the constraint (16). Using:., an explicit solution for t(t) =t(to) + | R(s)v.ds. (21)
O(t)u(t) is obtained, which implies that an explicit to

solution for the rotation matrid?(¢) can be obtained And its corresponding discretized dynamics is
via Rodrigues’ formula.

2) Using the solution foR(¢) the translational dynamics t(k+1)=t(k)+ B(k)v.(k), (22)
is given as a time varying linear system. This linear ) _
system is then discretized such that the translatioffneret(k) andw.(k) is short notation fott(t, + k7) and
can be represented as eqaulities, expressed of its ific(fo +£7T5) at time stepk. The matrixB(k) is defined as
tial value andR(t). The above equalities, the linear to+(k+1)Ts
constraints (11-14), (6) together with a convex func- B(k) = / R(s)ds (23)
tional form a convex optimization problem with linear t

constraints. This optimization problem can be solvedndk € {0,1,...}.
for arbitrarily number of sampling peroids, but in the  Remark 4.1: In many cases the matrisB(k) is only
MPC-approach only the solution of the first samplingyefined up to quadrature, but in most of these cases the

peroid is implemented in each iteration. integral expression can be found with sufficient accuracy in
The two different steps will now be explained in detail innumerical tables.
the following subsections.

o+kTs

We are now ready to pose a convex optimal control
A. Sep 1 - Rotational Motion problem in order to obtain the discrete translational mmotio

The shortest geodesic distance betwgzmand I is |[9] € V¢ This problem is on the following form

[0,7] in SO(3), where# is the angle in the axis-angle
representation o, see [13]. This distance is also known @ .

i ian di i o min > 115+ [lvs 13
as the Riemannian distance. The shortest path is a rotation o, < <« 2 si2
around the axiax with magnitude|d|. Providedd(to)u(to) -
and“n = 0 fulfills the constraint (16), it follows that (16) | S-tt(k+1)=tk) + B(kjve(k), k=12, N,
is fulfilled for all rotationsfu wheref € [0(ty), 0]. Al (k) vl (k)T <b;, j=1,2,...,M

Thus in order to obtain this shortest path96(3) we can -
restrict the rotational motion to be around the rotationds a (24)



The inequalitiesA;[t7, vT]T < b; captures all constraints s.t.t(k +1) = t(k) + B(k)v.(k), (25b)
defined in the paper except (16).

In the precence of noise, the procedure that was described Xi—aZz; <0,
in the two preceding subsections can now be repeated at each -Yi-bz; <0, (25¢)
time tg, to + T, to + 27T, ... until we have reached a desired -X;,—aZ; <0,
convergence. The procedure is formalized into the foll@gwin Y, —bZ; <O.
algorithm
’Ul(k) S (673 — Uz(k) S (673 (25d)
Algorithm 1

1) At time £, solve the perspective n point problem The simulation results are covered in the following figures:

(PnP) to get (an estimate of) the relative pesg)) = Current image plane

(ctc* 5 6"(1,) 0.5¢
2) Solve system (17) to obta#th.(k) k =1,2,...N. The

rotation matricesR (k) could be constructed according

o (4). _ ’
3) Construct state transition matricé8(k) of transla- f

tional motion according to (22) and (23). % y/
4) Solve the optimization problem (24) for time horizon £ 2

N to getw.(k). If no feasible solution exists, then goto 2 Of 4

2) and solved (k) again,elsegoto 5). g
5) Usev = [w.(k)",vc(k)T]" for the time period ©

t € [to, to + NTs]. > *  Features at the final time

o Features at the beginrjing
V. ILLUSTRATIVE EXAMPLE AE ‘ ;
In order to illustrate the the method we will go through -05 o 05
one iteration ofAlgorithm 1 for a specific problem. In this X—axis [Normalized|]

problem the desired pose is given by

0 0
s* = ( 0,0 )
0 0
Assume one set of coplaner point features are available a
their coordinates” P in the desired camera framg.. are

Fig. 3. Point feature trajectories on normalized image @lan

Trajectory of the camera

given. Without loss of generality, we choose the samplin tart point.
period Ts = 0.02 second and time horizoir = 1 second.
Then there aréV = 50 steps to be considered. o0
In step 1) the initial pose is estimated as 40
30 —0.6204
(t(to), O(tou(to)) = ( 30| .6, | 0.7653 ) g 30 ,
30 —0.1708 N 50 nd point
wherefy, = 0.9773. In step 2)(17) could be solved either by 10 B
(18) or (19). Then usé.(k) andw to construct the rotation
matrices.

In step 3) After B(k) in (22) is calculated using (23),
ts(k) is a linear combination of the translational velocities
v (k).

In step 4)Using t.(k), R(k) together with¢” P, coor-
dinates of the feature pointd in the camera framé-, is
obtained using (15). GivenP, the visibility constraints turns
into a set of linear inequalities with respectao(k).

In step 5)we now have all the necessary building blocks
in order to formulate the optimization problem:

Fig. 4. Camera spatial trajectory

3
min [|vs||2 + Z Htgi) |12 (25a) The point feature trajectorie_s in the image p!ane are shovyn
Us = in Fig. 3 and the corresponding camera spatial trajectory is



shown in Fig. 4. Because both the initial position and theecond step, a convex optimization problem is formulated,
desired position of the point features are close to the imagehere various linear constraints on the vision and the motio
plane boundary, it is a difficult task to keep the visibilityare incorporated.

constraint. However all the point feature trajectoriesysta For future work, the moving target case as well as addi-
inside the image plane. tional constraints such as resolution constraints on theeca

should be further explored.

Convergence of translation
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VI. CONCLUSIONS ANDFUTURE WORK

In this paper we have proposed a new path planning
method for constrained Position Based Visual Servoing
(PBVS). We assume a known target with known point
features. The3D coordinates of the point features are
obtained using the ePnP method, see [10], which®as)
computational time in the number of point featuresThen
the pose is obtained using the method by Horn [9].

The problem is solved in two consecutive steps, the first
step is to find a feasible rotational motion and the next step i
to find a feasible trajectory for the translational motianthe



